"""Toy code implementing the density-matrix renormalization group (DMRG)."""
# Copyright (C) TeNPy Developers, Apache license
import numpy as np
from .a_mps import split_truncate_theta
import scipy.sparse
from scipy.sparse.linalg import eigsh
class SimpleDMRGEngine:
"""DMRG algorithm, implemented as class holding the necessary data.
DMRG sweeps left-right-left through the system, moving the orthogonality center along.
Here, we still just save right-canonical `B` tensors in `psi`, which requires taking inverses
of the Schmidt values - this is bad practice, but it keeps two things simpler:
- We don't need book keeping in the MPS class to keep track of the canonical form, and all the
MPS methods (expectation values etc) can just *assume* that the MPS is in right-canonical form.
- The generalization to the infinite case is straight forward.
Note, however, that we only use the A and B tensors directly from the SVD (without taking
inverses) to update the environments. The effective Hamiltonian does thus not suffer
from taking the inverses of Schmidt values.
Parameters
----------
psi, model, chi_max, eps:
See attributes
Attributes
----------
psi : SimpleMPS
The current ground-state (approximation).
model :
The model of which the groundstate is to be calculated. Needs to have an `H_mpo`.
chi_max, eps:
Truncation parameters, see :func:`a_mps.split_truncate_theta`.
LPs, RPs : list of np.Array[ndim=3]
Left and right parts ("environments") of the effective Hamiltonian.
``LPs[i]`` is the contraction of all parts left of site `i` in the network ``<psi|H|psi>``,
and similar ``RPs[i]`` for all parts right of site `i`.
Each ``LPs[i]`` has legs ``vL wL* vL*``, ``RPs[i]`` has legs ``vR* wR* vR``
"""
def __init__(self, psi, model, chi_max, eps):
assert psi.L == model.L and psi.bc == model.bc # ensure compatibility
self.H_mpo = model.H_mpo
self.psi = psi
self.LPs = [None] * psi.L
self.RPs = [None] * psi.L
self.chi_max = chi_max
self.eps = eps
# initialize left and right environment
D = self.H_mpo[0].shape[0]
chi = psi.Bs[0].shape[0]
LP = np.zeros([chi, D, chi], dtype=float) # vL wL* vL*
RP = np.zeros([chi, D, chi], dtype=float) # vR* wR* vR
LP[:, 0, :] = np.eye(chi)
RP[:, D - 1, :] = np.eye(chi)
self.LPs[0] = LP
self.RPs[-1] = RP
# initialize necessary RPs
for i in range(psi.L - 1, 1, -1):
self.update_RP(i, psi.Bs[i])
def sweep(self):
# sweep from left to right
for i in range(self.psi.nbonds - 1):
self.update_bond(i)
# sweep from right to left
for i in range(self.psi.nbonds - 1, 0, -1):
E0 = self.update_bond(i)
return E0
def update_bond(self, i):
j = (i + 1) % self.psi.L
# get effective Hamiltonian
Heff = SimpleHeff2(self.LPs[i], self.RPs[j], self.H_mpo[i], self.H_mpo[j])
# Diagonalize Heff, find ground state `theta`
theta_guess = self.psi.get_theta2(i)
E0, theta = self.diag(Heff, theta_guess)
# split and truncate
Ai, Sj, Bj = split_truncate_theta(theta, self.chi_max, self.eps)
# put back into MPS
Gi = np.tensordot(np.diag(self.psi.Ss[i]**(-1)), Ai, axes=(1, 0)) # vL [vL*], [vL] i vC
self.psi.Bs[i] = np.tensordot(Gi, np.diag(Sj), axes=(2, 0)) # vL i [vC], [vC*] vC
self.psi.Ss[j] = Sj # vC
self.psi.Bs[j] = Bj # vC j vR
self.update_LP(i, Ai)
self.update_RP(j, Bj)
return E0
def diag(self, Heff, guess):
"""Diagonalize the effective hamiltonian with an initial guess."""
guess = np.reshape(guess, [Heff.shape[1]])
E, V = eigsh(Heff, k=1, which='SA', return_eigenvectors=True, v0=guess)
return E, np.reshape(V[:, 0], Heff.theta_shape)
# # alternatively, use custom lanczos implementation
# from .lanczos import lanczos_ground_state
# return lanczos_ground_state(H, guess)
def update_RP(self, i, B):
"""Calculate RP environment right of site `i-1`.
Uses RP right of `i` and the given, right-canonical `B` on site `i`."""
j = (i - 1) % self.psi.L
RP = self.RPs[i] # vR* wR* vR
# B has legs vL i vR
Bc = B.conj() # vL* i* vR*
W = self.H_mpo[i] # wL wR i i*
RP = np.tensordot(B, RP, axes=(2, 0)) # vL i [vR], [vR*] wR* vR
RP = np.tensordot(RP, W, axes=([1, 2], [3, 1])) # vL [i] [wR*] vR, wL [wR] i [i*]
RP = np.tensordot(RP, Bc, axes=([1, 3], [2, 1])) # vL [vR] wL [i], vL* [i*] [vR*]
self.RPs[j] = RP # vL wL vL* (== vR* wR* vR on site i-1)
def update_LP(self, i, A):
"""Calculate LP environment left of site `i+1`.
Uses the LP left of site `i` and the given, left-canonical `A` on site `i`."""
j = (i + 1) % self.psi.L
LP = self.LPs[i] # vL wL vL*
# A has legs vL i vR
Ac = A.conj() # vL* i* vR*
W = self.H_mpo[i] # wL wR i i*
LP = np.tensordot(LP, A, axes=(2, 0)) # vL wL* [vL*], [vL] i vR
LP = np.tensordot(W, LP, axes=([0, 3], [1, 2])) # [wL] wR i [i*], vL [wL*] [i] vR
LP = np.tensordot(Ac, LP, axes=([0, 1], [2, 1])) # [vL*] [i*] vR*, wR [i] [vL] vR
self.LPs[j] = LP # vR* wR vR (== vL wL* vL* on site i+1)
class SimpleHeff2(scipy.sparse.linalg.LinearOperator):
"""Class for the effective Hamiltonian on two sites.
To be diagonalized in `SimpleDMRGEnginge.diag` during the bond update. Looks like this::
.--vL* vR*--.
| i* j* |
| | | |
(LP)----(W1)--(W2)----(RP)
| | | |
| i j |
.--vL vR--.
"""
def __init__(self, LP, RP, W1, W2):
self.LP = LP # vL wL* vL*
self.RP = RP # vR* wR* vR
self.W1 = W1 # wL wC i i*
self.W2 = W2 # wC wR j j*
chi1, chi2 = LP.shape[0], RP.shape[2]
d1, d2 = W1.shape[2], W2.shape[2]
self.theta_shape = (chi1, d1, d2, chi2) # vL i j vR
self.shape = (chi1 * d1 * d2 * chi2, chi1 * d1 * d2 * chi2)
self.dtype = W1.dtype
def _matvec(self, theta):
"""Calculate the matrix-vecotr product |theta'> = H_eff |theta>.
This function is used by :func:`scipy.sparse.linalg.eigsh` to diagonalize
the effective Hamiltonian with a Lanczos method, withouth generating the full matrix.
"""
x = np.reshape(theta, self.theta_shape) # vL i j vR
x = np.tensordot(self.LP, x, axes=(2, 0)) # vL wL* [vL*], [vL] i j vR
x = np.tensordot(x, self.W1, axes=([1, 2], [0, 3])) # vL [wL*] [i] j vR, [wL] wC i [i*]
x = np.tensordot(x, self.W2, axes=([3, 1], [0, 3])) # vL [j] vR [wC] i, [wC] wR j [j*]
x = np.tensordot(x, self.RP, axes=([1, 3], [0, 1])) # vL [vR] i [wR] j, [vR*] [wR*] vR
x = np.reshape(x, self.shape[0])
return x
def _adjoint(self):
"""Define self as hermitian."""
return self
def trace(self):
"""The trace of the operator.
Only needed in e_tdvp.py in expm_multiply for scipy version > 1.9.0 to avoid warnings,
but cheap to calculate anyways.
"""
return np.inner(np.trace(self.LP, axis1=0, axis2=2), # [vL] wL* [vL*]
np.dot(np.trace(self.W1, axis1=2, axis2=3), # wL wC [i] [i*]
np.dot(np.trace(self.W2, axis1=2, axis2=3), # wC wR [j] [j*]
np.trace(self.RP, axis1=0, axis2=2)))) # [vR*] wR* [vR]
def example_DMRG_tf_ising_finite(L, g, chi_max=20):
print("finite DMRG, transverse field Ising")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
from . import a_mps
from . import b_model
model = b_model.TFIModel(L=L, J=1., g=g, bc='finite')
psi = a_mps.init_FM_MPS(model.L, model.d, model.bc)
eng = SimpleDMRGEngine(psi, model, chi_max=chi_max, eps=1.e-10)
for i in range(10):
eng.sweep()
E = np.sum(psi.bond_expectation_value(model.H_bonds))
print("sweep {i:2d}: E = {E:.13f}".format(i=i + 1, E=E))
print("final bond dimensions: ", psi.get_chi())
mag_x = np.sum(psi.site_expectation_value(model.sigmax))
mag_z = np.sum(psi.site_expectation_value(model.sigmaz))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result
from .tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, model
def example_DMRG_tf_ising_infinite(g, chi_max=30):
print("infinite DMRG, transverse field Ising")
print("g={g:.2f}".format(g=g))
from . import a_mps
from . import b_model
model = b_model.TFIModel(L=2, J=1., g=g, bc='infinite')
psi = a_mps.init_FM_MPS(model.L, model.d, model.bc)
eng = SimpleDMRGEngine(psi, model, chi_max=chi_max, eps=1.e-14)
for i in range(20):
eng.sweep()
E = np.mean(psi.bond_expectation_value(model.H_bonds))
print("sweep {i:2d}: E (per site) = {E:.13f}".format(i=i + 1, E=E))
print("final bond dimensions: ", psi.get_chi())
mag_x = np.mean(psi.site_expectation_value(model.sigmax))
mag_z = np.mean(psi.site_expectation_value(model.sigmaz))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
# compare to exact result
from .tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, model