get_alpha_and_c
full name: tenpy.tools.prediction.get_alpha_and_c
parent module:
tenpy.tools.prediction
type: function
- tenpy.tools.prediction.get_alpha_and_c(x, lpc, truncation_mode='cutoff', epsilon=1e-06)[source]
Get the eigenvalues and coefficients from a vector of linear prediction coefficients for the time series x.
This follows the approach taken in arXiv:0901.2342. If necessary, the eigenvalues are truncated according to the truncation_mode
- Parameters:
x (ndarray) – one-dimensional time series data
lpc (ndarray) – 1D array containing the p linear prediction coefficients
[a_p, a_{p-1}, ..., a_1]
from the correlations of xtruncation_mode (str) – the truncation mode (default is ‘cutoff’, which means that those eigenvalues will be cut) used for truncating the eigenvalues. Other options are ‘renormalize’ (meaning their absolute value will be set to 1) and ‘conjugate’
epsilon (float) – Regularization parameter for matrix inversion. However, if the matrix can’t be inverted here, linear prediction is probably not applicable
- Returns:
evals (ndarray)
c (ndarray)