norm
full name: tenpy.linalg.np_conserved.norm
parent module:
tenpy.linalg.np_conserved
type: function
- tenpy.linalg.np_conserved.norm(a, ord=None, convert_to_float=True)[source]
Norm of flattened data.
Equivalent to
np.linalg.norm(a.to_ndarray().flatten(), ord)
.In contrast to numpy, we don’t distinguish between matrices and vectors, but simply calculate the norm for the flat (block) data. The usual ord-norm is defined as \((\sum_i |a_i|^{ord} )^{1/ord}\).
ord
norm
None/’fro’
Frobenius norm (same as 2-norm)
np.inf
max(abs(x))
-np.inf
min(abs(x))
0
sum(a != 0) == np.count_nonzero(x)
other
usual ord-norm
- Parameters:
a (
Array
| np.ndarray) – The array of which the norm should be calculated.ord – The order of the norm. See table above.
convert_to_float – Convert integer to float before calculating the norm, avoiding int overflow.
- Returns:
norm – The norm over the flat data of the array.
- Return type: