eigvalsh
full name: tenpy.linalg.np_conserved.eigvalsh
parent module:
tenpy.linalg.np_conserved
type: function
- tenpy.linalg.np_conserved.eigvalsh(a, UPLO='L', sort=None)[source]
Calculate eigenvalues for a hermitian matrix.
Assumes that a is hermitian,
a.conj().transpose() == a
.- Parameters:
a (
Array
) – The hermitian square matrix to be diagonalized.UPLO ({'L', 'U'}) – Whether to take the lower (‘L’, default) or upper (‘U’) triangular part of a.
sort ({‘m>’, ‘m<’, ‘>’, ‘<’,
None
}) – How the eigenvalues should are sorted within each charge block. Defaults toNone
, which is same as ‘<’. Seeargsort()
for details.
- Returns:
W – The eigenvalues, sorted within the same charge blocks according to sort.
- Return type:
1D ndarray
Notes
The eigenvalues are sorted within blocks of the completely blocked legs.