GradientDescentDisentangler
full name: tenpy.algorithms.disentangler.GradientDescentDisentangler
parent module:
tenpy.algorithms.disentangler
type: class
Inheritance Diagram
Methods
|
|
Given theta, find a unitary U towards minimizing the n-th Renyi entropy. |
- class tenpy.algorithms.disentangler.GradientDescentDisentangler(parent)[source]
Bases:
Disentangler
Gradient-descent optimization, similar to
RenyiDisentangler
.Reads of the following TEBD_params:
key
type
description
disent_eps
float
Break, if the change in the Renyi entropy
S(n=2)
per iteration is smaller than this value.disent_max_iter
float
Maximum number of iterations to perform.
disent_n
float
Renyi index of the entropy to be used.
n=1
for von-Neumann entropy.Arguments and return values are the same as for
Disentangler
.- iter(theta)[source]
Given theta, find a unitary U towards minimizing the n-th Renyi entropy.
This function calculates the gradient \(dS = \partial S(U theta, n) /\partial U\). and then
U(t) = exp(-t*dS)
, where we choose the t from stepsizes which minimizes the entropy ofU(t) theta
.When
R[i]
is the derivative \(\partial S(Y, n)/ \partial Y_i\) of the (n-th Renyi) entropy,dS
is given by:| .----X--R--Z----. | | | | | | | q0 q1 | | | | | | q0* q1* | | | | | | | .----X*-Y--Z*---.