chiral_pi_flux.py

on github (download).

"""Chiral pi flux model - Chern insulator example

Based on the model in [Neupert2011]_
"""

# Copyright (C) TeNPy Developers, Apache license

import numpy as np

from tenpy.algorithms import dmrg
from tenpy.networks.mps import MPS
from tenpy.networks import site

from tenpy.models.model import CouplingMPOModel
from tenpy.networks.site import FermionSite
from tenpy.models import lattice


class BipartiteSquare(lattice.Lattice):
    def __init__(self, Lx, Ly, siteA, **kwargs):
        basis = np.array(([2, 0.], [0, 2]))

        pos = np.array(([0, 0], [1, 0], [0, 1], [1, 1]))

        kwargs.setdefault('order', 'default')
        kwargs.setdefault('bc', 'periodic')
        kwargs.setdefault('bc_MPS', 'infinite')
        kwargs.setdefault('basis', basis)
        kwargs.setdefault('positions', pos)

        super().__init__([Lx, Ly], [siteA, siteA, siteA, siteA], **kwargs)

        self.NN = [(0, 1, np.array([0, 0])), (1, 3, np.array([0, 0])), (3, 2, np.array([0, 0])),
                   (2, 0, np.array([0, 0])), (2, 0, np.array([0, 1])), (1, 3, np.array([0, -1])),
                   (0, 1, np.array([-1, 0])), (3, 2, np.array([1, 0]))]
        self.nNNdashed = [(0, 3, np.array([0, 0])), (2, 1, np.array([0, 0])),
                          (3, 0, np.array([1, 1])), (1, 2, np.array([1, -1]))]
        self.nNNdotted = [(1, 2, np.array([1, 0])), (3, 0, np.array([1, 0])),
                          (2, 1, np.array([0, 1])), (3, 0, np.array([0, 1]))]


class FermionicPiFluxModel(CouplingMPOModel):
    def init_sites(self, model_params):
        conserve = model_params.get('conserve', 'N')
        site = FermionSite(conserve=conserve)
        return site

    def init_lattice(self, model_params):
        Lx = model_params.get('Lx', 1)
        Ly = model_params.get('Ly', 3)
        fs = self.init_sites(model_params)
        lat = BipartiteSquare(Lx, Ly, fs)
        return lat

    def init_terms(self, model_params):
        t = np.asarray(model_params.get('t', -1.))
        V = np.asarray(model_params.get('V', 0.))
        mu = np.asarray(model_params.get('mu', 0.))
        phi_ext = 2 * np.pi * model_params.get('phi_ext', 0.)

        t1 = t * np.exp(1j * np.pi / 4)
        t2 = t / np.sqrt(2)

        self.add_onsite(mu, 0, 'N', category='mu N')
        self.add_onsite(-mu, 1, 'N', category='mu N')

        for u1, u2, dx in self.lat.NN:
            t1_phi = self.coupling_strength_add_ext_flux(t1, dx, [0, phi_ext])
            self.add_coupling(t1_phi, u1, 'Cd', u2, 'C', dx, 'JW',
                              category='t1 Cd_i C_j', plus_hc=True)  # yapf: disable
            self.add_coupling(V, u1, 'N', u2, 'N', dx, category='V N_i N_j')

        for u1, u2, dx in self.lat.nNNdashed:
            t2_phi = self.coupling_strength_add_ext_flux(t2, dx, [0, phi_ext])
            self.add_coupling(t2_phi, u1, 'Cd', u2, 'C', dx, 'JW',
                              category='t2 Cd_i C_j', plus_hc=True)  # yapf: disable

        for u1, u2, dx in self.lat.nNNdotted:
            t2_phi = self.coupling_strength_add_ext_flux(t2, dx, [0, phi_ext])
            self.add_coupling(-t2_phi, u1, 'Cd', u2, 'C', dx, 'JW',
                              category='-t2 Cd_i C_j', plus_hc=True)  # yapf: disable


def plot_lattice():

    import matplotlib.pyplot as plt
    ax = plt.gca()
    fs = site.FermionSite()
    lat = BipartiteSquare(3, 3, fs, basis=[[2, 0], [0, 2]])
    lat.plot_sites(ax)
    lat.plot_coupling(ax, lat.NN, linestyle='-', color='green')
    lat.plot_coupling(ax, lat.nNNdashed, linestyle='--', color='black')
    lat.plot_coupling(ax, lat.nNNdotted, linestyle='--', color='red')
    ax.set_aspect('equal')
    plt.show()


def run(phi_ext=np.linspace(0, 1.0, 7)):

    data = dict(phi_ext=phi_ext, QL=[], ent_spectrum=[])

    model_params = dict(conserve='N', t=-1, V=0, mu=0, Lx=1, Ly=3)

    dmrg_params = {
        'mixer': True,  # setting this to True helps to escape local minima
        'mixer_params': {
            'amplitude': 1.e-5,
            'decay': 1.2,
            'disable_after': 30
        },
        'trunc_params': {
            'svd_min': 1.e-10,
        },
        'lanczos_params': {
            'N_min': 5,
            'N_max': 20
        },
        'chi_list': {
            0: 9,
            10: 49,
            20: 100
        },
        'max_E_err': 1.e-10,
        'max_S_err': 1.e-6,
        'max_sweeps': 150,
    }

    prod_state = ['empty', 'full'] * (model_params['Lx'] * model_params['Ly'] * 2)

    eng = None

    for phi in phi_ext:

        print("=" * 100)
        print("phi_ext = ", phi)

        model_params['phi_ext'] = phi

        if eng is None:  # first time in the loop
            M = FermionicPiFluxModel(model_params)
            psi = MPS.from_product_state(M.lat.mps_sites(), prod_state, bc=M.lat.bc_MPS)
            eng = dmrg.TwoSiteDMRGEngine(psi, M, dmrg_params)
        else:
            del eng.options['chi_list']
            M = FermionicPiFluxModel(model_params)
            eng.init_env(model=M)

        E, psi = eng.run()

        data['QL'].append(psi.average_charge(bond=0)[0])
        data['ent_spectrum'].append(psi.entanglement_spectrum(by_charge=True)[0])

    return data


def plot_results(data):

    import matplotlib.pyplot as plt

    plt.figure()
    ax = plt.gca()
    ax.plot(data['phi_ext'], data['QL'], marker='o')
    ax.set_xlabel(r"$\Phi_y / 2 \pi$")
    ax.set_ylabel(r"$ \langle Q^L(\Phi_y) \rangle$")
    plt.savefig("chiral_pi_flux_charge_pump.pdf")

    plt.figure()
    ax = plt.gca()
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    color_by_charge = {}
    for phi_ext, spectrum in zip(data['phi_ext'], data['ent_spectrum']):
        for q, s in spectrum:
            q = q[0]
            label = ""
            if q not in color_by_charge:
                label = "{q:d}".format(q=q)
                color_by_charge[q] = colors[len(color_by_charge) % len(colors)]
            color = color_by_charge[q]
            ax.plot(phi_ext * np.ones(s.shape),
                    s,
                    linestyle='',
                    marker='_',
                    color=color,
                    label=label)
    ax.set_xlabel(r"$\Phi_y / 2 \pi$")
    ax.set_ylabel(r"$ \epsilon_\alpha $")
    ax.set_ylim(0., 8.)
    ax.legend(loc='upper right')
    plt.savefig("chiral_pi_flux_ent_spec_flow.pdf")


if __name__ == "__main__":

    # plot_lattice()
    data = run()
    plot_results(data)