
TeNPy
Release 0.8.1

TeNPy Developers

Mar 24, 2021

USER GUIDE

I User guide 1

1 How do I get set up? 5

2 How to read the documentation 7

3 Help - I looked at the documentation, but I don’t understand how . . . ? 9

4 I found a bug 11

5 Citing TeNPy 13

6 Acknowledgment 15

7 License 17

8 Installation instructions 19
8.1 Installation with conda from conda-forge . 19
8.2 Installation from PyPi with pip . 20
8.3 Updating to a new version . 21
8.4 Installation from source . 22
8.5 Extra requirements . 25
8.6 Checking the installation . 26
8.7 TeNPy developer team . 27
8.8 License . 27

9 Release Notes 41
9.1 [latest] . 41
9.2 [v0.8.1] - 2021-02-23 . 42
9.3 [v0.8.0] - 2021-02-19 . 42
9.4 [0.7.2] - 2020-10-09 . 45
9.5 [0.7.1] - 2020-09-04 . 45
9.6 [0.7.0] - 2020-09-04 . 46
9.7 [0.6.1] - 2020-05-18 . 47
9.8 [0.6.0] - 2020-05-16 . 47
9.9 [0.5.0] - 2019-12-18 . 51
9.10 [0.4.1] - 2019-08-14 . 52
9.11 [0.4.0] - 2019-04-28 . 53
9.12 [0.3.0] - 2018-02-19 . 57
9.13 [0.2.0] - 2017-02-24 . 57
9.14 Changes compared to previous TeNPy . 58

i

10 Introductions 61
10.1 Overview . 61
10.2 Charge conservation with np_conserved . 68
10.3 Models . 81
10.4 Simulations . 91
10.5 Details on the lattice geometry . 92
10.6 Logging and terminal output . 97
10.7 Parameters and options . 99
10.8 Saving to disk: input/output . 100
10.9 Fermions and the Jordan-Wigner transformation . 103
10.10 Protocol for using (i)DMRG . 107

11 Examples 111
11.1 Toycodes . 111
11.2 Python scripts . 124
11.3 Jupyter Notebooks . 142

12 Troubleshooting and FAQ 173
12.1 I get an error when . 173
12.2 I get a warning about . 173

13 Literature and References 175
13.1 TeNPy related sources . 175
13.2 Software-related . 175
13.3 General reading . 175
13.4 Algorithm developments . 176
13.5 References . 176

14 Papers using TeNPy 177

15 Contributing 181
15.1 Coding Guidelines . 181
15.2 Bulding the documentation . 183
15.3 To-Do list . 184

II Reference 187

16 Tenpy main module 189
16.1 run_simulation . 190
16.2 console_main . 190
16.3 show_config . 192

17 algorithms 193
17.1 algorithm . 193
17.2 truncation . 194
17.3 tebd . 198
17.4 mps_common . 205
17.5 dmrg . 213
17.6 tdvp . 240
17.7 purification . 248
17.8 mpo_evolution . 261
17.9 network_contractor . 261
17.10 exact_diag . 263

ii

18 linalg 269
18.1 np_conserved . 269
18.2 charges . 304
18.3 svd_robust . 324
18.4 random_matrix . 326
18.5 sparse . 330
18.6 lanczos . 348

19 models 353
19.1 lattice . 353
19.2 model . 476
19.3 tf_ising . 507
19.4 xxz_chain . 522
19.5 spins . 535
19.6 spins_nnn . 549
19.7 fermions_spinless . 551
19.8 hubbard . 565
19.9 hofstadter . 593
19.10 haldane . 595
19.11 toric_code . 596

20 networks 609
20.1 site . 609
20.2 mps . 648
20.3 mpo . 659
20.4 terms . 670
20.5 purification_mps . 688

21 simulations 691
21.1 simulation . 691
21.2 measurement . 694
21.3 ground_state_search . 698
21.4 time_evolution . 698

22 tools 701
22.1 hdf5_io . 701
22.2 params . 716
22.3 events . 720
22.4 misc . 725
22.5 math . 736
22.6 fit . 740
22.7 string . 744
22.8 process . 745
22.9 optimization . 748

23 version 755

Bibliography 757

Python Module Index 761

Config Option Index 763

Config Index 799

Index 801

iii

iv

Part I

User guide

1

TeNPy, Release 0.8.1

TeNPy (short for ‘Tensor Network Python’) is a Python library for the simulation of strongly correlated quantum
systems with tensor networks.

The philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the
same time powerful algorithms and fast development of new algorithms for experts. For good readability, we include
an extensive documentation next to the code, both in Python doc strings and separately as user guides, as well as
simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in
~100 lines per file.

3

https://anaconda.org/conda-forge/physics-tenpy
https://pypi.org/project/physics-tenpy/

TeNPy, Release 0.8.1

4

CHAPTER

ONE

HOW DO I GET SET UP?

If you have the conda package manager, you can install the latest released version of TeNPy with:

conda install --channel=conda-forge physics-tenpy

Further details and alternative methods can be found the file doc/INSTALL.rst. The latest version of the source code
can be obtained from https://github.com/tenpy/tenpy.

5

https://tenpy.readthedocs.io/en/latest/INSTALL.html
https://github.com/tenpy/tenpy

TeNPy, Release 0.8.1

6 Chapter 1. How do I get set up?

CHAPTER

TWO

HOW TO READ THE DOCUMENTATION

The documentation is available online at https://tenpy.readthedocs.io/. The documentation is roughly split in two
parts: on one hand the full “reference” containing the documentation of all functions, classes, methods, etc., and on
the other hand the “user guide” containing some introductions with additional explanations and examples.

The documentation is based on Python’s docstrings, and some additional *.rst files located in the folder doc/ of the
repository. All documentation is formated as reStructuredText, which means it is quite readable in the source plain
text, but can also be converted to other formats. If you like it simple, you can just use intective python help(), Python
IDEs of your choice or jupyter notebooks, or just read the source. Moreover, the documentation gets converted into
HTML using Sphinx, and is made available online at https://tenpy.readthedocs.io/. The big advantages of the (online)
HTML documentation are a lot of cross-links between different functions, and even a search function. If you prefer yet
another format, you can try to build the documentation yourself, as described in doc/contr/build_doc.rst.

7

https://tenpy.readthedocs.io/
https://tenpy.readthedocs.io/en/latest/introductions.html
https://tenpy.readthedocs.io/en/latest/examples.html
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org
https://tenpy.readthedocs.io/

TeNPy, Release 0.8.1

8 Chapter 2. How to read the documentation

CHAPTER

THREE

HELP - I LOOKED AT THE DOCUMENTATION, BUT I DON’T
UNDERSTAND HOW . . . ?

We have set up a community forum at https://tenpy.johannes-hauschild.de/, where you can post questions and hope-
fully find answers. Once you got some experience with TeNPy, you might also be able to contribute to the community
and answer some questions yourself ;-) We also use this forum for official annoucements, for example when we release
a new version.

9

https://tenpy.johannes-hauschild.de/

TeNPy, Release 0.8.1

10 Chapter 3. Help - I looked at the documentation, but I don’t understand how . . . ?

CHAPTER

FOUR

I FOUND A BUG

You might want to check the github issues, if someone else already reported the same problem. To report a new bug,
just open a new issue on github. If you already know how to fix it, you can just create a pull request :) If you are not
sure whether your problem is a bug or a feature, you can also ask for help in the TeNPy forum.

11

https://github.com/tenpy/tenpy/issues
https://github.com/tenpy/tenpy/issues/new
https://tenpy.johannes-hauschild.de/

TeNPy, Release 0.8.1

12 Chapter 4. I found a bug

CHAPTER

FIVE

CITING TENPY

When you use TeNPy for a work published in an academic journal, you can cite this paper to acknowledge the work
put into the development of TeNPy. (The license of TeNPy does not force you, however.) For example, you could
add the sentence "Calculations were performed using the TeNPy Library (version X.X.
X)\cite{tenpy}." in the acknowledgements or in the main text.

The corresponding BibTex Entry would be the following (the \url{...} requires \usepackage{hyperref}
in the LaTeX preamble.):

@Article{tenpy,
title={{Efficient numerical simulations with Tensor Networks: Tensor Network

→˓Python (TeNPy)}},
author={Johannes Hauschild and Frank Pollmann},
journal={SciPost Phys. Lect. Notes},
pages={5},
year={2018},
publisher={SciPost},
doi={10.21468/SciPostPhysLectNotes.5},
url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
archiveprefix={arXiv},
eprint={1805.00055},
note={Code available from \url{https://github.com/tenpy/tenpy}},

}

To keep us motivated, you can also include your work into the list of papers using TeNPy.

13

https://dx.doi.org/10.21468/SciPostPhysLectNotes.5
https://tenpy.readthedocs.io/en/latest/papers_using_tenpy.html

TeNPy, Release 0.8.1

14 Chapter 5. Citing TeNPy

CHAPTER

SIX

ACKNOWLEDGMENT

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division under Contract No. DE-AC02-05- CH11231 through the Scientific Discovery
through Advanced Computing (SciDAC) program (KC23DAC Topological and Correlated Matter via Tensor Networks
and Quantum Monte Carlo).

15

TeNPy, Release 0.8.1

16 Chapter 6. Acknowledgment

CHAPTER

SEVEN

LICENSE

The code is licensed under GPL-v3.0 given in the file LICENSE of the repository, in the online documentation readable
at https://tenpy.readthedocs.io/en/latest/install/license.html.

17

https://tenpy.readthedocs.io/en/latest/install/license.html

TeNPy, Release 0.8.1

18 Chapter 7. License

CHAPTER

EIGHT

INSTALLATION INSTRUCTIONS

With the [conda] package manager you can install python with:

conda install --channel=conda-forge physics-tenpy

More details and tricks in Installation with conda from conda-forge.

If you don’t have conda, but you have [pip], you can:

pip install physics-tenpy

More details for this method can be found in Installation from PyPi with pip.

We also have a bunch of optional Extra requirements, which you don’t have to install to use TeNPy, but you might
want to.

The method with the minimal requirements is to just download the source and adjust the PYTHONPATH, as described
in Installation from source. This is also the recommended way if you plan to modify parts of the source.

8.1 Installation with conda from conda-forge

We provide a package for the [conda] package manager in the conda-forge channel, so you can install TeNPy as:

conda install --channel=conda-forge physics-tenpy

Following the recommondation of conda-forge, you can also make conda-forge the default channel as follows:

conda config --add channels conda-forge
conda config --set channel_priority strict

If you have done this, you don’t need to specify the --channel=conda-forge explicitly.

Note: The numpy package provided by the conda-forge channel by default uses openblas on linux. As outlined in the
conda forge docs, you can switch to MKL using:

conda install "libblas=*=*mkl"

Warning: If you use the conda-forge channe and don’t pin BLAS to the MKL version as outlined in the above
version, but nevertheless have mkl-devel installed during compilation of TeNPy, this can have crazy effects on the
number of threads used: numpy will call openblas and open up $OMP_NUM_THREADS - 1 new threads, while

19

https://conda-forge.org/docs/user/introduction.html
https://conda-forge.org/docs/maintainer/knowledge_base.html#switching-blas-implementation

TeNPy, Release 0.8.1

MKL called from tenpy will open another $MKL_NUM_THREADS - 1 threads, making it very hard to control
the number of threads used!

Moreover, it is actually recommended to create a separate environment. To create a conda environment with the name
tenpy, where the TeNPy package (called physics-tenpy) is installed:

conda create --name tenpy --channel=conda-forge physics-tenpy

In that case, you need to activate the environment each time you want to use the package with:

conda activate tenpy

The big advantage of this approach is that it allows multiple version of software to be installed in parallel, e.g., if one
of your projects requires python>=3.8 and another one requires an old library which doesn’t support that. Further info
can be found in the conda documentation.

8.2 Installation from PyPi with pip

8.2.1 Preparation: install requirements

If you have the [conda] package manager from anaconda, you can just download the environment.yml file (using
the conda-forge channel, or the environment_other.yml for all other channels) out of the repository and create a new
environment (called tenpy, if you don’t speficy another name) for TeNPy with all the required packages:

conda env create -f environment.yml
conda activate tenpy

Further information on conda environments can be found in the conda documentation. Note that installing conda also
installs a version of [pip].

Alternatively, if you only have [pip] (and not [conda]), install the required packages with the following command
(after downloading the requirements.txt file from the repository):

pip install -r requirements.txt

Note: Make sure that the pip you call corresponds to the python version you want to use. (One way to ensure this is
to use python -m pip instead of a simple pip.) Also, you might need to use the argument --user to install the
packages to your home directory, if you don’t have sudo rights. (Using --user with conda’s pip is discouraged,
though.)

Warning: It might just be a temporary problem, but I found that the pip version of numpy is incompatible with
the python distribution of anaconda. If you have installed the intelpython or anaconda distribution, use the conda
packagemanager instead of pip for updating the packages whenever possible!

20 Chapter 8. Installation instructions

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://www.anaconda.com/distribution
https://raw.githubusercontent.com/tenpy/tenpy/main/environment.yml
https://raw.githubusercontent.com/tenpy/tenpy/main/environment_other.yml
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://raw.githubusercontent.com/tenpy/tenpy/main/requirements.txt

TeNPy, Release 0.8.1

8.2.2 Installing the latest stable TeNPy package

Now we are ready to install TeNPy. It should be as easy as (note the different package name - ‘tenpy’ was taken!)

pip install physics-tenpy

Note: If the installation fails, don’t give up yet. In the minimal version, tenpy requires only pure Python with
somewhat up-to-date NumPy and SciPy. See Installation from source.

8.2.3 Installation of the latest version from Github

To get the latest development version from the github main branch, you can use:

pip install git+git://github.com/tenpy/tenpy.git

This should already have the lastest features described in [latest]. Disclaimer: this might sometimes be broken,
although we do our best to keep to keep it stable as well.

8.2.4 Installation from the downloaded source folder

Finally, if you downloaded the source and want to modify parts of the source, You can also install TeNPy with in
development version with --editable:

cd $HOME/tenpy # after downloading the source, got to the repository
pip install --editable .

8.2.5 Uninstalling a pip-installed version

In all of the above cases, you can uninstall tenpy with:

pip uninstall physics-tenpy

8.3 Updating to a new version

Before you update, take a look at the Release Notes, which lists the changes, fixes, and new stuff. Most importantly,
it has a section on backwards incompatible changes (i.e., changes which may break your existing code) along with
information how to fix it. Of course, we try to avoid introducing such incompatible changes, but sometimes, there’s
no way around them. If you skip some intermediate version(s) for the update, read also the release notes of those!

How to update depends a little bit on the way you installed TeNPy. Of course, you have always the option
to just remove the TeNPy files (possibly with a pip uninstall physics-tenpy or conda uninstall
physics-tenpy), and to start over with downloading and installing the newest version.

8.3. Updating to a new version 21

TeNPy, Release 0.8.1

8.3.1 When installed with conda

When you installed TeNPy with [conda], you just need to activate the corresponding environment (e.g. conda
activate tenpy) and do a:

conda update physics-tenpy

8.3.2 When installed with pip

When you installed TeNPy with [pip], you just need to do a:

pip install --upgrade physics-tenpy

8.3.3 When installed from source

If you used git clone ... to download the repository, you can update to the newest version using [git]. First,
briefly check that you didn’t change anything you need to keep with git status. Then, do a git pull to
download (and possibly merge) the newest commit from the repository.

Note: If some Cython file (ending in .pyx) got renamed/removed (e.g., when updating from v0.3.0 to v0.4.0), you
first need to remove the corresponding binary files. You can do so with the command bash cleanup.sh.

Furthermore, whenever one of the cython files (ending in .pyx) changed, you need to re-compile it. To do that,
simply call the command bash ./compile again. If you are unsure whether a cython file changed, compiling
again doesn’t hurt.

To summarize, you need to execute the following bash commands in the repository:

0) make a backup of the whole folder
git status # check the output whether you modified some files
git pull
bash ./cleanup.sh # (confirm with 'y')
bash ./compile.sh

8.4 Installation from source

8.4.1 Minimal Requirements

This code works with a minimal requirement of pure Python>=3.6 and somewhat recent versions of NumPy and SciPy.

22 Chapter 8. Installation instructions

https://www.numpy.org
https://www.scipy.org

TeNPy, Release 0.8.1

8.4.2 Getting the source

The following instructions are for (some kind of) Linux, and tested on Ubuntu. However, the code itself should work
on other operating systems as well (in particular MacOS and Windows).

The offical repository is at https://github.com/tenpy/tenpy.git. To get the latest version of the code, you can clone it
with [git] using the following commands:

git clone https://github.com/tenpy/tenpy.git $HOME/TeNPy
cd $HOME/TeNPy

Note: Adjust $HOME/TeNPy to the path wherever you want to save the library.

Optionally, if you don’t want to contribute, you can checkout the latest stable release:

git tag # this prints the available version tags
git checkout v0.3.0 # or whatever is the lastest stable version

Note: In case you don’t have [git] installed, you can download the repository as a ZIP archive. You can find it under
releases, or the latest development version.

8.4.3 Minimal installation: Including tenpy into PYTHONPATH

The python source is in the directory tenpy/ of the repository. This folder tenpy/ should be placed in (one of the
folders of) the environment variable PYTHONPATH. On Linux, you can simply do this with the following line in the
terminal:

export PYTHONPATH=$HOME/TeNPy

(If you have already a path in this variable, separate the paths with a colon :.) However, if you enter this in the
terminal, it will only be temporary for the terminal session where you entered it. To make it permanently, you can add
the above line to the file $HOME/.bashrc. You might need to restart the terminal session or need to relogin to force
a reload of the ~/.bashrc.

Whenever the path is set, you should be able to use the library from within python:

>>> import tenpy
/home/johannes/postdoc/2021-01-TenPy-with-MKL/TeNPy/tenpy/tools/optimization.py:308:
→˓UserWarning: Couldn't load compiled cython code. Code will run a bit slower.
warnings.warn("Couldn't load compiled cython code. Code will run a bit slower.")
>>> tenpy.show_config()
tenpy 0.7.2.dev130+76c5b7f (not compiled),
git revision 76c5b7fe46df3e2241d85c47cbced3400caad05a using
python 3.9.1 | packaged by conda-forge | (default, Jan 10 2021, 02:55:42)
[GCC 9.3.0]
numpy 1.19.5, scipy 1.6.0

tenpy.show_config() prints the current version of the used TeNPy library as well as the versions of the used
python, numpy and scipy libraries, which might be different on your computer. It is a good idea to save this data
(given as string in tenpy.version.version_summary along with your data to allow to reproduce your results
exactly.

If you got a similar output as above: congratulations! You can now run the codes :)

8.4. Installation from source 23

https://github.com/tenpy/tenpy.git
https://github.com/tenpy/tenpy/releases
https://github.com/tenpy/tenpy/archive/main.zip
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

TeNPy, Release 0.8.1

8.4.4 Compilation of np_conserved

At the heart of the TeNPy library is the module tenpy.linalg.np_conseved, which provides an Array class
to exploit the conservation of abelian charges. The data model of python is not ideal for the required book-keeping,
thus we have implemented the same np_conserved module in Cython. This allows to compile (and thereby optimize)
the corresponding python module, thereby speeding up the execution of the code. While this might give a significant
speed-up for code with small matrix dimensions, don’t expect the same speed-up in cases where most of the CPU-time
is already spent in matrix multiplications (i.e. if the bond dimension of your MPS is huge).

To compile the code, you first need to install Cython

conda install cython # when using anaconda, or
pip install --upgrade Cython # when using pip

Moreover, you need a C++ compiler. For example, on Ubuntu you can install sudo apt-get install
build_essential, or on Windows you can download MS Visual Studio 2015. If you use anaconda, you can
also use conda install -c conda-forge cxx-compiler.

After that, go to the root directory of TeNPy ($HOME/TeNPy) and simply run

bash ./compile.sh

Note: There is no need to compile if you installed TeNPy directly with conda or pip. (You can verify this with
tenpy.show_config() as illustrated below.)

Note that it is not required to separately download (and install) Intel MKL: the compilation just obtains the includes
from numpy. In other words, if your current numpy version uses MKL (as the one provided by anaconda), the compiled
TeNPy code will also use it.

After a successful compilation, the warning that TeNPy was not compiled should go away:

>>> import tenpy
>>> tenpy.show_config()
tenpy 0.7.2.dev130+76c5b7f (compiled without HAVE_MKL),
git revision 76c5b7fe46df3e2241d85c47cbced3400caad05a using
python 3.9.1 | packaged by conda-forge | (default, Jan 10 2021, 02:55:42)
[GCC 9.3.0]
numpy 1.19.5, scipy 1.6.0

Note: For further optimization options, e.g. how to link against MKL, look at Extra requirements and tenpy.
tools.optimization.

8.4.5 Quick-setup of a development environment with conda

You can use the following bash commands to setup a new conda environment called tenpy_dev (call it whatever you
want!) and install TeNPy in there in a way which allows editing TeNPy’s python code and still have it available
everywhere in the conda environment:

git clone https://github.com/tenpy/tenpy TeNPy
cd TeNPy
conda env create -f environment.yml -n tenpy_dev
conda activate tenpy_dev
pip install -e .

24 Chapter 8. Installation instructions

https://cython.org
https://cython.org

TeNPy, Release 0.8.1

8.5 Extra requirements

We have some extra requirements that you don’t need to install to use TeNPy, but that you might find usefull to work
with. TeNPy does not import the following libraries (at least not globally), but some functions might expect arguments
behaving like objects from these libraries.

Note: If you created a [conda] environment with conda env create -f environment.yml, all the extra
requirements below should already be installed :) (However, a pip install -r requirements.txt does not
install all of them.)

8.5.1 Matplotlib

The first extra requirement is the [matplotlib] plotting library. Some functions expect a matplotlib.axes.Axes
instance as argument to plot some data for visualization.

8.5.2 Intel’s Math Kernel Library (MKL)

If you want to run larger simulations, we recommend the use of Intel’s MKL. It ships with a Lapack library, and uses
optimization for Intel CPUs. Moreover, it uses parallelization of the LAPACK/BLAS routines, which makes execution
much faster. As of now, the library itself supports no other way of parallelization.

If you don’t have a python version which is built against MKL, we recommend using [conda] or directly intelpython.
Conda has the advantage that it allows to use different environments for different projects. Both are available for
Linux, Mac and Windows; note that you don’t even need administrator rights to install it on linux. Simply follow the
(straight-forward) instructions of the web page for the installation. After a successfull installation, if you run python
interactively, the first output line should state the python version and contain Anaconda or Intel Corporation,
respectively.

If you have a working conda package manager, you can install the numpy build against MKL with:

conda install mkl mkl-devel numpy scipy

The mkl-devel package is required for linking against MKL, i.e. for compiling the Cython code. As outlined
in /doc/install/conda, on Linux/Mac you also need to pin blas to use MKL with the following line, if you use the
`conda-forge` channel:

conda install "libblas=*=*mkl"

Note: MKL uses different threads to parallelize various BLAS and LAPACK routines. If you run the code on a
cluster, make sure that you specify the number of used cores/threads correctly. By default, MKL uses all the available
CPUs, which might be in stark contrast than what you required from the cluster. The easiest way to set the used threads
is using the environment variable MKL_NUM_THREADS (or OMP_NUM_THREADS). For a dynamic change of the
used threads, you might want to look at process.

8.5. Extra requirements 25

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://software.intel.com/en-us/distribution-for-python/get-started

TeNPy, Release 0.8.1

Compile linking agains MKL

When you compile the Cython files of TeNPy, you have the option to explicilty link against MKL, such that e.g.
tenpy.linalg.np_conserved.tensordot() is guaranteed to call the corresponding dgemm or zgemm func-
tion in the BLAS from MKL. To link against MKL, the MKL library including the headers must be available during the
compilation of TeNPy’s Cython files. If you have the MKL library installed, you can export the environemnt variable
MKLROOT to point to the root folder. Alternatively, TeNPy will recognise if you are in an active conda environment
and have the mkl and mkl-devel conda packages installed during compilation. In this case, it will link against the MKL
provided as conda package.

tenpy.show_config() indicates whether you linked successfully against MKL:

>>> import tenpy
>>> tenpy.show_config()
tenpy 0.7.2.dev130+76c5b7f (compiled with HAVE_MKL),
git revision 76c5b7fe46df3e2241d85c47cbced3400caad05a using
python 3.9.1 | packaged by conda-forge | (default, Jan 10 2021, 02:55:42)
[GCC 9.3.0]
numpy 1.19.5, scipy 1.6.0

8.5.3 HDF5 file format support

We support exporting data to files in the [HDF5] format through the python interface of the h5py
<https://docs.h5py.org/en/stable/> package, see Saving to disk: input/output for more information. However, that
requires the installation of the HDF5 library and h5py.

8.5.4 YAML parameter files

The tenpy.tools.params.Config class supports reading and writing YAML files, which requires the package
pyyaml; pip install pyyaml.

8.5.5 Tests

To run the tests, you need to install pytest, which you can for example do with pip install pytest. For
information how to run the tests, see Checking the installation.

8.6 Checking the installation

The first check of whether tenpy is installed successfully, is to try to import it from within python:

>>> import tenpy

Note: If this raises a warning Couldn't load compiled cython code. Code will run a bit
slower., something went wrong with the compilation of the Cython parts (or you didn’t compile at all). While
the code might run slower, the results should still be the same.

The function tenpy.show_config() prints information about the used versions of tenpy, numpy and scipy, as
well on the fact whether the Cython parts were compiled and could be imported.

26 Chapter 8. Installation instructions

http://pytest.org

TeNPy, Release 0.8.1

As a further check of the installation you can try to run (one of) the python files in the examples/ subfolder; hopefully
all of them should run without error.

You can also run the automated testsuite with pytest to make sure everything works fine. If you have pytest installed,
you can go to the tests folder of the repository, and run the tests with:

cd tests
pytest

In case of errors or failures it gives a detailed traceback and possibly some output of the test. At least the stable releases
should run these tests without any failures.

If you can run the examples but not the tests, check whether pytest actually uses the correct python version.

The test suite is also run automatically by github actions and with travis-ci, results can be inspected here.

8.7 TeNPy developer team

The following people are part of the TeNPy developer team and contributed a
→˓significant amount.
The full list of contributors can be obtained from the git repository with ``git
→˓shortlog -sn``.

Johannes Hauschild tenpy@johannes-hauschild.de
Frank Pollmann
Michael P. Zaletel
Maximilian Schulz
Leon Schoonderwoerd
Kévin Hémery
Samuel Scalet
Markus Drescher
Wilhelm Kadow
Gunnar Moeller
Jakob Unfried

Further, the code is based on an earlier version of the library, mainly developed by
Frank Pollmann, Michael P. Zaletel and Roger S. K. Mong.

8.8 License

The source code documented here is published under a GPL v3 license, which we include below.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

(continues on next page)

8.7. TeNPy developer team 27

http://pytest.org
https://github.com/tenpy/tenpy/actions
https://travis-ci.org
https://travis-ci.org/tenpy/tenpy

TeNPy, Release 0.8.1

(continued from previous page)

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

(continues on next page)

28 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that

(continues on next page)

8.8. License 29

TeNPy, Release 0.8.1

(continued from previous page)

Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or

(continues on next page)

30 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users

(continues on next page)

8.8. License 31

TeNPy, Release 0.8.1

(continued from previous page)

beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
(continues on next page)

32 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
(continues on next page)

8.8. License 33

TeNPy, Release 0.8.1

(continued from previous page)

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under

(continues on next page)

34 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for

(continues on next page)

8.8. License 35

TeNPy, Release 0.8.1

(continued from previous page)

sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is

(continues on next page)

36 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

(continues on next page)

8.8. License 37

TeNPy, Release 0.8.1

(continued from previous page)

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(continues on next page)

38 Chapter 8. Installation instructions

TeNPy, Release 0.8.1

(continued from previous page)

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

8.8. License 39

TeNPy, Release 0.8.1

40 Chapter 8. Installation instructions

CHAPTER

NINE

RELEASE NOTES

The project adheres semantic versioning.

All notable changes to the project should be documented in the changelog. The most important things should be
summarized in the release notes.

The changes in [latest] are implemented in the latest development version on github, but not yet released.

Changes compared to previous TeNPy highlights the most important changes compared to the other, previously devel-
oped (closed source) TeNPy version.

9.1 [latest]

9.1.1 Release Notes

TODO: Summarize the most important changes

9.1.2 Changelog

Backwards incompatible changes

• nothing yet

Added

• nothing yet

Changed

• nothing yet

41

http://semver.org/spec/v2.0.0.html

TeNPy, Release 0.8.1

Fixed

• nothing yet

9.2 [v0.8.1] - 2021-02-23

This is only a very minor fix-up of /doc/changelog/v0.8.0.

Despite adding tenpy.networks.mps.MPS.term_list_correlation_function_right(), it only
contains minor fixes: - the Simulation class didn’t function under windows; some tests were failing. - dtype issues for
tenpy.models.model.CouplingModel.add_coupling()

9.3 [v0.8.0] - 2021-02-19

9.3.1 Release Notes

First of all: We have optimized the cython parts such that they can now link directly against MKL and have been opti-
mized for the case of small blocks inside charge-conserved tensors. During compilation, TeNPy now checks whether
MKL is available, and then directly links against it. This changed the depencies: in particular, when you created a
conda environment for TeNPy, it is highly recommended to start off with a new one based on the environment.yml
file. If you want to continue using the existing conda environment, you need to conda install mkl-devel be-
fore compilation. Additionally, when you use the conda-forge channel of conda, you should pin blas to use MKL
by conda install libblas=*=*mkl.

Another great reason to update are simulation classes and a console script tenpy-run to allow running and even
resuming a simulation when it aborted! See /intro/simulation for details.

Further, there is a big change in verbosity: we switched to using Python’s default logging mechanism. This implies
that by default you don’t get any output besides error messages and warning any more, at least not in pre-simulation
setups. See Logging and terminal output on how to get the output back, and what to change in your code.

Finally, note that the default (stable) git branch was renamed from master to main.

9.3.2 Changelog

Backwards incompatible changes

• Drop official support for Python 3.5.

• tenpy.linalg.np_conserved.from_ndarray(): raise ValueError instead of just a warning in case
of the wrong non-zero blocks. This behaviour can be switched back with the new argument raise_wrong_sector.

• Argument v0 of tenpy.networks.mps.MPS.TransferMatrix.eigenvectors() is renamed to
v0_npc; v0 now serves for non-np_conserved guess.

• Default parameters for lattice initialization in the following classes changed. In particular, the bc_MPS parame-
ter now defaults to ‘finite’.

– tenpy.models.hofstadter.HofstadterFermions

– tenpy.models.hofstadter.HofstadterBosons

– tenpy.models.toric_code.ToricCode

42 Chapter 9. Release Notes

https://docs.python.org/3/library/logging.html#module-logging

TeNPy, Release 0.8.1

• Renamed tenpy.algorithms.tebd.Engine to tenpy.algorithms.tebd.TEBDEngine and
tenpy.algorithms.tdvp.Engine to tenpy.algorithms.tdvp.TDVPEngine to have unique algorithm
class-names.

• When running, no longer print stuff by default. Instead, we use Python’s logging mechanism. To enable printing
again, you need to configure the logging to print on “INFO” level (which is the default when running from
command line)

As part of this big change in the way verbosity is handled, there were many minor changes: - rename Con-
fig.print_if_verbose to log() - deprecate the verbose class argument of the Config - deprecate the verbose
class attribute of all classes (if they had it). - change argument names of params().

Added

• Simulation class Simulation and subclasses as a new extra layer for handling the general setup.

• Command line script tenpy-run and run_simulation() for setting up a simulation.

• entanglement_entropy_segment2()

• apply_product_op()

• tenpy.linalg.sparse.FlatLinearOperator.eigenvectors() and eigenvectors()
to unify code from tenpy.networks.mps.TransferMatrix.eigenvectors() and tenpy.
linalg.lanczos.lanczos_arpack().

• tenpy.tools.misc.group_by_degeneracy()

• tenpy.tools.fit.entropy_profile_from_CFT() and tenpy.tools.fit.
central_charge_from_S_profile()

• tenpy.networks.site.Site.multiply_operators() as a variant of multiply_op_names()
accepting both string and npc arrays.

• tenpy.tools.events.EventHandler() to simplify call-backs e.g. for measurement codes during an
algorithms.

• tenpy.tools.misc.find_subclass() to recursively find subclasses of a given base class by the name.
This function is now used e.g. to find lattice classes given the name, hence supporting user-defined lattices
defined outside of TeNPy.

• tenpy.tools.misc.get_recursive() and set_recursive() for nested data strucutres, e.g., pa-
rameters.

• tenpy.tools.misc.flatten() to turn a nested data structure into a flat one.

• tenpy.networks.mps.InitialStateBuilder to simplify building various initial states.

• Common base class tenpy.algorithms.Algorithm for all algorithms.

• Common base class tenpy.algorithms.TimeEvolutionAlgorithm for time evolution algorithms.

• tenpy.models.lattice.Lattice.Lu as a class attribute.

• tenpy.models.lattice.Lattice.find_coupling_pairs() to automatically find coupling pairs
of ‘nearest_neighbors’ etc..

• tenpy.models.lattice.HelicalLattice allowing to have a much smaller MPS unit cell by shifting
the boundary conditions around the cylinder.

• tenpy.networks.purification_mps.PurificationMPS.from_infiniteT_canonical()
for a canonical ensemble.

9.3. [v0.8.0] - 2021-02-19 43

TeNPy, Release 0.8.1

Changed

• For finite DMRG, DMRGEngine.N_sweeps_check now defaults to 1 instead of 10 (which is still the default
for infinite MPS).

• Merge tenpy.linalg.sparse.FlatLinearOperator.npc_to_flat_all_sectors()
into npc_to_flat(), merge tenpy.linalg.sparse.FlatLinearOperator.
flat_to_npc_all_sectors() into flat_to_npc().

• Change the chinfo.names of the specific Site classes to be more consistent and clear.

• Add the more powerful tenpy.networks.site.set_common_charges() to replace tenpy.
networks.site.multi_sites_combine_charges().

• Allow swap_op='autoInv' for tenpy.networks.mps.MPS.swap_sites() and explain the idea
of the swap_op.

• The tenpy.models.model.CouplingMPOModel.init_lattice() now respects new class at-
tributes default_lattice and force_default_lattice.

• Support additional priority argument for get_order_grouped(), issue #122.

• Warn if one of the add_* methods of the CouplingMPOModel gets called after initialization.

Fixed

• Sign error for the couplings of the tenpy.models.toric_code.ToricCode.

• The form of the eigenvectors returned by tenpy.networks.mps.TransferMatrix.
eigenvectors() was dependent on the charge_sector given in the initialization; we try to avoid this
now (if possible).

• The charge conserved by SpinHalfFermionSite(cons_Sz='parity') was weird.

• Allow to pass npc Arrays as Arguments to expectation_value_multi_sites() and other correlation
functions (issue #116).

• tenpy.tools.hdf5_io did not work with h5py version >= (3,0) due to a change in string encoding (issue
#117).

• The overall phase for the returned W from compute_K() was undefined.

• tenpy.networks.mpo.MPO.expectation_value() didn’t work with max_range=0

• The default trunc_par for tenpy.networks.mps.MPS.swap_sites(), permute_sites() and
compute_K() was leading to too small chi for intial MPS with small chi.

• issue #120 Lattice with different sites in the unit cell.

• Index offset in tenpy.networks.mps.MPS.expectation_value_term() for the sites to be used.

• issue #121 tenpy.networks.mps.MPS.correlation_length() worked with charge_sector=0, but
included additional divergent value with charge_sector=[0].

• Some MPS methods (correlation function, expectation value, . . .) raised an error for negative site indices even
for infinite MPS.

• Warn if we add terms to a couplingMPOMOdel after initialization

44 Chapter 9. Release Notes

https://github.com/tenpy/tenpy/issues/122
https://github.com/tenpy/tenpy/issues/116
https://github.com/tenpy/tenpy/issues/117
https://github.com/tenpy/tenpy/issues/117
https://github.com/tenpy/tenpy/issues/120
https://github.com/tenpy/tenpy/issues/121

TeNPy, Release 0.8.1

9.4 [0.7.2] - 2020-10-09

9.4.1 Release Notes

We’ve added a list of all papers using (and citing) TeNPy, see Papers using TeNPy. Feel free to include your own
works!

And a slight simplicifation, which might affect your code: using the MultiCouplingModel is no longer necessary, just
use the tenpy.models.model.CouplingModel directly.

9.4.2 Changelog

Backwards incompatible changes

• Deprecated the tenpy.models.model.MultiCouplingModel. The functionality is fully merged into
the CouplingModel, no need to subclass the MultiCouplingModel anymore.

• The Kagome lattice did not include all next_next_nearest_neighbors. (It had only the ones across the hexagon,
missing those maiking up a bow-tie.)

• Combined arguments onsite_terms and coupling_terms of tenpy.networks.mpo.MPOGraph.
from_terms() into a single argument terms.

Added

• Allow to include jupyter notebooks into the documentation; collect example notebooks in [TeNPyNotebooks].

• term_correlation_function_right() and term_correlation_function_left() for cor-
relation functions with more than one operator on each end.

• tenpy.networks.terms.ExponentiallyDecayingTerms for constructing
MPOs with exponential decay, and tenpy.networks.model.CouplingModel.
add_exponentially_decaying_coupling() for using it. This closes issue #78.

Fixed

• The IrregularLattice used the 'default' order of the regular lattice instead of whatever the order of
the regular lattice was.

• charge_variance() did not work for more than 1 charge.

9.5 [0.7.1] - 2020-09-04

9.5.1 Release Notes

This is just a minor fix to allow building the conda package

9.4. [0.7.2] - 2020-10-09 45

https://github.com/tenpy/tenpy/issues/78

TeNPy, Release 0.8.1

9.6 [0.7.0] - 2020-09-04

9.6.1 Release Notes

The big new feature is the implementation of the W_I and W_II method for approximating exponentials of
an MPO with an MPO, and MPS compression / MPO application to an MPS, to allow time evolution with
ExpMPOEvolution().

9.6.2 Changelog

Backwards incompatible changes

• Remove argument leg0 from build_MPO.

• Remove argument leg0 from from_grids, instead optionally give all legs as argument.

• Moved/renamed the module tenpy.algorithms.mps_sweeps to tenpy.algorithms.
mps_common. The old mps_sweeps still exists for compatibility, but raises a warning upon import.

• Moved/renamed the module tenpy.algorithms.purification_tebd to
tenpy.algorithms.purification (for the PurificaitonTEBD and PurificationTEBD2) and
tenpy.algorithms.disentangler (for the disentanglers).

Added

• VariationalCompression and VariationalApplyMPO for variational compression

• PurificationApplyMPO and PurificationTwoSiteU for variational compression with purifications.

• Argument insert_all_id for tenpy.networks.mpo.MPOGraph.from_terms() and
from_term_list()

• implemented the IrregularLattice.

• extended user guide on lattices, Details on the lattice geometry.

• Function to approximate a decaying function by a sum of exponentials.

• spatial_inversion() to perform an explicit spatial inversion of the MPS.

Changed

• By default, for an usual MPO define IdL and IdR on all bonds. This can generate “dead ends” in the MPO graph
of finite systems, but it is useful for the make_WI/make_WII for MPO-exponentiation.

• tenpy.models.lattice.Lattice.plot_basis() now allows to shade the unit cell and shift the
origin of the plotted basis.

• Don’t use bc_shift in tenpy.models.lattice.Lattice.plot_couplings() any more - it lead to
confusing figures. Instead, the new keyword wrap=True allows to directly connect all sites. This is done to
avoid confusing in combination with plot_bc_identified().

• Error handling of non-zero qtotal for TransferMatrix.

46 Chapter 9. Release Notes

TeNPy, Release 0.8.1

Fixed

• Removed double counting of chemical potential terms in the BosonicHaldaneModel and
FermionicHaldaneModel.

• Wrong results of tenpy.networks.mps.MPS.get_total_charge() with
only_physical_legs=True.

• tenpy.models.lattice.Lattice.plot_bc_identified() had a sign error for the bc_shift.

• calc_H_MPO_from_bond() didn’t work for charges with blocks > 1.

• TEBD: keep qtotal of the B tensors constant

• order model parameter was read out but not used in tenpy.models.model.CouplingMPOModel.
init_lattice() for 1D lattices.

9.7 [0.6.1] - 2020-05-18

9.7.1 Release Notes

This only is a follow-up release to [0.6.0] - 2020-05-16. It fixes a small bug in the examples/c_tebd.py and some
roundoff problems in the tests.

It is now possible to install TeNPy with the conda package manager:

conda install --channel=conda-forge physics-tenpy

9.8 [0.6.0] - 2020-05-16

9.8.1 Release Notes

This release contains a major update of the documentation, which is now hosted by “Read the Docs” at https://tenpy.
readthedocs.io/. Update your bookmark :-)

Apart from that, this release introduces a format how to save and load data (in particular TeNPy classes) to HDF5
files. See Saving to disk: input/output for more details. To use that feature, you need to install the h5py package (and
therefore some version of the HDF5 library). This is easy with anaconda, conda install h5py, but might be
cumbersome on your local computing cluster. (However, many university computing clusters have some version of
HDF5 installed already. Check with your local sysadmin.)

Moreover, we changed how we read out parameter dictionaries - instead of the get_parameter() function, we have now
a Config class which behaves like a dictionary, you can simpy use options.get(key, default) for model
parameters - as you would do for a python dictionary.

9.7. [0.6.1] - 2020-05-18 47

https://tenpy.readthedocs.io/
https://tenpy.readthedocs.io/

TeNPy, Release 0.8.1

9.8.2 Changelog

Backwards incompatible changes

• Created a class Config to replace Python-native parameter dictionaries and add some useful function-
ality. Old code using tenpy.tools.params.get_parameter() and tenpy.tools.params.
unused_parameters() still works as before, but raises a warning, and should be replaced. For exam-
ple, if you defined your own models, you should replace calls get_parameter(model_params, "key
", "default_value", "ModelName") with model_params.get("key", "default_value
"), the latter syntax being what you would use for a normal python dictionary as well.

• Renamed the following class parameter dictionaries to simply options for more consitency. Old code using the
class attributes should still work (since we provide property aliases), but raises warnings. Note that this affects
also derived classes (for example the TwoSiteDMRGEngine).

– tenpy.algorithms.dmrg.DMRGEngine.DMRG_params (was already renamed to en-
gine_params in versin 0.5.0)

– tenpy.algorithms.mps_common.Sweep.engine_params

– tenpy.algorithms.tebd.Engine.TEBD_params

– tenpy.algorithms.tdvp.Engine.TDVP_params

– tenpy.linalg.lanczos.Lanczos

• Changed the arguments of tenpy.models.model.MultiCouplingModel(): We replaced the three ar-
guments u0, op0 and other_op with other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] by
single, equivalent argment ops which should now read ops=[(op0, dx0, u0), (op1, dx1, u1),
(op2, dx2, u2), ...], where dx0 = [0]*lat.dim. Note the changed order inside the tuple! Old
code (which specifies opstr and category as keyword argument, if at all) still works as before, but raises a warn-
ing, and should be replaced. Since tenpy.lattice.Lattice.possible_multi_couplings()
used similar arguments, they were changed as well.

• Don’t save H_MPO_graph as model attribute anymore - this also wasn’t documented.

• Renamed the truncation parameter symmetry_tol to degeneracy_tol and make the criterion more reasonable
by not checking 𝑙𝑜𝑔(𝑆𝑖/𝑆𝑗) < 𝑙𝑜𝑔(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡𝑜𝑙), but simply 𝑙𝑜𝑔(𝑆𝑖/𝑆𝑗) < 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦𝑡𝑜𝑙. The latter
makes more sense, as it is equivalent to (𝑆𝑖 − 𝑆𝑗)/𝑆𝑗 < 𝑒𝑥𝑝(𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦𝑡𝑜𝑙) − 1 = 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦𝑡𝑜𝑙 +
𝒪(𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦𝑡𝑜𝑙

2).

• Deprecated tenpy.networks.mps.MPS.increase_L() in favor of the newly added tenpy.
networks.mps.MPS.enlarge_mps_unit_cell() (taking factor instead of new_L=factor*L
as argument).

• tenpy.networks.mps.MPS.correlation_function() now auto-determines whether a Jordan-
Wigner string is necessary. If any of the given operators is directly an npc Array, it will now raise an error;
set autoJW=False in that case.

• Instead of “monkey-patching” matvec of the tenpy.algorithms.mps_common.EffectiveH for the
case that ortho_to_envs is not empty, we defined a proper class NpcLinearOperatorWrapper, which
serves as baseclass for OrthogonalNpcLinearOperator. The argument ortho_to_envs has been removed
from EffectiveH .

• Switch order of the sites in the unit cell for the DualSquare, and redefine what the "default" order means.
This is a huge optimization of DMRG, reducing the necessary MPS bond dimension for the ground state to the
optimal 2𝐿−1 on each bond.

• Deprecated the Lanczos funciton/class argument orthogonal_to of in LanczosGroundState. Instead, one
can use the OrthogonalNpcLinearOperator.

48 Chapter 9. Release Notes

TeNPy, Release 0.8.1

• Deprecation warning for changing the default argument of shift_ket for non-zero shift_bra of the
TransferMatrix.

Added

• tenpy.networks.mpo.MPO.variance() to calculate the variance of an MPO against a finite MPS.

• Classmethod tenpy.networks.MPS.from_lat_product_state() to initialize an MPS from a prod-
uct state given in lattice coordinates (independent of the order of the lattice).

• argument plus_hc for tenpy.models.model.CouplingModel.add_onsite(), tenpy.
models.model.CouplingModel.add_coupling(), and tenpy.models.model.
MultiCouplingModel.add_multi_coupling() to simplify adding the hermitian conjugate
terms.

• parameter explicit_plus_hc for MPOModel, CouplingModel and MPO, to reduce MPO bond dimension by
not storing Hermitian conjugate terms, but computing them at runtime.

• tenpy.models.model.CouplingModel.add_local_term() for adding a single term to the lattice,
and still handling Jordan-Wigner strings etc.

• tenpy.networks.site.Site.get_hc_opname() and hc_ops to allow getting the hermitian conju-
gate operator (name) of the onsite operators.

• tenpy.tools.hdf5_io with convenience functions for import and output with pickle, as well as an imple-
mentation allowing to save and load objects to HDF5 files in the format specified in Saving to disk: input/output.

• human-readable boundary_conditions property in Lattice.

• save_hdf5 and load_hdf5 methods to support saving/loading to HDF5 for the following classes (and their sub-
classes): - ChargeInfo - LegCharge - LegPipe - Array - MPS - MPO - Lattice

• tenpy.networks.mps.MPSEnvironment.get_initialization_data() for a convenient way
of saving the necessary parts of the environment after an DMRG run.

• Method enlarge_mps_unit_cell for the following classes: - MPS - MPO - Lattice - Model, MPOModel,
NearestNeighborModel

• tenpy.tools.misc.to_iterable_of_len() for convenience of handling arguments.

• tenpy.models.lattice.Lattice.mps2lat_values_masked() as generalization of tenpy.
models.lattice.Lattice.mps2lat_values().

• tenpy.linalg.sparse.OrthogonalNpcLinearOperator to orthogonalize against vectors.

• tenpy.linalg.sparse.ShiftNpcLinearOperator to add a constant.

• tenpy.linalg.sparse.SumNpcLinearOperator which serves e.g. to add the h.c. during the matvec
(in combination with the new tenpy.linalg.sparse.NpcLinearOperator.adjoint()).

• tenpy.algorithms.mps_common.make_eff_H() to simplify implementations of
prepare_update().

• attribute options for the Model.

• tenpy.networks.mps.MPS.roll_mps_unit_cell().

9.8. [0.6.0] - 2020-05-16 49

TeNPy, Release 0.8.1

Changed

• DEFAULT DMRG paramter 'diag_method' from 'lanczos' to 'default', which is the same for
large bond dimensions, but performs a full exact diagonalization if the effective Hamiltonian has small dimen-
sions. The threshold introduced is the new DMRG parameter 'max_N_for_ED'.

• DEFAULT parameter charge_sector=None instead of charge_sector=0 in tenpy.networks.
mps.MPS.overlap() to look for eigenvalues of the transfer matrix in all charge sectors, and not assume
that it’s the 0 sector.

• Derive the following classes (and their subclasses) from the new Hdf5Exportable to support saving to
HDF5: - Site - Terms - OnsiteTerms - CouplingTerms - Model, i.e., all model classes.

• Instead of just defining to_matrix and adjoint for EffectiveH , define the interface directly for
NpcLinearOperator.

• Try to keep the charge block structure as far as possible for add_charge() and drop_charge()

Fixed

• Adjust the default DMRG parameter min_sweeps if chi_list is set.

• Avoid some unnecessary transpositions in MPO environments for MPS sweeps (e.g. in DMRG).

• sort(bunch=True) could return un-bunched Array, but still set the bunched flag.

• LegPipe did not initialize self.bunched correctly.

• issue #98: Error of calling psi.canonical_form() directly after disabling the DMRG mixer.

• svd() with full_matrices=True gave wrong charges.

• tenpy.linalg.np_conserved.Array.drop_charge() and tenpy.lina.np_conserved.
Array.drop_charge() did not copy over labels.

• wrong pairs for the fifth_nearest_neighbors of the Honeycomb.

• Continue in tenpy.algorithms.dmrg.full_diag_effH()with a warning instaed of raising an Error,
if the effective Hamltonian is zero.

• correlation_length(): check for hermitian Flag might have raised and Error with new numpy warnings

• correlation_function() did not respect argument str_on_first=False.

• tenpy.networks.mps.MPS.get_op() worked unexpected for infinite bc with incomensurate self.L
and len(op_list).

• tenpy.networks.mps.MPS.permute_sites() did modify the given perm.

• issue #105 Unintended side-effects using lanczos_params.verbose in combination with orthogonal_to

• issue #108 tenpy.linalg.sparse.FlatLinearOperator._matvec() changes self.
_charge_sector

50 Chapter 9. Release Notes

https://github.com/tenpy/tenpy/issues/98
https://github.com/tenpy/tenpy/issues/105
https://github.com/tenpy/tenpy/issues/108

TeNPy, Release 0.8.1

9.9 [0.5.0] - 2019-12-18

9.9.1 Backwards incompatible changes

• Major rewriting of the DMRG Engines, see issue #39 and issue #85 for details. The EngineCombine and
EngineFracture have been combined into a single TwoSiteDMRGEngine with an The run function
works as before. In case you have directly used the EngineCombine or EngineFracture, you should
update your code and use the TwoSiteEngine instead.

• Moved init_LP and init_RP method from MPS into MPSEnvironment and MPOEnvironment.

9.9.2 Changed

• Addition/subtraction of Array: check whether the both arrays have the same labels in differnt order, and in
that case raise a warning that we will transpose in the future.

• Made tenpy.linalg.np_conserved.Array.get_block() public (previously tenpy.linalg.
np_conserved.Array._get_block).

• groundstate() now returns a tuple (E0, psi0) instead of just psi0. Moreover, the argument
charge_sector was added.

• Simplification in the Lattice: Instead of having separate argu-
ments/attributes/functions for 'nearest_neighbors', 'next_nearest_neighbors',
'next_next_nearest_neighbors' and possibly (Honeycomb) even
'fourth_nearest_neighbors', 'fifth_nearest_neighbors', collect them in a dictio-
nary called pairs. Old call structures still allowed, but deprecated.

• issue #94: Array addition and inner() should reflect the order of the labels, if they coincided. Will change
the default behaviour in the future, raising FutureWarning for now.

• Default parameter for DMRG params: increased precision by setting P_tol_min down to
the maximum of 1.e-30, lanczos_params['svd_min']**2 * P_tol_to_trunc,
lanczos_params['trunc_cut']**2 * P_tol_to_trunc by default.

9.9.3 Added

• tenpy.algorithms.mps_common with the Sweep class and EffectiveH to be a OneSiteH or
TwoSiteH .

• Single-Site DMRG with the SingleSiteDMRG.

• Example function in examples/c_tebd.py how to run TEBD with a model originally having next-nearest
neighbors.

• increase_L() to allow increasing the unit cell of an MPS.

• Additional option order='folded' for the Chain.

• tenpy.algorithms.exact_diag.ExactDiag.from_H_mpo() wrapper as replacement for
tenpy.networks.mpo.MPO.get_full_hamiltonian() and tenpy.networks.mpo.MPO.
get_grouped_mpo(). The latter are now deprecated.

• Argument max_size to limit the matrix dimension in ExactDiag.

• tenpy.linalg.sparse.FlatLinearOperator.from_guess_with_pipe() to allow quickly
converting matvec functions acting on multi-dimensional arrays to a FlatLinearOperator by combining the
legs into a LegPipe.

9.9. [0.5.0] - 2019-12-18 51

https://github.com/tenpy/tenpy/issues/39
https://github.com/tenpy/tenpy/issues/85
https://github.com/tenpy/tenpy/issues/94

TeNPy, Release 0.8.1

• tenpy.tools.math.speigsh() for hermitian variant of speigs()

• Allow for arguments 'LA', 'SA' in argsort().

• tenpy.linalg.lanczos.lanczos_arpack() as possiple replacement of the self-implemented lanc-
zos function.

• tenpy.algorithms.dmrg.full_diag_effH() as another replacement of lanczos().

• The new DMRG parameter 'diag_method' allows to select a method for the diagonalization of the effective
Hamiltonian. See tenpy.algorithms.dmrg.DMRGEngine.diag() for details.

• dtype attribute in EffectiveH .

• tenpy.linalg.charges.LegCharge.get_qindex_of_charges() to allow selecting a block of
an Array from the charges.

• tenpy.algorithms.mps_common.EffectiveH.to_matrix to allow contracting an EffectiveH to
a matrix, as well as metadata tenpy.linalg.sparse.NpcLinearOperator.acts_on and tenpy.
algorithms.mps_common.EffectiveH.N .

• argument only_physical_legs in tenpy.networks.mps.MPS.get_total_charge()

9.9.4 Fixed

• MPO expectation_value() did not work for finite systems.

• Calling compute_K() repeatedly with default parameters but on states with different chi would use the chi of
the very first call for the truncation parameters.

• allow MPSEnvironment and MPOEnvironment to have MPS/MPO with different length

• group_sites() didn’t work correctly in some situations.

• matvec_to_array() returned the transposed of A.

• tenpy.networks.mps.MPS.from_full() messed up the form of the first array.

• issue #95: blowup of errors in DMRG with update_env > 0. Turns out to be a problem in the precision of the
truncation error: TruncationError.eps was set to 0 if it would be smaller than machine precision. To fix it, I
added from_S().

9.10 [0.4.1] - 2019-08-14

9.10.1 Backwards incompatible changes

• Switch the sign of the BoseHubbardModel and FermiHubbardModel to hopping and chemical poten-
tial having negative prefactors. Of course, the same adjustment happens in the BoseHubbardChain and
FermiHubbardChain.

• moved BoseHubbardModel and BoseHubbardChain as well as FermiHubbardModel and
FermiHubbardChain into the new module tenpy.models.hubbard.

• Change arguments of coupling_term_handle_JW() and multi_coupling_term_handle_JW()
to use strength and sites instead of op_needs_JW.

• Only accept valid identifiers as operator names in add_op().

52 Chapter 9. Release Notes

https://github.com/tenpy/tenpy/issues/95

TeNPy, Release 0.8.1

9.10.2 Changed

• grid_concat() allows for None entries (representing zero blocks).

• from_full() allows for ‘segment’ boundary conditions.

• apply_local_op() allows for n-site operators.

9.10.3 Added

• max_range attribute in MPO and MPOGraph.

• is_hermitian()

• Nearest-neighbor interaction in BoseHubbardModel

• multiply_op_names() to replace ' '.join(op_names) and allow explicit compres-
sion/multiplication.

• order_combine_term() to group operators together.

• dagger() of MPO’s (and to implement that also flip_charges_qconj()).

• has_label() to check if a label exists

• qr_li() and rq_li()

• Addition of MPOs

• 3 additional examples for chern insulators in examples/chern_insulators/.

• FermionicHaldaneModel and BosonicHaldaneModel.

• from_MPOModel() for initializing nearest-neighbor models after grouping sites.

9.10.4 Fixed

• issue #36: long-range couplings could give IndexError.

• issue #42: Onsite-terms in FermiHubbardModel were wrong for lattices with non-trivial unit cell.

• Missing a factor 0.5 in GUE().

• Allow TermList to have terms with multiple operators acting on the same site.

• Allow MPS indices outside unit cell in mps2lat_idx() and lat2mps_idx().

• expectation_value() did not work for n-site operators.

9.11 [0.4.0] - 2019-04-28

9.11.1 Backwards incompatible changes

• The argument order of tenpy.models.lattice.Lattice could be a tuple (priority,
snake_winding) before. This is no longer valid and needs to be replaced by ("standard",
snake_winding, priority).

• Moved the boundary conditions bc_coupling from the tenpy.models.model.CouplingModel into the
tenpy.models.lattice.Lattice (as bc). Using the parameter bc_coupling will raise a FutureWarning,
one should set the boundary conditions directly in the lattice.

9.11. [0.4.0] - 2019-04-28 53

https://github.com/tenpy/tenpy/issues/36
https://github.com/tenpy/tenpy/issues/42

TeNPy, Release 0.8.1

• Added parameter permute (True by default) in tenpy.networks.mps.MPS.from_product_state()
and tenpy.networks.mps.MPS.from_Bflat(). The resulting state will therefore be independent of
the “conserve” parameter of the Sites - unlike before, where the meaning of the p_state argument might have
changed.

• Generalize and rename tenpy.networks.site.DoubleSite to tenpy.networks.site.
GroupedSite, to allow for an arbitrary number of sites to be grouped. Arguments site0, site1,
label0, label1 of the __init__ can be replaced with [site0, site1], [label0, label1] and
op0, op1 of the kronecker_product with [op0, op1]; this will recover the functionality of the DoubleSite.

• Restructured callstructure of Mixer in DMRG, allowing an implementation of other mixers. To enable the mixer,
set the DMRG parameter "mixer" to True or 'DensityMatrixMixer' instead of just 'Mixer'.

• The interaction parameter in the tenpy.models.bose_hubbbard_chain.BoseHubbardModel (and
tenpy.models.bose_hubbbard_chain.BoseHubbardChain) did not correspond to 𝑈/2𝑁(𝑁−1)
as claimed in the Hamiltonian, but to 𝑈𝑁2. The correcting factor 1/2 and change in the chemical potential have
been fixed.

• Major restructuring of tenpy.linalg.np_conserved and tenpy.linalg.charges. This should
not break backwards-compatibility, but if you compiled the cython files, you need to remove the old binaries in
the source directory. Using bash cleanup.sh might be helpful to do that, but also remove other files within
the repository, so be careful and make a backup beforehand to be on the save side. Afterwards recompile with
bash compile.sh.

• Changed structure of tenpy.models.model.CouplingModel.onsite_terms and tenpy.
models.model.CouplingModel.coupling_terms: Each of them is now a dictionary with category
strings as keys and the newly introduced tenpy.networks.terms.OnsiteTerms and tenpy.
networks.terms.CouplingTerms as values.

• tenpy.models.model.CouplingModel.calc_H_onsite() is deprecated in favor of new methods.

• Argument raise_op2_left of tenpy.models.model.CouplingModel.add_coupling() is depre-
cated.

9.11.2 Added

• tenpy.networks.mps.MPS.canonical_form_infinite().

• tenpy.networks.mps.MPS.expectation_value_term(), tenpy.networks.
mps.MPS.expectation_value_terms_sum() and tenpy.networks.mps.MPS.
expectation_value_multi_sites() for expectation values of terms.

• tenpy.networks.mpo.MPO.expectation_value() for an MPO.

• tenpy.linalg.np_conserved.Array.extend() and tenpy.linalg.charges.LegCharge.
extend(), allowing to extend an Array with zeros.

• DMRG parameter 'orthogonal_to' allows to calculate excited states for finite systems.

• possibility to change the number of charges after creating LegCharges/Arrays.

• more general way to specify the order of sites in a tenpy.models.lattice.Lattice.

• new tenpy.models.lattice.Triangular, tenpy.models.lattice.Honeycomb and tenpy.
models.lattice.Kagome lattice

• a way to specify nearest neighbor couplings in a Lattice, along with methods to count the number of nearest
neighbors for sites in the bulk, and a way to plot them (plot_coupling() and friends)

• tenpy.networks.mpo.MPO.from_grids() to generate the MPO from a grid.

• tenpy.models.model.MultiCouplingModel for couplings involving more than 2 sites.

54 Chapter 9. Release Notes

TeNPy, Release 0.8.1

• request #8: Allow shift in boundary conditions of CouplingModel.

• Allow to use state labels in tenpy.networks.mps.MPS.from_product_state().

• tenpy.models.model.CouplingMPOModel structuring the default initialization of most models.

• Allow to force periodic boundary conditions for finite MPS in the CouplingMPOModel. This is not recom-
mended, though.

• tenpy.models.model.NearestNeighborModel.calc_H_MPO_from_bond() and tenpy.
models.model.MPOModel.calc_H_bond_from_MPO() for conversion of H_bond into H_MPO and
vice versa.

• tenpy.algorithms.tebd.RandomUnitaryEvolution for random unitary circuits

• Allow documentation links to github issues, arXiv, papers by doi and the forum with e.g. :issue:`5`,
:arxiv:`1805.00055`, :doi:`10.21468/SciPostPhysLectNotes.5`, :forum:`3`

• tenpy.models.model.CouplingModel.coupling_strength_add_ext_flux() for adding
hoppings with external flux.

• tenpy.models.model.CouplingModel.plot_coupling_terms() to visualize the added cou-
pling terms.

• tenpy.networks.terms.OnsiteTerms, tenpy.networks.terms.CouplingTerms, tenpy.
networks.terms.MultiCouplingTerm containing the of terms for the CouplingModel and
MultiCouplingModel. This allowed to add the category argument to add_onsite, add_coupling
and add_multi_coupling.

• tenpy.networks.terms.TermList as another (more human readable) representation of terms with con-
version from and to the other *Term classes.

• tenpy.networks.mps.MPS.init_LP() and tenpy.networks.mps.MPS.init_RP() to initial-
ize left and right parts of an Environment.

• tenpy.networks.mpo.MPOGraph.from_terms() and tenpy.networks.mpo.MPOGraph.
from_term_list().

• argument charge_sector in tenpy.networks.mps.MPS.correlation_length().

9.11.3 Changed

• moved toycodes from the folder examples/ to a new folder toycodes/ to separate them clearly.

• major remodelling of the internals of tenpy.linalg.np_conserved and tenpy.linalg.charges.

– Introduced the new module tenpy/linalg/_npc_helper.pyx which contains all the Cython
code, and gets imported by

– Array now rejects addition/subtraction with other types

– Array now rejects multiplication/division with non-scalar types

– By default, make deep copies of npc Arrays.

• Restructured lanczos into a class, added time evolution calculating exp(A*dt)|psi0>

• Warning for poorly conditioned Lanczos; to overcome this enable the new parameter reortho.

• Simplified call strucutre of extend(), and extend().

• Restructured tenpy.algorithms.dmrg:

9.11. [0.4.0] - 2019-04-28 55

TeNPy, Release 0.8.1

– run() is now just a wrapper around the new run(), run(psi, model, pars) is roughly equiva-
lent to eng = EngineCombine(psi, model, pars); eng.run().

– Added init_env() and reset_stats() to allow a simple restart of DMRG with slightly different
parameters, e.g. for tuning Hamiltonian parameters.

– Call canonical_form() for infinite systems if the final state is not in canonical form.

• Changed default values for some parameters:

– set trunc_params['chi_max'] = 100. Not setting a chi_max at all will lead to memory problems.
Disable DMRG_params['chi_list'] = None by default to avoid conflicting settings.

– reduce to mixer_params['amplitude'] = 1.e-5. A too strong mixer screws DMRG up pretty
bad.

– increase Lanczos_params['N_cache'] = N_max (i.e., keep all states)

– set DMRG_params['P_tol_to_trunc'] = 0.05 and provide reasonable . . . _min and . . . _max
values.

– increased (default) DMRG accuracy by setting DMRG_params['max_E_err'] = 1.e-8 and
DMRG_params['max_S_err'] = 1.e-5.

– don’t check the (absolute) energy for convergence in Lanczos.

– set DMRG_params['norm_tol'] = 1.e-5 to check whether the final state is in canonical form.

• Verbosity of get_parameter() reduced: Print parameters only for verbosity >=1. and default values only
for verbosity >= 2.

• Don’t print the energy during real-time TEBD evolution - it’s preserved up to truncation errors.

• Renamed the SquareLattice class to tenpy.models.lattice.Square for better consistency.

• auto-determine whether Jordan-Wigner strings are necessary in add_coupling().

• The way the labels of npc Arrays are stored internally changed to a simple list with None entries. There is a
deprecated propery setter yielding a dictionary with the labels.

• renamed first_LP and last_RP arguments of MPSEnvironment and MPOEnvironment to init_LP and
init_RP.

• Testing: insetad of the (outdated) nose, we now use pytest <https://pytest.org> for testing.

9.11.4 Fixed

• issue #22: Serious bug in tenpy.linalg.np_conserved.inner(): if do_conj=True is used with
non-zero qtotal, it returned 0. instead of non-zero values.

• avoid error in tenpy.networks.mps.MPS.apply_local_op()

• Don’t carry around total charge when using DMRG with a mixer

• Corrected couplings of the FermionicHubbardChain

• issue #2: memory leak in cython parts when using intelpython/anaconda

• issue #4: incompatible data types.

• issue #6: the CouplingModel generated wrong Couplings in some cases

• issue #19: Convergence of energy was slow for infinite systems with N_sweeps_check=1

• more reasonable traceback in case of wrong labels

56 Chapter 9. Release Notes

https://nose.readthedocs.io/en/latest/
https://github.com/tenpy/tenpy/issues/22
https://github.com/tenpy/tenpy/issues/2
https://github.com/tenpy/tenpy/issues/4
https://github.com/tenpy/tenpy/issues/6
https://github.com/tenpy/tenpy/issues/19

TeNPy, Release 0.8.1

• wrong dtype of npc.Array when adding/subtracting/. . . arrays of different data types

• could get wrong H_bond for completely decoupled chains.

• SVD could return outer indices with different axes

• tenpy.networks.mps.MPS.overlap()works now for MPS with different total charge (e.g. after psi.
apply_local_op(i, 'Sp')).

• skip existing graph edges in MPOGraph.add() when building up terms without the strength part.

9.11.5 Removed

• Attribute chinfo of Lattice.

9.12 [0.3.0] - 2018-02-19

This is the first version published on github.

9.12.1 Added

• Cython modules for np_conserved and charges, which can optionally be compiled for speed-ups

• tools.optimization for dynamical optimization

• Various models.

• More predefined lattice sites.

• Example toy-codes.

• Network contractor for general networks

9.12.2 Changed

• Switch to python3

9.12.3 Removed

• Python 2 support.

9.13 [0.2.0] - 2017-02-24

• Compatible with python2 and python3 (using the 2to3 tool).

• Development version.

• Includes TEBD and DMRG.

9.12. [0.3.0] - 2018-02-19 57

TeNPy, Release 0.8.1

9.14 Changes compared to previous TeNPy

This library is based on a previous (closed source) version developed mainly by Frank Pollmann, Michael P. Zaletel
and Roger S. K. Mong. While allmost all files are completely rewritten and not backwards compatible, the overall
structure is similar. In the following, we list only the most important changes.

9.14.1 Global Changes

• syntax style based on PEP8. Use $>yapf -r -i ./ to ensure consitent formatting over the whole project.
Special comments # yapf: disable and # yapf: enable can be used for manual formatting of some
regions in code.

• Following PEP8, we distinguish between ‘private’ functions, indicated by names starting with an underscore
and to be used only within the library, and the public API. The puplic API should be backwards-compatible
with different releases, while private functions might change at any time.

• all modules are in the folder tenpy to avoid name conflicts with other libraries.

• withing the library, relative imports are used, e.g., from ..tools.math import (toiterable,
tonparray) Exception: the files in tests/ and examples/ run as __main__ and can’t use relative imports

Files outside of the library (and in tests/, examples/) should use absolute imports, e.g. import tenpy.
algorithms.tebd

• renamed tenpy/mps/ to tenpy/networks, since it containes various tensor networks.

• added Site describing the local physical sites by providing the physical LegCharge and onsite operators.

9.14.2 np_conserved

• pure python, no need to compile!

• in module tenpy.linalg instead of algorithms/linalg.

• moved functionality for charges to charges

• Introduced the classes ChargeInfo (basically the old q_number, and mod_q) and LegCharge (the old
qind, qconj).

• Introduced the class LegPipe to replace the old leg_pipe. It is derived from LegCharge and used as a
leg in the array class. Thus any inherited array (after tensordot etc still has all the necessary information to
split the legs. (The legs are shared between different arrays, so it’s saved only once in memory)

• Enhanced indexing of the array class to support slices and 1D index arrays along certain axes

• more functions, e.g. grid_outer()

9.14.3 TEBD

• Introduced TruncationError for easy handling of total truncation error.

• some truncation parameters are renamed and may have a different meaning, e.g. svd_max -> svd_min has no
‘log’ in the definition.

58 Chapter 9. Release Notes

TeNPy, Release 0.8.1

9.14.4 DMRG

• separate Lanczos module in tenpy/linalg/. Strangely, the old version orthoganalized against the complex conju-
gates of orthogonal_to (contrary to it’s doc string!) (and thus calculated ‘theta_o’ as bra, not ket).

• cleaned up, provide prototypes for DMRG engine and mixer.

9.14.5 Tools

• added tenpy.tools.misc, which contains ‘random stuff’ from old tools.math like to_iterable
and to_array (renamed to follow PEP8, documented)

• moved stuff for fitting to tenpy.tools.fit

• enhanced tenpy.tools.string.vert_join() for nice formatting

• moved (parts of) old cluster/omp.py to tenpy.tools.process

• added tenpy.tools.params for a simplified handling of parameter/arguments for models and/or algo-
rithms. Similar as the old models.model.set_var, but use it also for algorithms. Also, it may modify the given
dictionary.

9.14. Changes compared to previous TeNPy 59

TeNPy, Release 0.8.1

60 Chapter 9. Release Notes

CHAPTER

TEN

INTRODUCTIONS

The following documents are meant as introductions to various topics relevant to TeNPy.

If you are new to TeNPy, read the Overview.

10.1 Overview

10.1.1 Repository

The root directory of the git repository contains the following folders:

tenpy The actual source code of the library. Every subfolder contains an __init__.py file with a summary what
the modules in it are good for. (This file is also necessary to mark the folder as part of the python package.
Consequently, other subfolders of the git repo should not include a __init__.py file.)

toycodes Simple toy codes completely independet of the remaining library (i.e., codes in tenpy/). These codes
should be quite readable and intend to give a flavor of how (some of) the algorithms work.

examples Some example files demonstrating the usage and interface of the library.

doc A folder containing the documentation: the user guide is contained in the *.rst files. The online documentation
is autogenerated from these files and the docstrings of the library. This folder contains a make file for building
the documentation, run make help for the different options. The necessary files for the reference in doc/
reference can be auto-generated/updated with make src2html.

tests Contains files with test routines, to be used with pytest. If you are set up correctly and have pytest installed, you
can run the test suite with pytest from within the tests/ folder.

build This folder is not distributed with the code, but is generated by setup.py (or compile.sh, respectively).
It contains compiled versions of the Cython files, and can be ignored (and even removed without loosing func-
tionality).

10.1.2 Code structure: getting started

There are several layers of abstraction in TeNPy. While there is a certain hierarchy of how the concepts build up on
each other, the user can decide to utilize only some of them. A maximal flexibility is provided by an object oriented
style based on classes, which can be inherited and adjusted to individual demands.

The following figure gives an overview of the most important modules, classes and functions in TeNPy. Gray back-
grounds indicate (sub)modules, yellow backgrounds indicate classes. Red arrows indicate inheritance relations, dashed
black arrows indicate a direct use. (The individual models might be derived from the NearestNeighborModel
depending on the geometry of the lattice.) There is a clear hierarchy from high-level algorithms in the tenpy.
algorithms module down to basic operations from linear algebra in the tenpy.linalg module.

61

https://github.com/tenpy/tenpy

TeNPy, Release 0.8.1

62 Chapter 10. Introductions

TeNPy, Release 0.8.1

Most basic level: linear algebra

Note: See Charge conservation with np_conserved for more information on defining charges for arrays.

The most basic layer is given by in the linalg module, which provides basic features of linear algebra. In particular,
the np_conserved submodule implements an Array class which is used to represent the tensors. The basic
interface of np_conserved is very similar to that of the NumPy and SciPy libraries. However, the Array class
implements abelian charge conservation. If no charges are to be used, one can use ‘trivial’ arrays, as shown in the
following example code.

"""Basic use of the `Array` class with trivial arrays."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc

M = npc.Array.from_ndarray_trivial([[0., 1.], [1., 0.]])
v = npc.Array.from_ndarray_trivial([2., 4. + 1.j])
v[0] = 3. # set indiviual entries like in numpy
print("|v> =", v.to_ndarray())
|v> = [3.+0.j 4.+1.j]

M_v = npc.tensordot(M, v, axes=[1, 0])
print("M|v> =", M_v.to_ndarray())
M|v> = [4.+1.j 3.+0.j]
print("<v|M|v> =", npc.inner(v.conj(), M_v, axes='range'))
<v|M|v> = (24+0j)

The number and types of symmetries are specified in a ChargeInfo class. An Array instance represents a tensor
satisfying a charge rule specifying which blocks of it are nonzero. Internally, it stores only the non-zero blocks of the
tensor, along with one LegCharge instance for each leg, which contains the charges and sign qconj for each leg. We
can combine multiple legs into a single larger LegPipe, which is derived from the LegCharge and stores all the
information necessary to later split the pipe.

The following code explicitly defines the spin-1/2 𝑆+, 𝑆−, 𝑆𝑧 operators and uses them to generate and diagonalize the
two-site Hamiltonian 𝐻 = �⃗� · �⃗�. It prints the charge values (by default sorted ascending) and the eigenvalues of H.

"""Explicit definition of charges and spin-1/2 operators."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc

consider spin-1/2 with Sz-conservation
chinfo = npc.ChargeInfo([1]) # just a U(1) charge
charges for up, down state
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]])
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]], [p_leg, p_leg.conj()])
Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]], [p_leg, p_leg.conj()])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]], [p_leg, p_leg.conj()])

Hxy = 0.5 * (npc.outer(Sp, Sm) + npc.outer(Sm, Sp))
Hz = npc.outer(Sz, Sz)
H = Hxy + Hz
here, H has 4 legs
H.iset_leg_labels(["s1", "t1", "s2", "t2"])
H = H.combine_legs([["s1", "s2"], ["t1", "t2"]], qconj=[+1, -1])

(continues on next page)

10.1. Overview 63

TeNPy, Release 0.8.1

(continued from previous page)

here, H has 2 legs
print(H.legs[0].to_qflat().flatten())
prints [-2 0 0 2]
E, U = npc.eigh(H) # diagonalize blocks individually
print(E)
[0.25 -0.75 0.25 0.25]

Sites for the local Hilbert space and tensor networks

The next basic concept is that of a local Hilbert space, which is represented by a Site in TeNPy. This class does not
only label the local states and define the charges, but also provides onsite operators. For example, the SpinHalfSite
provides the 𝑆+, 𝑆−, 𝑆𝑧 operators under the names 'Sp', 'Sm', 'Sz', defined as Array instances similarly as
in the code above. Since the most common sites like for example the SpinSite (for general spin S=0.5, 1, 1.5,. . .),
BosonSite and FermionSite are predefined, a user of TeNPy usually does not need to define the local charges
and operators explicitly. The total Hilbert space, i.e, the tensor product of the local Hilbert spaces, is then just given
by a list of Site instances. If desired, different kinds of Site can be combined in that list. This list is then given to
classes representing tensor networks like the MPS and MPO. The tensor network classes also use Array instances for
the tensors of the represented network.

The following example illustrates the initialization of a spin-1/2 site, an MPS representing the Neel state, and an MPO
representing the Heisenberg model by explicitly defining the W tensor.

"""Initialization of sites, MPS and MPO."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.networks.site import SpinHalfSite
from tenpy.networks.mps import MPS
from tenpy.networks.mpo import MPO

spin = SpinHalfSite(conserve="Sz")
print(spin.Sz.to_ndarray())
[[0.5 0.]
[0. -0.5]]

N = 6 # number of sites
sites = [spin] * N # repeat entry of list N times
pstate = ["up", "down"] * (N // 2) # Neel state
psi = MPS.from_product_state(sites, pstate, bc="finite")
print("<Sz> =", psi.expectation_value("Sz"))
<Sz> = [0.5 -0.5 0.5 -0.5]
print("<Sp_i Sm_j> =", psi.correlation_function("Sp", "Sm"), sep="\n")
<Sp_i Sm_j> =
[[1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0.]]

define an MPO
Id, Sp, Sm, Sz = spin.Id, spin.Sp, spin.Sm, spin.Sz
J, Delta, hz = 1., 1., 0.2
W_bulk = [[Id, Sp, Sm, Sz, -hz * Sz], [None, None, None, None, 0.5 * J * Sm],

[None, None, None, None, 0.5 * J * Sp], [None, None, None, None, J * Delta
→˓* Sz],

(continues on next page)

64 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

[None, None, None, None, Id]]
W_first = [W_bulk[0]] # first row
W_last = [[row[-1]] for row in W_bulk] # last column
Ws = [W_first] + [W_bulk] * (N - 2) + [W_last]
H = MPO.from_grids([spin] * N, Ws, bc='finite', IdL=0, IdR=-1)
print("<psi|H|psi> =", H.expectation_value(psi))
<psi|H|psi> = -1.25

Models

Note: See Models for more information on sites and how to define and extend models on your own.

Technically, the explicit definition of an MPO is already enough to call an algorithm like DMRG in dmrg. However,
writing down the W tensors is cumbersome especially for more complicated models. Hence, TeNPy provides another
layer of abstraction for the definition of models, which we discuss first. Different kinds of algorithms require different
representations of the Hamiltonian. Therefore, the library offers to specify the model abstractly by the individual
onsite terms and coupling terms of the Hamiltonian. The following example illustrates this, again for the Heisenberg
model.

"""Definition of a model: the XXZ chain."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.networks.site import SpinSite
from tenpy.models.lattice import Chain
from tenpy.models.model import CouplingModel, NearestNeighborModel, MPOModel

class XXZChain(CouplingModel, NearestNeighborModel, MPOModel):
def __init__(self, L=2, S=0.5, J=1., Delta=1., hz=0.):

spin = SpinSite(S=S, conserve="Sz")
the lattice defines the geometry
lattice = Chain(L, spin, bc="open", bc_MPS="finite")
CouplingModel.__init__(self, lattice)
add terms of the Hamiltonian
self.add_coupling(J * 0.5, 0, "Sp", 0, "Sm", 1) # Sp_i Sm_{i+1}
self.add_coupling(J * 0.5, 0, "Sp", 0, "Sm", -1) # Sp_i Sm_{i-1}
self.add_coupling(J * Delta, 0, "Sz", 0, "Sz", 1)
(for site dependent prefactors, the strength can be an array)
self.add_onsite(-hz, 0, "Sz")

finish initialization
generate MPO for DMRG
MPOModel.__init__(self, lat, self.calc_H_MPO())
generate H_bond for TEBD
NearestNeighborModel.__init__(self, lat, self.calc_H_bond())

While this generates the same MPO as in the previous code, this example can easily be adjusted and generalized, for
example to a higher dimensional lattice by just specifying a different lattice. Internally, the MPO is generated using a
finite state machine picture. This allows not only to translate more complicated Hamiltonians into their corresponding
MPOs, but also to automate the mapping from a higher dimensional lattice to the 1D chain along which the MPS
winds. Note that this mapping introduces longer-range couplings, so the model can no longer be defined to be a
NearestNeighborModel suited for TEBD if another lattice than the Chain is to be used. Of course, many

10.1. Overview 65

TeNPy, Release 0.8.1

commonly studied models are also predefined. For example, the following code initializes the Heisenberg model on a
kagome lattice; the spin liquid nature of the ground state of this model is highly debated in the current literature.

"""Initialization of the Heisenberg model on a kagome lattice."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.models.spins import SpinModel

model_params = {
"S": 0.5, # Spin 1/2
"lattice": "Kagome",
"bc_MPS": "infinite",
"bc_y": "cylinder",
"Ly": 2, # defines cylinder circumference
"conserve": "Sz", # use Sz conservation
"Jx": 1.,
"Jy": 1.,
"Jz": 1. # Heisenberg coupling

}
model = SpinModel(model_params)

Algorithms

Another layer is given by algorithms like DMRG and TEBD. Using the previous concepts, setting up a simulation
running those algorithms is a matter of just a few lines of code. The following example runs a DMRG simulation, see
dmrg, exemplary for the transverse field Ising model at the critical point.

"""Call of (finite) DMRG."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

N = 16 # number of sites
model = TFIChain({"L": N, "J": 1., "g": 1., "bc_MPS": "finite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, ['up'] * N, "finite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10}, "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info['E'])
E = -20.01638790048513
print("max. bond dimension =", max(psi.chi))
max. bond dimension = 27

The switch from DMRG to iDMRG in TeNPy is simply accomplished by a change of the parameter "bc_MPS" from
"finite" to "infinite", both for the model and the state. The returned E is then the energy density per site. Due
to the translation invariance, one can also evaluate the correlation length, here slightly away from the critical point.

"""Call of infinite DMRG."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

(continues on next page)

66 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

N = 2 # number of sites in unit cell
model = TFIChain({"L": N, "J": 1., "g": 1.1, "bc_MPS": "infinite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, ['up'] * N, "infinite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10}, "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info['E'])
E = -1.342864022725017
print("max. bond dimension =", max(psi.chi))
max. bond dimension = 56
print("corr. length =", psi.correlation_length())
corr. length = 4.915809146764157

Running time evolution with TEBD requires an additional loop, during which the desired observables have to be
measured. The following code shows this directly for the infinite version of TEBD.

"""Call of (infinite) TEBD."""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import tebd

M = TFIChain({"L": 2, "J": 1., "g": 1.5, "bc_MPS": "infinite"})
psi = MPS.from_product_state(M.lat.mps_sites(), [0] * 2, "infinite")
tebd_params = {

"order": 2,
"delta_tau_list": [0.1, 0.001, 1.e-5],
"max_error_E": 1.e-6,
"trunc_params": {

"chi_max": 30,
"svd_min": 1.e-10

}
}
eng = tebd.TEBDEngine(psi, M, tebd_params)
eng.run_GS() # imaginary time evolution with TEBD
print("E =", sum(psi.expectation_value(M.H_bond)) / psi.L)
print("final bond dimensions: ", psi.chi)

Simulations

The top-most layer is given by Simulations. A simulation wraps the whole setup of initializing the Model, MPS and
Algorithm classes, running the algorithm, possibly performing measurements, and finally saving results to disk, if
desired. It provides some extra functionality like the ability to resume an interrupted simulation, e.g. if your job got
killed on the cluster due to runtime limitis.

Ideally, the Simulation (sub) class represents the whole Simulation from start to end, giving re-producable results
depending only on the parameters given to it.

10.1. Overview 67

TeNPy, Release 0.8.1

10.2 Charge conservation with np_conserved

The basic idea is quickly summarized: By inspecting the Hamiltonian, you can identify symmetries, which correspond
to conserved quantities, called charges. These charges divide the tensors into different sectors. This can be used to
infer for example a block-diagonal structure of certain matrices, which in turn speeds up SVD or diagonalization a lot.
Even for more general (non-square-matrix) tensors, charge conservation imposes restrictions which blocks of a tensor
can be non-zero. Only those blocks need to be saved, which ultimately (= for large enough arrays) leads to a speedup
of many routines, e.g., tensordot.

This introduction covers our implementation of charges; explaining mathematical details of the underlying symmetry
is beyond its scope. We refer you to the corresponding chapter in our [TeNPyNotes] for a more general introduction of
the idea (also stating the “charge rule” introduced below). [[singh2010]] explains why it works form a mathematical
point of view, [[singh2011]] has the focus on a 𝑈(1) symmetry and might be easier to read.

10.2.1 What you really need to know about np_conserved

The good news is: It is not necessary to understand all the details explained in the following sections if you just want
to use TeNPy for “standard” simulations like TEBD and DMRG. In praxis, you will likely not have to define the
charges by yourself. For most simulations using TeNPy, the charges are initially defined in the Site; and there are
many pre-defined sites like the :class:SpinHalfSite, which you can just use. The sites in turn are initialized by
the Model class you are using (see also Models). From there, all the necessary charge information is automatically
propagated along with the tensors.

However, you should definitely know a few basic facts about the usage of charge conservation in TeNPy:

• Instead of using numpy arrays, tensors are represented by the Array class. This class is defined in
np_conserved (the name standing for “numpy with charge conservation”). Internally, it stores only non-
zero blocks of the tensor, which are “compatible” with the charges of the indices. It has to have a well defined
overall charge qtotal. This expludes certain operators (like 𝑆𝑥 for Sz conservation) and MPS which are a
superpositions of states in different charge sectors.

• There is a class ChargeInfo holding the general information what kind of charges we have, and a
LegCharge for the charge data on a given leg. The leg holds a flag qconj which is +1 or -1, depending
on whether the leg goes into the tensor (representing a vector space) or out of the tensor (representing the
corresponding dual vector space).

• Besides the array class methods, there are a bunch of functions like tensordot(), svd() or eigh() to
manipulate tensors. These function have a very similar call structure as the corresponding numpy functions, but
they act on our tensor Array class, and preserve the block structure (and exploit it for speed, wherever possible).

• The only allowed “reshaping” operations for those tensors are to combine legs and to split previously combined
legs. See the correspoding section below.

• It is convenient to use string labels instead of numbers to refer to the various legs of a tensor. The rules how
these labels change during the various operations are also described a section below.

68 Chapter 10. Introductions

TeNPy, Release 0.8.1

10.2.2 Introduction to combine_legs, split_legs and LegPipes

Often, it is necessary to “combine” multiple legs into one: for example to perfom a SVD, a tensor needs to be viewed
as a matrix. For a flat array, this can be done with np.reshape, e.g., if A has shape (10, 3, 7) then B = np.
reshape(A, (30, 7)) will result in a (view of the) array with one less dimension, but a “larger” first leg. By
default (order='C'), this results in

B[i*3 + j , k] == A[i, j, k] for i in range(10) for j in range(3) for k in range(7)

While for a np.array, also a reshaping (10, 3, 7) -> (2, 21, 5) would be allowed, it does not make sense
physically. The only sensible “reshape” operation on an Array are

1) to combine multiple legs into one leg pipe (LegPipe) with combine_legs(), or

2) to split a pipe of previously combined legs with split_legs().

Each leg has a Hilbert space, and a representation of the symmetry on that Hilbert space. Combining legs corresponds
to the tensor product operation, and for abelian groups, the corresponding “fusion” of the representation is the simple
addition of charge.

Fusion is not a lossless process, so if we ever want to split the combined leg, we need some additional data to tell us
how to reverse the tensor product. This data is saved in the class LegPipe, derived from the LegCharge and used
as new leg. Details of the information contained in a LegPipe are given in the class doc string.

The rough usage idea is as follows:

1) You can call combine_legs() without supplying any LegPipes, combine_legs will then make them for you.

Nevertheless, if you plan to perform the combination over and over again on sets of legs you know to be
identical [with same charges etc, up to an overall -1 in qconj on all incoming and outgoing Legs] you might
make a LegPipe anyway to save on the overhead of computing it each time.

2) In any way, the resulting Array will have a LegPipe as a LegCharge on the combined leg. Thus, it – and all
tensors inheriting the leg (e.g. the results of svd, tensordot etc.) – will have the information how to split the
LegPipe back to the original legs.

3) Once you performed the necessary operations, you can call split_legs(). This uses the information saved
in the LegPipe to split the legs, recovering the original legs.

For a LegPipe, conj() changes qconj for the outgoing pipe and the incoming legs. If you need a LegPipe with the
same incoming qconj, use outer_conj().

10.2.3 Leg labeling

It’s convenient to name the legs of a tensor: for instance, we can name legs 0, 1, 2 to be 'a', 'b', 'c': 𝑇𝑖𝑎,𝑖𝑏,𝑖𝑐 .
That way we don’t have to remember the ordering! Under tensordot, we can then call

U = npc.tensordot(S, T, axes = [[...], ['b']])

without having to remember where exactly 'b' is. Obviously U should then inherit the name of its legs from the
uncontracted legs of S and T. So here is how it works:

• Labels can only be strings. The labels should not include the characters . or ?. Internally, the labels are stored
as dict a.labels = {label: leg_position, ...}. Not all legs need a label.

• To set the labels, call

A.set_labels(['a', 'b', None, 'c', ...])

which will set up the labeling {'a': 0, 'b': 1, 'c': 3 ...}.

10.2. Charge conservation with np_conserved 69

TeNPy, Release 0.8.1

• (Where implemented) the specification of axes can use either the labels or the index positions. For instance,
the call tensordot(A, B, [['a', 2, 'c'], [...]]) will interpret 'a' and 'c' as labels (calling
get_leg_indices() to find their positions using the dict) and 2 as ‘the 2nd leg’. That’s why we require
labels to be strings!

• Labels will be intelligently inherited through the various operations of np_conserved.

– Under transpose, labels are permuted.

– Under tensordot, labels are inherited from uncontracted legs. If there is a collision, both labels are
dropped.

– Under combine_legs, labels get concatenated with a . delimiter and sourrounded by brack-
ets. Example: let a.labels = {'a': 1, 'b': 2, 'c': 3}. Then if b = a.
combine_legs([[0, 1], [2]]), it will have b.labels = {'(a.b)': 0, '(c)':
1}. If some sub-leg of a combined leg isn’t named, then a '?#' label is inserted (with # the leg
index), e.g., 'a.?0.c'.

– Under split_legs, the labels are split using the delimiters (and the '?#' are dropped).

– Under conj, iconj: take 'a' -> 'a*', 'a*' -> 'a', and '(a.(b*.c))' -> '(a*.(b.
c*))'

– Under svd, the outer labels are inherited, and inner labels can be optionally passed.

– Under pinv, the labels are transposed.

10.2.4 Indexing of an Array

Although it is usually not necessary to access single entries of an Array , you can of course do that. In the simplest
case, this is something like A[0, 2, 1] for a rank-3 Array A. However, accessing single entries is quite slow and
usually not recommended. For small Arrays, it may be convenient to convert them back to flat numpy arrays with
to_ndarray().

On top of that very basic indexing, Array supports slicing and some kind of advanced indexing, which is however
different from the one of numpy arrarys (described here). Unlike numpy arrays, our Array class does not broadcast
existing index arrays – this would be terribly slow. Also, np.newaxis is not supported, since inserting new axes requires
additional information for the charges.

Instead, we allow just indexing of the legs independent of each other, of the form A[i0, i1, ...]. If all indices
i0, i1, ... are integers, the single corresponding entry (of type dtype) is returned.

However, the individual ‘indices’ i0 for the individual legs can also be one of what is described in the following list.
In that case, a new Array with less data (specified by the indices) is returned.

The ‘indices’ can be:

• an int: fix the index of that axis, return array with one less dimension. See also take_slice().

• a slice(None) or :: keep the complete axis

• an Ellipsis or ...: shorthand for slice(None) for missing axes to fix the len

• an 1D bool ndarray mask: apply a mask to that axis, see iproject().

• a slice(start, stop, step) or start:stop:step: keep only the indices specified by the slice.
This is also implemented with iproject.

• an 1D int ndarray mask: keep only the indices specified by the array. This is also implemented with iproject.

For slices and 1D arrays, additional permuations may be perfomed with the help of permute().

70 Chapter 10. Introductions

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

TeNPy, Release 0.8.1

If the number of indices is less than rank, the remaining axes remain free, so for a rank 4 Array A, A[i0, i1] ==
A[i0, i1, ...] == A[i0, i1, :, :].

Note that indexing always copies the data – even if int contains just slices, in which case numpy would return a view.
However, assigning with A[:, [3, 5], 3] = B should work as you would expect.

Warning: Due to numpy’s advanced indexing, for 1D integer arrays a0 and a1 the following holds

A[a0, a1].to_ndarray() == A.to_ndarray()[np.ix_(a0, a1)] != A.to_ndarray()[a0, a1]

For a combination of slices and arrays, things get more complicated with numpys advanced indexing. In that case,
a simple np.ix_(...) doesn’t help any more to emulate our version of indexing.

10.2.5 Details of the np_conserved implementation

Notations

Lets fix the notation of certain terms for this introduction and the doc-strings in np_conserved. This might be
helpful if you know the basics from a different context. If you’re new to the subject, keep reading even if you don’t
understand each detail, and come back to this section when you encounter the corresponding terms again.

A Array is a multi-dimensional array representing a tensor with the entries:

𝑇𝑎0,𝑎1,...𝑎𝑟𝑎𝑛𝑘−1
with 𝑎𝑖 ∈ {0, ..., 𝑛𝑖 − 1}

Each leg 𝑎𝑖 corresponds the a vector space of dimension n_i.

An index of a leg is a particular value 𝑎𝑖 ∈ {0, ..., 𝑛𝑖 − 1}.

The rank is the number of legs, the shape is (𝑛0, ..., 𝑛𝑟𝑎𝑛𝑘−1).

We restrict ourselfes to abelian charges with entries in Z or in Z𝑚. The nature of a charge is specified by 𝑚; we set
𝑚 = 1 for charges corresponding to Z. The number of charges is refered to as qnumber as a short hand, and the
collection of 𝑚 for each charge is called qmod. The qnumber, qmod and possibly descriptive names of the charges
are saved in an instance of ChargeInfo.

To each index of each leg, a value of the charge(s) is associated. A charge block is a contiguous slice corresponding
to the same charge(s) of the leg. A qindex is an index in the list of charge blocks for a certain leg. A charge sector is
for given charge(s) is the set of all qindices of that charge(s). A leg is blocked if all charge sectors map one-to-one to
qindices. Finally, a leg is sorted, if the charges are sorted lexiographically. Note that a sorted leg is always blocked.
We can also speak of the complete array to be blocked by charges or legcharge-sorted, which means that all of its
legs are blocked or sorted, respectively. The charge data for a single leg is collected in the class LegCharge. A
LegCharge has also a flag qconj, which tells whether the charges point inward (+1) or outward (-1). What that
means, is explained later in Which entries of the npc Array can be non-zero?.

For completeness, let us also summarize also the internal structure of an Array here: The array saves only non-zero
blocks, collected as a list of np.array in self._data. The qindices necessary to map these blocks to the original leg
indices are collected in self._qdata An array is said to be qdata-sorted if its self._qdata is lexiographically
sorted. More details on this follow later. However, note that you usually shouldn’t access _qdata and _data directly -
this is only necessary from within tensordot, svd, etc. Also, an array has a total charge, defining which entries can be
non-zero - details in Which entries of the npc Array can be non-zero?.

Finally, a leg pipe (implemented in LegPipe) is used to formally combine multiple legs into one leg. Again, more
details follow later.

10.2. Charge conservation with np_conserved 71

TeNPy, Release 0.8.1

Physical Example

For concreteness, you can think of the Hamiltonian 𝐻 = −𝑡
∑︀

<𝑖,𝑗>(𝑐†𝑖 𝑐𝑗 + 𝐻.𝑐.) + 𝑈𝑛𝑖𝑛𝑗 with 𝑛𝑖 = 𝑐†𝑖 𝑐𝑖. This
Hamiltonian has the global 𝑈(1) gauge symmetry 𝑐𝑖 → 𝑐𝑖𝑒

𝑖𝜑. The corresponding charge is the total number of
particles 𝑁 =

∑︀
𝑖 𝑛𝑖. You would then introduce one charge with 𝑚 = 1.

Note that the total charge is a sum of local terms, living on single sites. Thus, you can infer the charge of a single
physical site: it’s just the value 𝑞𝑖 = 𝑛𝑖 ∈ N for each of the states.

Note that you can only assign integer charges. Consider for example the spin 1/2 Heisenberg chain. Here, you can
naturally identify the magnetization 𝑆𝑧 =

∑︀
𝑖 𝑆

𝑧
𝑖 as the conserved quantity, with values 𝑆𝑧

𝑖 = ± 1
2 . Obviously, if 𝑆𝑧 is

conserved, then so is 2𝑆𝑧 , so you can use the charges 𝑞𝑖 = 2𝑆𝑧
𝑖 ∈ {−1,+1} for the down and up states, respectively.

Alternatively, you can also use a shift and define 𝑞𝑖 = 𝑆𝑧
𝑖 + 1

2 ∈ {0, 1}.

As another example, consider BCS like terms
∑︀

𝑘(𝑐†𝑘𝑐
†
−𝑘 + 𝐻.𝑐.). These terms break the total particle conservation,

but they preserve the total parity, i.e., 𝑁 mod 2 is conserved. Thus, you would introduce a charge with 𝑚 = 2 in this
case.

In the above examples, we had only a single charge conserved at a time, but you might be lucky and have multiple
conserved quantities, e.g. if you have two chains coupled only by interactions. TeNPy is designed to handle the general
case of multiple charges. When giving examples, we will restrict to one charge, but everything generalizes to multiple
charges.

The different formats for LegCharge

As mentioned above, we assign charges to each index of each leg of a tensor. This can be done in three formats: qflat,
as qind and as qdict. Let me explain them with examples, for simplicity considereing only a single charge (the most
inner array has one entry for each charge).

qflat form: simply a list of charges for each index. An example:

qflat = [[-2], [-1], [-1], [0], [0], [0], [0], [3], [3]]

This tells you that the leg has size 9, the charges for are [-2], [-1], [-1], ..., [3] for the indices 0,
1, 2, 3,..., 8. You can identify four charge blocks slice(0, 1), slice(1, 3), slice(3,
7), slice(7, 9) in this example, which have charges [-2], [-1], [0], [3]. In other words, the
indices 1, 2 (which are in slice(1, 3)) have the same charge value [-1]. A qindex would just enumerate
these blocks as 0, 1, 2, 3.

qind form: a 1D array slices and a 2D array charges. This is a more compact version than the qflat form: the slices
give a partition of the indices and the charges give the charge values. The same example as above would simply
be:

slices = [0, 1, 3, 7, 9]
charges = [[-2], [-1], [0], [3]]

Note that slices includes 0 as first entry and the number of indices (here 9) as last entries. Thus it has len
block_number + 1, where block_number (given by block_number) is the number of charge blocks
in the leg, i.e. a qindex runs from 0 to block_number-1. On the other hand, the 2D array charges has shape
(block_number, qnumber), where qnumber is the number of charges (given by qnumber).

In that way, the qind form maps an qindex, say qi, to the indices slice(slices[qi], slices[qi+1])
and the charge(s) charges[qi].

qdict form: a dictionary in the other direction than qind, taking charge tuples to slices. Again for the same ex-
ample:

72 Chapter 10. Introductions

TeNPy, Release 0.8.1

{(-2,): slice(0, 1),
(-1,): slice(1, 3),
(0,) : slice(3, 7),
(3,) : slice(7, 9)}

Since the keys of a dictionary are unique, this form is only possible if the leg is completely blocked.

The LegCharge saves the charge data of a leg internally in qind form, directly in the attribute slices and charges.
However, it also provides convenient functions for conversion between from and to the qflat and qdict form.

The above example was nice since all charges were sorted and the charge blocks were ‘as large as possible’. This is
however not required.

The following example is also a valid qind form:

slices = [0, 1, 3, 5, 7, 9]
charges = [[-2], [-1], [0], [0], [3]]

This leads to the same qflat form as the above examples, thus representing the same charges on the leg indices.
However, regarding our Arrays, this is quite different, since it diveds the leg into 5 (instead of previously 4) charge
blocks. We say the latter example is not bunched, while the former one is bunched.

To make the different notions of sorted and bunched clearer, consider the following (valid) examples:

charges bunched sorted blocked
[[-2], [-1], [0], [1], [3]] True True True
[[-2], [-1], [0], [0], [3]] False True False
[[-2], [0], [-1], [1], [3]] True False True
[[-2], [0], [-1], [0], [3]] True False False

If a leg is bunched and sorted, it is automatically blocked (but not vice versa). See also below for further comments on
that.

Which entries of the npc Array can be non-zero?

The reason for the speedup with np_conserved lies in the fact that it saves only the blocks ‘compatible’ with the
charges. But how is this ‘compatible’ defined?

Assume you have a tensor, call it 𝑇 , and the LegCharge for all of its legs, say 𝑎, 𝑏, 𝑐,

Remeber that the LegCharge associates to each index of the leg a charge value (for each of the charges, if qnumber >
1). Let a.to_qflat()[ia] denote the charge(s) of index ia for leg a, and similar for other legs.

In addition, the LegCharge has a flag qconj. This flag qconj is only a sign, saved as +1 or -1, specifying whether the
charges point ‘inward’ (+1, default) or ‘outward’ (-1) of the tensor.

Then, the total charge of an entry T[ia, ib, ic, ...] of the tensor is defined as:

qtotal[ia, ib, ic, ...] = a.to_qflat()[ia] * a.qconj + b.to_qflat()[ib] * b.qconj + c.
→˓to_qflat()[ic] * c.qconj + ... modulo qmod

The rule which entries of the a Array can be non-zero (i.e., are ‘compatible’ with the charges), is then very simple:

10.2. Charge conservation with np_conserved 73

TeNPy, Release 0.8.1

Rule for non-zero entries

An entry ia, ib, ic, ... of a Array can only be non-zero, if qtotal[ia, ib, ic, ...] matches
the unique qtotal attribute of the class.

In other words, there is a single total charge .qtotal attribute of a Array . All indices ia, ib, ic, ... for
which the above defined qtotal[ia, ib, ic, ...] matches this total charge, are said to be compatible with
the charges and can be non-zero. All other indices are incompatible with the charges and must be zero.

In case of multiple charges, qnumber > 1, is a straigth-forward generalization: an entry can only be non-zero if it is
compatible with each of the defined charges.

The pesky qconj - contraction as an example

Why did we introduce the qconj flag? Remember it’s just a sign telling whether the charge points inward or outward.
So whats the reasoning?

The short answer is, that LegCharges actually live on bonds (i.e., legs which are to be contracted) rather than individual
tensors. Thus, it is convenient to share the LegCharges between different legs and even tensors, and just adjust the
sign of the charges with qconj.

As an example, consider the contraction of two tensors, 𝐶𝑖𝑎,𝑖𝑐 =
∑︀

𝑖𝑏𝐴𝑖𝑎,𝑖𝑏𝐵𝑖𝑏,𝑖𝑐. For simplicity, say that the total
charge of all three tensors is zero. What are the implications of the above rule for non-zero entries? Or rather, how can
we ensure that C complies with the above rule? An entry C[ia,ic] will only be non-zero, if there is an ib such that
both A[ia,ib] and B[ib,ic] are non-zero, i.e., both of the following equations are fullfilled:

A.qtotal == A.legs[0].to_qflat()[ia] * A.legs[0].qconj + A.legs[1].to_qflat()[ib] * A.
→˓legs[1].qconj modulo qmod
B.qtotal == B.legs[0].to_qflat()[ib] * B.legs[0].qconj + B.legs[1].to_qflat()[ic] * B.
→˓legs[1].qconj modulo qmod

(A.legs[0] is the LegCharge saving the charges of the first leg (with index ia) of A.)

For the uncontracted legs, we just keep the charges as they are:

C.legs = [A.legs[0], B.legs[1]]

It is then straight-forward to check, that the rule is fullfilled for 𝐶, if the following condition is met:

A.qtotal + B.qtotal - C.qtotal == A.legs[1].to_qflat()[ib] A.b.qconj + B.legs[0].to_
→˓qflat()[ib] B.b.qconj modulo qmod

The easiest way to meet this condition is (1) to require that A.b and B.b share the same charges b.to_qflat(),
but have opposite qconj, and (2) to define C.qtotal = A.qtotal + B.qtotal. This justifies the introduction
of qconj: when you define the tensors, you have to define the LegCharge for the b only once, say for A.legs[1].
For B.legs[0] you simply use A.legs[1].conj() which creates a copy of the LegCharge with shared slices
and charges, but opposite qconj. As a more impressive example, all ‘physical’ legs of an MPS can usually share
the same LegCharge (up to different qconj if the local Hilbert space is the same). This leads to the following
convention:

Convention

When an npc algorithm makes tensors which share a bond (either with the input tensors, as for tensordot, or amongst
the output tensors, as for SVD), the algorithm is free, but not required, to use the same LegCharge for the tensors

74 Chapter 10. Introductions

TeNPy, Release 0.8.1

sharing the bond, without making a copy. Thus, if you want to modify a LegCharge, you must make a copy first
(e.g. by using methods of LegCharge for what you want to acchive).

Assigning charges to non-physical legs

From the above physical examples, it should be clear how you assign charges to physical legs. But what about other
legs, e.g, the virtual bond of an MPS (or an MPO)?

The charge of these bonds must be derived by using the ‘rule for non-zero entries’, as far as they are not arbitrary. As
a concrete example, consider an MPS on just two spin 1/2 sites:

| _____ _____
| x->- | A | ->-y->- | B | ->-z
| ----- -----
| ^ ^
| |p |p

The two legs p are the physical legs and share the same charge, as they both describe the same local Hilbert space. For
better distincition, let me label the indices of them by ↑= 0 and ↓= 1. As noted above, we can associate the charges 1
(𝑝 =↑) and -1 (𝑝 =↓), respectively, so we define:

chinfo = npc.ChargeInfo([1], ['2*Sz'])
p = npc.LegCharge.from_qflat(chinfo, [1, -1], qconj=+1)

For the qconj signs, we stick to the convention used in our MPS code and indicated by the arrows in above ‘picture’:
physical legs are incoming (qconj=+1), and from left to right on the virtual bonds. This is acchieved by using [p,
x, y.conj()] as legs for A, and [p, y, z.conj()] for B, with the default qconj=+1 for all p, x, y,
z: y.conj() has the same charges as y, but opposite qconj=-1.

The legs x and z of an L=2 MPS, are ‘dummy’ legs with just one index 0. The charge on one of them, as well as the
total charge of both A and B is arbitrary (i.e., a gauge freedom), so we make a simple choice: total charge 0 on both
arrays, as well as for 𝑥 = 0, x = npc.LegCharge.from_qflat(chinfo, [0], qconj=+1).

The charges on the bonds y and z then depend on the state the MPS represents. Here, we consider a singlet 𝜓 = (| ↑↓
⟩ − | ↓↑⟩)/

√
2 as a simple example. A possible MPS representation is given by:

A[up, :, :] = [[1/2.**0.5, 0]] B[up, :, :] = [[0], [-1]]
A[down, :, :] = [[0, 1/2.**0.5]] B[down, :, :] = [[1], [0]]

There are two non-zero entries in A, for the indices (𝑎, 𝑥, 𝑦) = (↑, 0, 0) and (↓, 0, 1). For (𝑎, 𝑥, 𝑦) = (↑, 0, 0), we
want:

A.qtotal = 0 = p.to_qflat()[up] * p.qconj + x.to_qflat()[0] * x.qconj + y.conj().to_
→˓qflat()[0] * y.conj().qconj

= 1 * (+1) + 0 * (+1) + y.conj().to_
→˓qflat()[0] * (-1)

This fixes the charge of y=0 to 1. A similar calculation for (𝑎, 𝑥, 𝑦) = (↓, 0, 1) yields the charge -1 for y=1. We have
thus all the charges of the leg y and can define y = npc.LegCharge.from_qflat(chinfo, [1, -1],
qconj=+1).

Now take a look at the entries of B. For the non-zero entry (𝑏, 𝑦, 𝑧) = (↑, 1, 0), we want:

B.qtotal = 0 = p.to_qflat()[up] * p.qconj + y.to_qflat()[1] * y.qconj + z.conj().to_
→˓qflat()[0] * z.conj().qconj

= 1 * (+1) + (-1) * (+1) + z.conj().to_
→˓qflat()[0] * (-1) (continues on next page)

10.2. Charge conservation with np_conserved 75

TeNPy, Release 0.8.1

(continued from previous page)

This implies the charge 0 for z = 0, thus z = npc.LegCharge.form_qflat(chinfo, [0], qconj=+1).
Finally, note that the rule for (𝑏, 𝑦, 𝑧) = (↓, 0, 0) is automatically fullfilled! This is an implication of the fact that the
singlet has a well defined value for 𝑆𝑧

𝑎 + 𝑆𝑧
𝑏 . For other states without fixed magnetization (e.g., | ↑↑⟩ + | ↓↓⟩) this

would not be the case, and we could not use charge conservation.

As an exercise, you can calculate the charge of z in the case that A.qtotal=5, B.qtotal = -1 and charge 2 for
x=0. The result is -2.

Note: This section is meant be an pedagogical introduction. In you program, you can use the functions
detect_legcharge() (which does exactly what’s described above) or detect_qtotal() (if you know all
LegCharges, but not qtotal).

Array creation

Direct creation

Making an new Array requires both the tensor entries (data) and charge data.

The default initialization a = Array(...) creates an empty Array, where all entries are zero (equivalent to
zeros()). (Non-zero) data can be provided either as a dense np.array to from_ndarray(), or by providing
a numpy function such as np.random, np.ones etc. to from_func().

In both cases, the charge data is provided by one ChargeInfo, and a LegCharge instance for each of the legs.

Note: The charge data instances are not copied, in order to allow it to be shared between different Arrays. Conse-
quently, you must make copies of the charge data, if you manipulate it directly. (However, methods like sort() do
that for you.)

Indirect creation by manipulating existing arrays

Of course, a new Array can also created using the charge data from exisiting Arrays, for example with
zeros_like() or creating a (deep or shallow) copy(). Further, there are many higher level functions like
tensordot() or svd(), which also return new Arrays.

Complete blocking of Charges

While the code was designed in such a way that each charge sector has a different charge, the code should still
run correctly if multiple charge sectors (for different qindex) correspond to the same charge. In this sense Array
can act like a sparse array class to selectively store subblocks. Algorithms which need a full blocking should state
that explicitly in their doc-strings. (Some functions (like svd and eigh) require complete blocking internally, but if
necessary they just work on a temporary copy returned by as_completely_blocked()).

If you expect the tensor to be dense subject to charge constraints (as for MPS), it will be most efficient to fully block
by charge, so that work is done on large chunks.

However, if you expect the tensor to be sparser than required by charge (as for an MPO), it may be convenient not to
completely block, which forces smaller matrices to be stored, and hence many zeroes to be dropped. Nevertheless,

76 Chapter 10. Introductions

TeNPy, Release 0.8.1

the algorithms were not designed with this in mind, so it is not recommended in general. (If you want to use it, run a
benchmark to check whether it is really faster!)

If you haven’t created the array yet, you can call sort() (with bunch=True) on each LegCharge which you
want to block. This sorts by charges and thus induces a permution of the indices, which is also returned as an 1D array
perm. For consistency, you have to apply this permutation to your flat data as well.

Alternatively, you can simply call sort_legcharge() on an existing Array . It calls sort() internally on the
specified legs and performs the necessary permutations directly to (a copy of) self. Yet, you should keep in mind, that
the axes are permuted afterwards.

Internal Storage schema of npc Arrays

The actual data of the tensor is stored in _data. Rather than keeping a single np.array (which would have many zeros
in it), we store only the non-zero sub blocks. So _data is a python list of np.array’s. The order in which they are
stored in the list is not physically meaningful, and so not guaranteed (more on this later). So to figure out where the
sub block sits in the tensor, we need the _qdata structure (on top of the LegCharges in legs).

Consider a rank 3 tensor T, with the first leg like:

legs[0].slices = np.array([0, 1, 4, ...])
legs[0].charges = np.array([[-2], [1], ...])

Each row of charges gives the charges for a charge block of the leg, with the actual indices of the total tensor deter-
mined by the slices. The qindex simply enumerates the charge blocks of a lex. Picking a qindex (and thus a charge
block) from each leg, we have a subblock of the tensor.

For each (non-zero) subblock of the tensor, we put a (numpy) ndarray entry in the _data list. Since each subblock
of the tensor is specified by rank qindices, we put a corresponding entry in _qdata, which is a 2D array of shape
(#stored_blocks, rank). Each row corresponds to a non-zero subblock, and there are rank columns giving
the corresponding qindex for each leg.

Example: for a rank 3 tensor we might have:

T._data = [t1, t2, t3, t4, ...]
T._qdata = np.array([[3, 2, 1],

[1, 1, 1],
[4, 2, 2],
[2, 1, 2],
...])

The third subblock has an ndarray t3, and qindices [4 2 2] for the three legs.

• To find the position of t3 in the actual tensor you can use get_slice():

T.legs[0].get_slice(4), T.legs[1].get_slice(2), T.legs[2].get_slice(2)

The function leg.get_charges(qi) simply returns slice(leg.slices[qi], leg.
slices[qi+1])

• To find the charges of t3, we an use get_charge():

T.legs[0].get_charge(2), T.legs[1].get_charge(2), T.legs[2].get_charge(2)

The function leg.get_charge(qi) simply returns leg.charges[qi]*leg.qconj.

Note: Outside of np_conserved, you should use the API to access the entries. If you really need to it-
erate over all blocks of an Array T, try for (block, blockslices, charges, qindices) in T:

10.2. Charge conservation with np_conserved 77

TeNPy, Release 0.8.1

do_something().

The order in which the blocks stored in _data/_qdata is arbitrary (although of course _data and _qdata must
be in correspondence). However, for many purposes it is useful to sort them according to some convention. So we
include a flag ._qdata_sorted to the array. So, if sorted (with isort_qdata(), the _qdata example above
goes to

_qdata = np.array([[1, 1, 1],
[3, 2, 1],
[2, 1, 2],
[4, 2, 2],
...])

Note that np.lexsort chooses the right-most column to be the dominant key, a convention we follow throughout.

If _qdata_sorted == True, _qdata and _data are guaranteed to be lexsorted. If _qdata_sorted ==
False, there is no gaurantee. If an algorithm modifies _qdata, it must set _qdata_sorted = False (unless
it gaurantees it is still sorted). The routine sort_qdata() brings the data to sorted form.

10.2.6 See also

• The module tenpy.linalg.np_conserved should contain all the API needed from the point of view of
the algorithms. It contians the fundamental Array class and functions for working with them (creating and
manipulating).

• The module tenpy.linalg.charges contains implementations for the charge structure, for example the
classes ChargeInfo, LegCharge, and LegPipe. As noted above, the ‘public’ API is imported to (and
accessible from) np_conserved.

10.2.7 A full example code for spin-1/2

Below follows a full example demonstrating the creation and contraction of Arrays. (It’s the file a_np_conserved.py
in the examples folder of the tenpy source.)

"""An example code to demonstrate the usage of :class:`~tenpy.linalg.np_conserved.
→˓Array`.

This example includes the following steps:
1) create Arrays for an Neel MPS
2) create an MPO representing the nearest-neighbour AFM Heisenberg Hamiltonian
3) define 'environments' left and right
4) contract MPS and MPO to calculate the energy
5) extract two-site hamiltonian ``H2`` from the MPO
6) calculate ``exp(-1.j*dt*H2)`` by diagonalization of H2
7) apply ``exp(H2)`` to two sites of the MPS and truncate with svd

Note that this example uses only np_conserved, but no other modules.
Compare it to the example `b_mps.py`,
which does the same steps using a few predefined classes like MPS and MPO.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc
import numpy as np

(continues on next page)

78 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

model parameters
Jxx, Jz = 1., 1.
L = 20
dt = 0.1
cutoff = 1.e-10
print("Jxx={Jxx}, Jz={Jz}, L={L:d}".format(Jxx=Jxx, Jz=Jz, L=L))

print("1) create Arrays for an Neel MPS")

vL ->--B-->- vR
|
^
|
p

create a ChargeInfo to specify the nature of the charge
chinfo = npc.ChargeInfo([1], ['2*Sz']) # the second argument is just a descriptive
→˓name

create LegCharges on physical leg and even/odd bonds
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]]) # charges for up, down
v_leg_even = npc.LegCharge.from_qflat(chinfo, [[0]])
v_leg_odd = npc.LegCharge.from_qflat(chinfo, [[1]])

B_even = npc.zeros([v_leg_even, v_leg_odd.conj(), p_leg],
labels=['vL', 'vR', 'p']) # virtual left/right, physical

B_odd = npc.zeros([v_leg_odd, v_leg_even.conj(), p_leg], labels=['vL', 'vR', 'p'])
B_even[0, 0, 0] = 1. # up
B_odd[0, 0, 1] = 1. # down

Bs = [B_even, B_odd] * (L // 2) + [B_even] * (L % 2) # (right-canonical)
Ss = [np.ones(1)] * L # Ss[i] are singular values between Bs[i-1] and Bs[i]

Side remark:
An MPS is expected to have non-zero entries everywhere compatible with the charges.
In general, we recommend to use `sort_legcharge` (or `as_completely_blocked`)
to ensure complete blocking. (But the code will also work, if you don't do it.)
The drawback is that this might introduce permutations in the indices of single
→˓legs,
which you have to keep in mind when converting dense numpy arrays to and from npc.
→˓Arrays.

print("2) create an MPO representing the AFM Heisenberg Hamiltonian")

p*
|
^
|
wL ->--W-->- wR
|
^
|
p

create physical spin-1/2 operators Sz, S+, S-
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]], [p_leg, p_leg.conj()], labels=['p
→˓', 'p*']) (continues on next page)

10.2. Charge conservation with np_conserved 79

TeNPy, Release 0.8.1

(continued from previous page)

Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]], [p_leg, p_leg.conj()], labels=['p',
→˓'p*'])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]], [p_leg, p_leg.conj()], labels=['p',
→˓'p*'])
Id = npc.eye_like(Sz, labels=Sz.get_leg_labels()) # identity

mpo_leg = npc.LegCharge.from_qflat(chinfo, [[0], [2], [-2], [0], [0]])

W_grid = [[Id, Sp, Sm, Sz, None],
[None, None, None, None, 0.5 * Jxx * Sm],
[None, None, None, None, 0.5 * Jxx * Sp],
[None, None, None, None, Jz * Sz],
[None, None, None, None, Id]] # yapf:disable

W = npc.grid_outer(W_grid, [mpo_leg, mpo_leg.conj()], grid_labels=['wL', 'wR'])
wL/wR = virtual left/right of the MPO
Ws = [W] * L

print("3) define 'environments' left and right")

.---->- vR vL ->----.
| |
envL->- wR wL ->-envR
| |
.---->- vR* vL*->----.

envL = npc.zeros([W.get_leg('wL').conj(), Bs[0].get_leg('vL').conj(), Bs[0].get_leg(
→˓'vL')],

labels=['wR', 'vR', 'vR*'])
envL[0, :, :] = npc.diag(1., envL.legs[1])
envR = npc.zeros([W.get_leg('wR').conj(), Bs[-1].get_leg('vR').conj(), Bs[-1].get_leg(
→˓'vR')],

labels=['wL', 'vL', 'vL*'])
envR[-1, :, :] = npc.diag(1., envR.legs[1])

print("4) contract MPS and MPO to calculate the energy <psi|H|psi>")
contr = envL
for i in range(L):

contr labels: wR, vR, vR*
contr = npc.tensordot(contr, Bs[i], axes=('vR', 'vL'))
wR, vR*, vR, p
contr = npc.tensordot(contr, Ws[i], axes=(['p', 'wR'], ['p*', 'wL']))
vR*, vR, wR, p
contr = npc.tensordot(contr, Bs[i].conj(), axes=(['p', 'vR*'], ['p*', 'vL*']))
vR, wR, vR*
note that the order of the legs changed, but that's no problem with labels:
the arrays are automatically transposed as necessary

E = npc.inner(contr, envR, axes=(['vR', 'wR', 'vR*'], ['vL', 'wL', 'vL*']))
print("E =", E)

print("5) calculate two-site hamiltonian ``H2`` from the MPO")
label left, right physical legs with p, q
W0 = W.replace_labels(['p', 'p*'], ['p0', 'p0*'])
W1 = W.replace_labels(['p', 'p*'], ['p1', 'p1*'])
H2 = npc.tensordot(W0, W1, axes=('wR', 'wL')).itranspose(['wL', 'wR', 'p0', 'p1', 'p0*
→˓', 'p1*'])
H2 = H2[0, -1] # (If H has single-site terms, it's not that simple anymore)

(continues on next page)

80 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

print("H2 labels:", H2.get_leg_labels())

print("6) calculate exp(H2) by diagonalization of H2")
diagonalization requires to view H2 as a matrix
H2 = H2.combine_legs([('p0', 'p1'), ('p0*', 'p1*')], qconj=[+1, -1])
print("labels after combine_legs:", H2.get_leg_labels())
E2, U2 = npc.eigh(H2)
print("Eigenvalues of H2:", E2)
U_expE2 = U2.scale_axis(np.exp(-1.j * dt * E2), axis=1) # scale_axis ~= apply an
→˓diagonal matrix
exp_H2 = npc.tensordot(U_expE2, U2.conj(), axes=(1, 1))
exp_H2.iset_leg_labels(H2.get_leg_labels())
exp_H2 = exp_H2.split_legs() # by default split all legs which are `LegPipe`
(this restores the originial labels ['p0', 'p1', 'p0*', 'p1*'] of `H2` in `exp_H2`)

print("7) apply exp(H2) to even/odd bonds of the MPS and truncate with svd")
(this implements one time step of first order TEBD)
for even_odd in [0, 1]:

for i in range(even_odd, L - 1, 2):
B_L = Bs[i].scale_axis(Ss[i], 'vL').ireplace_label('p', 'p0')
B_R = Bs[i + 1].replace_label('p', 'p1')
theta = npc.tensordot(B_L, B_R, axes=('vR', 'vL'))
theta = npc.tensordot(exp_H2, theta, axes=(['p0*', 'p1*'], ['p0', 'p1']))
view as matrix for SVD
theta = theta.combine_legs([('vL', 'p0'), ('p1', 'vR')], new_axes=[0, 1],

→˓qconj=[+1, -1])
now theta has labels '(vL.p0)', '(p1.vR)'
U, S, V = npc.svd(theta, inner_labels=['vR', 'vL'])
truncate
keep = S > cutoff
S = S[keep]
invsq = np.linalg.norm(S)
Ss[i + 1] = S / invsq
U = U.iscale_axis(S / invsq, 'vR')
Bs[i] = U.split_legs('(vL.p0)').iscale_axis(Ss[i]**(-1), 'vL').ireplace_label(

→˓'p0', 'p')
Bs[i + 1] = V.split_legs('(p1.vR)').ireplace_label('p1', 'p')

print("finished")

10.3 Models

10.3.1 What is a model?

Abstractly, a model stands for some physical (quantum) system to be described. For tensor networks algorithms, the
model is usually specified as a Hamiltonian written in terms of second quantization. For example, let us consider a
spin-1/2 Heisenberg model described by the Hamiltonian

𝐻 = 𝐽
∑︁
𝑖

𝑆𝑥
𝑖 𝑆

𝑥
𝑖+1 + 𝑆𝑦

𝑖 𝑆
𝑦
𝑖+1 + 𝑆𝑧

𝑖 𝑆
𝑧
𝑖+1

Note that a few things are defined more or less implicitly.

• The local Hilbert space: it consists of Spin-1/2 degrees of freedom with the usual spin-1/2 operators 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 .

• The geometric (lattice) strucuture: above, we spoke of a 1D “chain”.

10.3. Models 81

TeNPy, Release 0.8.1

• The boundary conditions: do we have open or periodic boundary conditions? The “chain” suggests open bound-
aries, which are in most cases preferable for MPS-based methods.

• The range of i: How many sites do we consider (for a 2D system: in each direction)?

Obviously, these things need to be specified in TeNPy in one way or another, if we want to define a model.

Ultimately, our goal is to run some algorithm. However, different algorithm requires the model and Hamiltonian
to be specified in different forms. We have one class for each such required form. For example dmrg requires an
MPOModel, which contains the Hamiltonian written as an MPO. So a new model class suitable for DMRG should
have this general structure:

class MyNewModel(MPOModel):
def __init__(self, model_params):

lattice = somehow_generate_lattice(model_params)
H_MPO = somehow_generate_MPO(lattice, model_params)
initialize MPOModel
MPOModel.__init__(self, lattice, H_MPO)

On the other hand, if we want to evolve a state with tebd we need a NearestNeighborModel, in which the
Hamiltonian is written in terms of two-site bond-terms to allow a Suzuki-Trotter decomposition of the time-evolution
operator:

class MyNewModel2(NearestNeighborModel):
"""General strucutre for a model suitable for TEBD."""
def __init__(self, model_params):

lattice = somehow_generate_lattice(model_params)
H_bond = somehow_generate_H_bond(lattice, model_params)
initialize MPOModel
NearestNeighborModel.__init__(self, lattice, H_bond)

Of course, the difficult part in these examples is to generate the H_MPO and H_bond in the required form. If you want
to write it down by hand, you can of course do that. But it can be quite tedious to write every model multiple times,
just because we need different representations of the same Hamiltonian. Luckily, there is a way out in TeNPy: the
CouplingModel. Before we describe this class, let’s discuss the background of the Site and Site class.

10.3.2 The Hilbert space

The local Hilbert space is represented by a Site (read its doc-string!). In particular, the Site contains the local
LegCharge and hence the meaning of each basis state needs to be defined. Beside that, the site contains the local op-
erators - those give the real meaning to the local basis. Having the local operators in the site is very convenient, because
it makes them available by name for example when you want to calculate expectation values. The most common sites
(e.g. for spins, spin-less or spin-full fermions, or bosons) are predefined in the module tenpy.networks.site,
but if necessary you can easily extend them by adding further local operators or completely write your own subclasses
of Site.

The full Hilbert space is a tensor product of the local Hilbert space on each site.

Note: The LegCharge of all involved sites need to have a common ChargeInfo in order to allow the contraction
of tensors acting on the various sites. This can be ensured with the function set_common_charges().

An example where set_common_charges() is needed would be a coupling of different types of sites, e.g., when
a tight binding chain of fermions is coupled to some local spin degrees of freedom. Another use case of this function
would be a model with a $U(1)$ symmetry involving only half the sites, say

∑︀𝐿/2
𝑖=0 𝑛2𝑖.

82 Chapter 10. Introductions

TeNPy, Release 0.8.1

Note: If you don’t know about the charges and np_conserved yet, but want to get started with models right away, you
can set conserve=None in the existing sites or use leg = tenpy.linalg.np_conserved.LegCharge.
from_trivial(d) for an implementation of your custom site, where d is the dimension of the local Hilbert space.
Alternatively, you can find some introduction to the charges in the Charge conservation with np_conserved.

10.3.3 The geometry : lattice class

The geometry is usually given by some kind of lattice structure how the sites are arranged, e.g. implicitly with the
sum over nearest neighbours

∑︀
<𝑖,𝑗>. In TeNPy, this is specified by a Lattice class, which contains a unit cell of

a few Site which are shifted periodically by its basis vectors to form a regular lattice. Again, we have pre-defined
some basic lattices like a Chain, two chains coupled as a Ladder or 2D lattices like the Square, Honeycomb and
Kagome lattices; but you are also free to define your own generalizations.

MPS based algorithms like DMRG always work on purely 1D systems. Even if our model “lives” on a 2D lattice,
these algorithms require to map it onto a 1D chain (probably at the cost of longer-range interactions). This mapping is
also done by the lattice by defining the order (order) of the sites.

Note: Further details on the lattice geometry can be found in Details on the lattice geometry.

10.3.4 The CouplingModel: general structure

The CouplingModel provides a general, quite abstract way to specify a Hamiltonian of couplings on a given
lattice. Once initialized, its methods add_onsite() and add_coupling() allow to add onsite and coupling
terms repeated over the different unit cells of the lattice. In that way, it basically allows a straight-forward translation
of the Hamiltonian given as a math forumla 𝐻 =

∑︀
𝑖𝐴𝑖𝐵𝑖+𝑑𝑥 + ... with onsite operators A, B,. . . into a model class.

The general structure for a new model based on the CouplingModel is then:

class MyNewModel3(CouplingModel,MPOModel,NearestNeighborModel):
def __init__(self, ...):

... # follow the basic steps explained below

In the initialization method __init__(self, ...) of this class you can then follow these basic steps:

0. Read out the parameters.

1. Given the parameters, determine the charges to be conserved. Initialize the LegCharge of the local sites
accordingly.

2. Define (additional) local operators needed.

3. Initialize the needed Site.

Note: Using pre-defined sites like the SpinHalfSite is recommended and can replace steps 1-3.

4. Initialize the lattice (or if you got the lattice as a parameter, set the sites in the unit cell).

5. Initialize the CouplingModel with CouplingModel.__init__(self, lat).

6. Use add_onsite() and add_coupling() to add all terms of the Hamiltonian. Here, the pairs of the
lattice can come in handy, for example:

10.3. Models 83

TeNPy, Release 0.8.1

self.add_onsite(-np.asarray(h), 0, 'Sz')
for u1, u2, dx in self.lat.pairs['nearest_neighbors']:

self.add_coupling(0.5*J, u1, 'Sp', u2, 'Sm', dx, plus_hc=True)
self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

Note: The method add_coupling() adds the coupling only in one direction, i.e. not switching i and j in
a
∑︀

⟨𝑖,𝑗⟩. If you have terms like 𝑐†𝑖 𝑐𝑗 or 𝑆+
𝑖 𝑆

−
𝑗 in your Hamiltonian, you need to add it in both directions to

get a Hermitian Hamiltonian! The easiest way to do that is to use the plus_hc option of add_onsite() and
add_coupling(), as we did for the 𝐽/2(𝑆+

𝑖 𝑆
−
𝑗 +ℎ.𝑐.) terms of the Heisenberg model above. Alternatively,

you can add the hermitian conjugate terms explicitly, see the examples in add_coupling() for more details.

Note that the strength arguments of these functions can be (numpy) arrays for site-dependent couplings. If you
need to add or multipliy some parameters of the model for the strength of certain terms, it is recommended use
np.asarray beforehand – in that way lists will also work fine.

7. Finally, if you derived from the MPOModel, you can call calc_H_MPO() to build the MPO and use it for the
initialization as MPOModel.__init__(self, lat, self.calc_H_MPO()).

8. Similarly, if you derived from the NearestNeighborModel, you can call calc_H_bond() to initialze it
as NearestNeighborModel.__init__(self, lat, self.calc_H_bond()). Calling self.
calc_H_bond() will fail for models which are not nearest-neighbors (with respect to the MPS ordering), so
you should only subclass the NearestNeighborModel if the lattice is a simple Chain.

Note: The method add_coupling() works only for terms involving operators on 2 sites. If you have couplings
involving more than two sites, you can use the add_multi_coupling() instead. A prototypical example is the
exactly solvable ToricCode.

The code of the module tenpy.models.xxz_chain is included below as an illustrative example how to imple-
ment a Model. The implementation of the XXZChain directly follows the steps outline above. The XXZChain2
implements the very same model, but based on the CouplingMPOModel explained in the next section.

"""Prototypical example of a 1D quantum model: the spin-1/2 XXZ chain.

The XXZ chain is contained in the more general :class:`~tenpy.models.spins.SpinChain`;
→˓ the idea of
this module is more to serve as a pedagogical example for a model.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np

from .lattice import Site, Chain
from .model import CouplingModel, NearestNeighborModel, MPOModel, CouplingMPOModel
from ..linalg import np_conserved as npc
from ..tools.params import asConfig
from ..networks.site import SpinHalfSite # if you want to use the predefined site

__all__ = ['XXZChain', 'XXZChain2']

class XXZChain(CouplingModel, NearestNeighborModel, MPOModel):
r"""Spin-1/2 XXZ chain with Sz conservation.

(continues on next page)

84 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

The Hamiltonian reads:

.. math ::
H = \sum_i \mathtt{Jxx}/2 (S^{+}_i S^{-}_{i+1} + S^{-}_i S^{+}_{i+1})

+ \mathtt{Jz} S^z_i S^z_{i+1} \\
- \sum_i \mathtt{hz} S^z_i

All parameters are collected in a single dictionary `model_params`, which
is turned into a :class:`~tenpy.tools.params.Config` object.

Parameters

model_params : :class:`~tenpy.tools.params.Config`

Parameters for the model. See :cfg:config:`XXZChain` below.

Options

.. cfg:config :: XXZChain

:include: CouplingMPOModel

L : int
Length of the chain.

Jxx, Jz, hz : float | array
Coupling as defined for the Hamiltonian above.

bc_MPS : {'finite' | 'infinte'}
MPS boundary conditions. Coupling boundary conditions are chosen

→˓appropriately.

"""
def __init__(self, model_params):

0) read out/set default parameters
model_params = asConfig(model_params, "XXZChain")
L = model_params.get('L', 2)
Jxx = model_params.get('Jxx', 1.)
Jz = model_params.get('Jz', 1.)
hz = model_params.get('hz', 0.)
bc_MPS = model_params.get('bc_MPS', 'finite')
1-3):
USE_PREDEFINED_SITE = False
if not USE_PREDEFINED_SITE:

1) charges of the physical leg. The only time that we actually define
→˓charges!

leg = npc.LegCharge.from_qflat(npc.ChargeInfo([1], ['2*Sz']), [1, -1])
2) onsite operators
Sp = [[0., 1.], [0., 0.]]
Sm = [[0., 0.], [1., 0.]]
Sz = [[0.5, 0.], [0., -0.5]]
(Can't define Sx and Sy as onsite operators: they are incompatible with

→˓Sz charges.)
3) local physical site
site = Site(leg, ['up', 'down'], Sp=Sp, Sm=Sm, Sz=Sz)

else:
there is a site for spin-1/2 defined in TeNPy, so just we can just use

→˓it
replacing steps 1-3)
site = SpinHalfSite(conserve='Sz')

4) lattice
(continues on next page)

10.3. Models 85

TeNPy, Release 0.8.1

(continued from previous page)

bc = 'periodic' if bc_MPS == 'infinite' else 'open'
lat = Chain(L, site, bc=bc, bc_MPS=bc_MPS)
5) initialize CouplingModel
CouplingModel.__init__(self, lat)
6) add terms of the Hamiltonian
(u is always 0 as we have only one site in the unit cell)
self.add_onsite(-hz, 0, 'Sz')
self.add_coupling(Jxx * 0.5, 0, 'Sp', 0, 'Sm', 1, plus_hc=True)
the `plus_hc=True` adds the h.c. term
see also the examples tenpy.models.model.CouplingModel.add_coupling
self.add_coupling(Jz, 0, 'Sz', 0, 'Sz', 1)
7) initialize H_MPO
MPOModel.__init__(self, lat, self.calc_H_MPO())
8) initialize H_bond (the order of 7/8 doesn't matter)
NearestNeighborModel.__init__(self, lat, self.calc_H_bond())

class XXZChain2(CouplingMPOModel, NearestNeighborModel):
"""Another implementation of the Spin-1/2 XXZ chain with Sz conservation.

This implementation takes the same parameters as the :class:`XXZChain`, but is
→˓implemented

based on the :class:`~tenpy.models.model.CouplingMPOModel`.

Parameters

model_params : dict | :class:`~tenpy.tools.params.Config`

See :cfg:config:`XXZChain`
"""
default_lattice = "Chain"
force_default_lattice = True

def init_sites(self, model_params):
return SpinHalfSite(conserve='Sz') # use predefined Site

def init_terms(self, model_params):
read out parameters
Jxx = model_params.get('Jxx', 1.)
Jz = model_params.get('Jz', 1.)
hz = model_params.get('hz', 0.)
add terms
for u in range(len(self.lat.unit_cell)):

self.add_onsite(-hz, u, 'Sz')
for u1, u2, dx in self.lat.pairs['nearest_neighbors']:

self.add_coupling(Jxx * 0.5, u1, 'Sp', u2, 'Sm', dx, plus_hc=True)
self.add_coupling(Jz, u1, 'Sz', u2, 'Sz', dx)

86 Chapter 10. Introductions

TeNPy, Release 0.8.1

10.3.5 The easiest way: the CouplingMPOModel

Since many of the basic steps above are always the same, we don’t need to repeat them all the time. So we have yet
another class helping to structure the initialization of models: the CouplingMPOModel. The general structure of
this class is like this:

class CouplingMPOModel(CouplingModel,MPOModel):
default_lattice = "Chain"
"

def __init__(self, model_param):
... follows the basic steps 1-8 using the methods
lat = self.init_lattice(self, model_param) # for step 4
...
self.init_terms(self, model_param) # for step 6
...

def init_sites(self, model_param):
You should overwrite this in most cases to ensure
getting the site(s) and charge conservation you want
site = SpinSite(...) # or FermionSite, BosonSite, ...
return site # (or tuple of sites)

def init_lattice(self, model_param):
sites = self.init_sites(self, model_param) # for steps 1-3
and then read out the class attribute `default_lattice`,
initialize an arbitrary pre-defined lattice
using model_params['lattice']
and enure it's the default lattice if the class attribute
`force_default_lattice` is True.

def init_terms(self, model_param):
does nothing.
You should overwrite this

The XXZChain2 included above illustrates, how it can be used. You need to implement steps 1-3) by overwriting
the method init_sites() Step 4) is performed in the method init_lattice(), which initializes arbitrary 1D
or 2D lattices; by default a simple 1D chain. If your model only works for specific lattices, you can overwrite this
method in your own class. Step 6) should be done by overwriting the method init_terms(). Steps 5,7,8 and
calls to the init_. . . methods for the other steps are done automatically if you just call the CouplingMPOModel.
__init__(self, model_param).

The XXZChain and XXZChain2 work only with the Chain as lattice, since they are derived from the
NearestNeighborModel. This allows to use them for TEBD in 1D (yeah!), but we can’t get the MPO for DMRG
on (for example) a Square lattice cylinder - although it’s intuitively clear, what the Hamiltonian there should be: just
put the nearest-neighbor coupling on each bond of the 2D lattice.

It’s not possible to generalize a NearestNeighborModel to an arbitrary lattice where it’s no longer nearest Neig-
bors in the MPS sense, but we can go the other way around: first write the model on an arbitrary 2D lattice and then
restrict it to a 1D chain to make it a NearestNeighborModel.

Let me illustrate this with another standard example model: the transverse field Ising model, implemented in the
module tenpy.models.tf_ising included below. The TFIModel works for arbitrary 1D or 2D lattices. The
TFIChain is then taking the exact same model making a NearestNeighborModel, which only works for the
1D chain.

"""Prototypical example of a quantum model: the transverse field Ising model.

(continues on next page)

10.3. Models 87

TeNPy, Release 0.8.1

(continued from previous page)

Like the :class:`~tenpy.models.xxz_chain.XXZChain`, the transverse field ising chain
:class:`TFIChain` is contained in the more general :class:`~tenpy.models.spins.
→˓SpinChain`;
the idea is more to serve as a pedagogical example for a 'model'.

We choose the field along z to allow to conserve the parity, if desired.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np

from .model import CouplingMPOModel, NearestNeighborModel
from .lattice import Chain
from ..tools.params import asConfig
from ..networks.site import SpinHalfSite

__all__ = ['TFIModel', 'TFIChain']

class TFIModel(CouplingMPOModel):
r"""Transverse field Ising model on a general lattice.

The Hamiltonian reads:

.. math ::
H = - \sum_{\langle i,j\rangle, i < j} \mathtt{J} \sigma^x_i \sigma^x_{j}

- \sum_{i} \mathtt{g} \sigma^z_i

Here, :math:`\langle i,j \rangle, i< j` denotes nearest neighbor pairs, each pair
→˓appearing

exactly once.
All parameters are collected in a single dictionary `model_params`, which
is turned into a :class:`~tenpy.tools.params.Config` object.

Parameters

model_params : :class:`~tenpy.tools.params.Config`

Parameters for the model. See :cfg:config:`TFIModel` below.

Options

.. cfg:config :: TFIModel

:include: CouplingMPOModel

conserve : None | 'parity'
What should be conserved. See :class:`~tenpy.networks.Site.SpinHalfSite`.

J, g : float | array
Coupling as defined for the Hamiltonian above.

"""
def init_sites(self, model_params):

conserve = model_params.get('conserve', 'parity')
assert conserve != 'Sz'
if conserve == 'best':

conserve = 'parity'
self.logger.info("%s: set conserve to %s", self.name, conserve)

site = SpinHalfSite(conserve=conserve)
(continues on next page)

88 Chapter 10. Introductions

TeNPy, Release 0.8.1

(continued from previous page)

return site

def init_terms(self, model_params):
J = np.asarray(model_params.get('J', 1.))
g = np.asarray(model_params.get('g', 1.))
for u in range(len(self.lat.unit_cell)):

self.add_onsite(-g, u, 'Sigmaz')
for u1, u2, dx in self.lat.pairs['nearest_neighbors']:

self.add_coupling(-J, u1, 'Sigmax', u2, 'Sigmax', dx)
done

class TFIChain(TFIModel, NearestNeighborModel):
"""The :class:`TFIModel` on a Chain, suitable for TEBD.

See the :class:`TFIModel` for the documentation of parameters.
"""
default_lattice = Chain
force_default_lattice = True

10.3.6 Automation of Hermitian conjugation

As most physical Hamiltonians are Hermitian, these Hamiltonians are fully determined when only half of the mutually
conjugate terms is defined. For example, a simple Hamiltonian:

𝐻 =
∑︁

⟨𝑖,𝑗⟩,𝑖<𝑗

−J(𝑐†𝑖 𝑐𝑗 + 𝑐†𝑗𝑐𝑖)

is fully determined by the term 𝑐†𝑖 𝑐𝑗 if we demand that Hermitian conjugates are included automatically. In TeNPy,
whenever you add a coupling using add_onsite(), add_coupling(), or add_multi_coupling(), you
can use the optional argument plus_hc to automatically create and add the Hermitian conjugate of that coupling term
- as shown above.

Additionally, in an MPO, explicitly adding both a non-Hermitian term and its conjugate increases the bond dimension
of the MPO, which increases the memory requirements of the MPOEnvironment. Instead of adding the conjugate
terms explicitly, you can set a flag explicit_plus_hc in the MPOCouplingModel parameters, which will ensure two
things:

1. The model and the MPO will only store half the terms of each Hermitian conjugate pair added, but the flag
explicit_plus_hc indicates that they represent self + h.c.. In the example above, only the term 𝑐†𝑖 𝑐𝑗 would be
saved.

2. At runtime during DMRG, the Hermitian conjugate of the (now non-Hermitian) MPO will be computed and
applied along with the MPO, so that the effective Hamiltonian is still Hermitian.

Note: The model flag explicit_plus_hc should be used in conjunction with the flag plus_hc in add_coupling()
or add_multi_coupling(). If plus_hc is False while explicit_plus_hc is True the MPO bond dimension will not
be reduced, but you will still pay the additional computational cost of computing the Hermitian conjugate at runtime.

Thus, we end up with several use cases, depending on your preferences. Consider the FermionModel. If you
do not care about the MPO bond dimension, and want to add Hermitian conjugate terms manually, you would set
model_par[‘explicit_plus_hc’] = False and write:

10.3. Models 89

TeNPy, Release 0.8.1

self.add_coupling(-J, u1, 'Cd', u2, 'C', dx)
self.add_coupling(np.conj(-J), u2, 'Cd', u1, 'C', -dx)

If you wanted to save the trouble of the extra line of code (but still did not care about MPO bond dimension), you
would keep the model_par, but instead write:

self.add_coupling(-J, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Finally, if you wanted a reduction in MPO bond dimension, you would need to set model_par[‘explicit_plus_hc’] =
True, and write:

self.add_coupling(-J, u1, 'Cd', u2, 'C', dx, plus_hc=True)

10.3.7 Non-uniform terms and couplings

The CouplingModel-methods add_onsite(), add_coupling(), and add_multi_coupling() add a sum
over a “couplig” term shifted by lattice vectors. However, some models are not that “uniform” over the whole lattice.

First of all, you might have some local term that gets added only at one specific location in the lattice. You can add
such a term for example with add_local_term().

Second, if you have irregular lattices, take a look at the corresponding section in Details on the lattice geometry.

Finally, note that the argument strength for the add_onsite, add_coupling, and add_multi_coupling methods can not
only be a numpy scalar, but also a (numpy) array. In general, the sum performed by the methods runs over the given
term shifted by lattice vectors as far as possible to still fit the term into the lattice.

For the add_onsite() case this criterion is simple: there is exactly one site in each lattice unit cell with the u
specified as separate argument, so the correct shape for the strength array is simply given by Ls. For example, if you
want the defacto standard model studied for many-body localization, a Heisenberg chain with random , uniform onsite
field ℎ𝑧𝑖 ∈ [−𝑊,𝑊],

𝐻 = 𝐽

𝐿−1∑︁
𝑖=0

�⃗�𝑖 · �⃗�𝑖+1 −
𝐿∑︁

𝑖=0

ℎ𝑧𝑖𝑆
𝑧
𝑖

you can use the SpinChain with the following model parameters:

L = 30 # or whatever you like...
W = 5. # MBL transition at W_c ~= 3.5 J
model_params = {

'L': L,
'Jx': 1., 'Jy': 1., 'Jz': 1.,
'hz': 2.*W*(np.random.random(L) - 0.5), # random values in [-W, W], shape (L,)
'conserve': 'best',

}
M = tenpy.models.spins.SpinChain(model_params)

For add_coupling() and add_multi_coupling(), things become a little bit more complicated, and the
correct shape of the strength array depends not only on the Ls but also on the boundary conditions of the lattice.
Given a term, you can call coupling_shape() and multi_coupling_shape() to find out the correct shape
for strength. To avoid any ambiguity, the shape of the strength always has to fit, at least after a tiling performed by
to_array().

For example, consider the Su-Schrieffer-Heeger model, a spin-less FermionChainwith hopping strength alternating
between two values, say t1 and t2. You can generete this model for example like this:

90 Chapter 10. Introductions

TeNPy, Release 0.8.1

L = 30 # or whatever you like...
t1, t2 = 0.5, 1.5
t_array = np.array([(t1 if i % 2 == 0 else t2) for i in range(L-1)])
model_params = {

'L': L,
't': t_array,
'V': 0., 'mu': 0., # just free fermions, but you can generalize...
'conserve': 'best'

}
M = tenpy.models.fermions.FermionChain(model_params)

10.3.8 Some random remarks on models

• Needless to say that we have also various predefined models under tenpy.models.

• Of course, an MPO is all you need to initialize a MPOModel to be used for DMRG; you don’t have to use the
CouplingModel or CouplingMPOModel. For example an exponentially decaying long-range interactions
are not supported by the coupling model but straight-forward to include to an MPO, as demonstrated in the
example examples/mpo_exponentially_decaying.py.

• If you want to debug or double check that the you added the correct terms to a CouplingMPOModel, you can
print the terms with print(M.all_coupling_terms().to_TermList()). This will

• If the model of your interest contains Fermions, you should read the Fermions and the Jordan-Wigner transfor-
mation.

• We suggest writing the model to take a single parameter dictionary for the initialization, as the
CouplingMPOModel does. The CouplingMPOModel converts the dictionary to a dict-like Config with
some additional features before passing it on to the init_lattice, init_site, . . . methods. It is recommended to
read out providing default values with model_params.get("key", default_value), see get().

• When you write a model and want to include a test that it can be at least constructed, take a look at tests/
test_model.py.

10.4 Simulations

Simulations provide the highest-level interface in TeNPy. They represent one simulation from start (initializing the
various classes from given parameters) to end (saving the results to a file). The idea is that they contain the full package
of code that you run by a job on a computing cluster. (You don’t have to stick to that rule, of course.) In fact, any
simulation can be run from the command line, given only a parameter file as input, like this:

python -m tenpy -c SimulationClassName parameters.yml
or alternatively, if tenpy is installed correctly:
tenpy-run -c SimulationClassName parameters.yml

Of course, you should replace SimulationClassName with the class name of the simulation class you want
to use, for example GroundStateSearch or RealTimeEvolution. For more details, see tenpy.
run_commandline().

In some cases, this might not be enough, and you want to do some pre- or post-processing, or just do something a litte
bit differently during the simulation. In that case, you can also define your own simulation class (as subclass of one
the existing ones).

10.4. Simulations 91

TeNPy, Release 0.8.1

10.5 Details on the lattice geometry

The Lattice class defines the geometry of the system. In the basic form, it represents a unit cell of a few sites
repeated in one or multiple directions. Moreover, it maps this higher-dimensional geometry to a one-dimensional
chain for MPS-based algorithms.

10.5.1 Visualization

A plot of the lattice can greatly help to understand which sites are connected by what couplings. The methods plot_*
of the Lattice can do a good job for a quick illustration. Let’s look at the Honeycomb lattice as an example.

import matplotlib.pyplot as plt
from tenpy.models import lattice

plt.figure(figsize=(5, 6))
ax = plt.gca()
lat = lattice.Honeycomb(Lx=4, Ly=4, sites=None, bc='periodic')
lat.plot_coupling(ax)
lat.plot_order(ax, linestyle=':')
lat.plot_sites(ax)
lat.plot_basis(ax, origin=-0.5*(lat.basis[0] + lat.basis[1]))
ax.set_aspect('equal')
ax.set_xlim(-1)
ax.set_ylim(-1)
plt.show()

In this case, the unit cell (shaded green) consists of two sites, which for the purpose of plotting we just set to
sites=None; in general you should specify instances of Site for that. The unit cell gets repeated in the direc-
tions given by the lattice basis (green arrows at the unit cell boundary). Hence, we can label each site by a lattice
index (x, y, u) in this case, where x in range(Lx), y in range(Ly) specify the translation of the unit
cell and u in range(len(unit_cell)), here u in [0, 1], specifies the index within the unit cell.

10.5.2 How an MPS winds through the lattice: the order

For MPS-based algorithms, we need to map a 2D lattice like the one above to a 1D chain. The red, dashed line in the
plot indicates how an MPS winds through the 2D lattice. The MPS index i is a simple enumeration of the sites along
this line, shown as numbers next to the sites in the plot. The methods mps2lat_idx() and lat2mps_idx() map
indices of the MPS to and from indices of the lattice.

The MPS class itself is (mostly) agnostic of the underlying geometry. For example, expectation_value() will
return a 1D array of the expectation value on each site indexed by the MPS index i. If you have a two-dimensional
lattice, you can use mps2lat_values() to map this result to a 2D array index by the lattice indices.

A suitable order is critical for the efficiency of MPS-based algorithms. On one hand, different orderings can lead to
different MPO bond-dimensions, with direct impact on the complexity scaling. On the other hand, it influences how
much entanglement needs to go through each bonds of the underlying MPS, e.g., the ground strate to be found in
DMRG, and therefore influences the required MPS bond dimensions. For the latter reason, the “optimal” ordering can
not be known a priori and might even depend on your coupling parameters (and the phase you are in). In the end, you
can just try different orderings and see which one works best.

The simplets way to change the order is to use a non-default value for the initialization parameter order of the
Lattice class. This gets passed on to ordering(), which you an override in a custom lattice class to define
new possible orderings. Alternatively, you can go the most general way and simply set the attribute order to be a 2D
numpy array with lattice indices as rows, in the order you want.

92 Chapter 10. Introductions

TeNPy, Release 0.8.1

1 0 1 2 3
1

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10.5. Details on the lattice geometry 93

TeNPy, Release 0.8.1

import matplotlib.pyplot as plt
from tenpy.models import lattice

Lx, Ly = 3, 3
fig, axes = plt.subplots(2, 2, figsize=(7, 8))

lat1 = lattice.Honeycomb(Lx, Ly, sites=None, bc='periodic') # default order
lat2 = lattice.Honeycomb(Lx, Ly, sites=None, bc='periodic',

order="Cstyle") # first method to change order
alternative: directly set "Cstyle" order
lat3 = lattice.Honeycomb(Lx, Ly, sites=None, bc='periodic')
lat3.order = lat2.ordering("Cstyle") # now equivalent to lat2

general: can apply arbitrary permutation to the order
lat4 = lattice.Honeycomb(Lx, Ly, sites=None, bc='periodic',

order="Cstyle")
old_order = lat4.order
permutation = []
for i in range(0, len(old_order), 2):

permutation.append(i+1)
permutation.append(i)

lat4.order = old_order[permutation, :]

for lat, label, ax in zip([lat1, lat2, lat3, lat4],
["order='default'",
"order='Cstyle'",
"order='Cstyle'",
"custom permutation"],

axes.flatten()):
lat.plot_coupling(ax)
lat.plot_sites(ax)
lat.plot_order(ax, linestyle=':', linewidth=2.)
ax.set_aspect('equal')
ax.set_title('order = ' + repr(label))

plt.show()

10.5.3 Boundary conditions

The Lattice defines the boundary conditions bc in each direction. It can be one of the usual 'open' or
'periodic' in each direcetion.

On top of that, there is the bc_MPS boundary condition of the MPS, one of 'finite', 'segment',
'infinite'. For an 'infinite' MPS, the whole lattice is repeated in the direction of the first basis vector
of the lattice. For bc_MPS='infinite', the first direction should always be 'periodic', but you can also
define a lattice with bc_MPS='finite', bc=['periodic', 'perioid'] for a finite system on the torus.
This is discouraged, though, because the ground state MPS will require the squared bond dimension for the same
precision in this case!

For two (or higher) dimensional lattices, e.g for DMRG on an infinite cylinder, you can also specify an integer shift
instead of just saying 'periodic': Rolling the 2D lattice up into a cylinder, you have a degree of freedom which
sites to connect. This is illustrated in the figure below for a Square lattice with bc=['periodic', shift] for
shift in [-1, 0, 1] (different columns). In the first row, the orange markers indicate a pair of identified sites
(see plot_bc_shift()). The dashed orange line indicates the direction of the cylinder axis. The line where the
cylinder is “cut open” therefore winds around the the cylinder for a non-zero shift. (A similar thing happens even for
shift=0 for more complicated lattices with non-orthogonal basis.) In the second row, we directly draw lines between

94 Chapter 10. Introductions

TeNPy, Release 0.8.1

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

order = "order='default'"

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

order = "order='Cstyle'"

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

order = "order='Cstyle'"

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

order = 'custom permutation'

10.5. Details on the lattice geometry 95

TeNPy, Release 0.8.1

all sites connected by nearest-neighbor couplings, as they appear in the MPO.

0

2

4
shift = 1 shift = 0 shift = -1

0 2 4

0

2

4

0 2 4 0 2 4

10.5.4 Irregular Lattices

The IrregularLattice allows to add or remove sites from/to an existing regular lattice. The doc-string of
IrregularLattice contains several examples, let us consider another one here, where we use the IrregularLattice
to “fix” the boundary of the Honeycomb lattice: when we use "open" boundary conditions for a finite system, there
are two sites (on the lower left, and upper right), wich are not included into any hexagonal. The following example
shows how to remove them from the system:

import matplotlib.pyplot as plt
from tenpy.models import lattice

Lx, Ly = 3, 3
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(6, 4))

reg_lat = lattice.Honeycomb(Lx=Lx, Ly=Ly, sites=None, bc='open')
irr_lat = lattice.IrregularLattice(reg_lat, remove=[[0, 0, 0], [-1, -1, 1]])
for lat, label, ax in zip([reg_lat, irr_lat],

["regular", "irregular"],
axes.flatten()):

lat.plot_coupling(ax)
lat.plot_order(ax, linestyle=':')
lat.plot_sites(ax)
ax.set_aspect('equal')
ax.set_title(label)

plt.show()

96 Chapter 10. Introductions

TeNPy, Release 0.8.1

0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
regular

0 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

irregular

10.6 Logging and terminal output

By default, calling (almost) any function in TeNPy will not print output, appart from error messages, tracebacks, and
warnings. Instead, we use Python’s logging module to allow fine-grained redirecting of status messages etc.

Of course, when you get an error message, you should be concerned to find out what it is about and how to fix it. (If
you believe it is a bug, report it.) Warnings can be reported either using warnings.warn(...) or with the logging
mechanism logger.warn(...). The former is used for warnings about things in your setup that you should fix.
The latter give you notifications about bad things that can happen in calculations, e.g. bad conditioning of a matrix,
but there is not much you can do about it. Those warnings indicate that you should take your results with a grain of
salt and carefully double-check them.

10.6.1 Configuring logging

If you also want to see status messages (e.g. during a DMRG run whenever a checkpoint is reached), you can use set
the logging level to logging.INFO with the following, basic setup:

import logging
logging.basicConfig(level=logging.INFO)

We use this snippet in our examples to activate the printing of info messages to the standard output stream. For really
detailed output, you can even set the level to logging.DEBUG. logging.basicConfig() also takes a filename
argument, which allows to redirect the output to a file instead of stdout. Note that you should call basicConfig only
once; subsequent calls have no effect.

More detailed configurations can be made through logging.config. For example, the following both prints log
messages to stdout and saves them to`ouput_filename.log`:

10.6. Logging and terminal output 97

https://docs.python.org/3/library/logging.html#module-logging
https://github.com/tenpy/tenpy/issues/new/choose
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.config.html#module-logging.config

TeNPy, Release 0.8.1

import logging.config
conf = {

'version': 1
'disable_existing_loggers': False,
'formatters': {'custom': {'format': '%(levelname)-8s: %(message)s'}},
'handlers': {'to_file': {'class': 'logging.FileHandler',

'filename': 'output_filename.log',
'formatter': 'custom',
'level': 'INFO',
'mode': 'a'},

'to_stdout': {'class': 'logging.StreamHandler',
'formatter': 'custom',
'level': 'INFO',
'stream': 'ext://sys.stdout'}},

'root': {'handlers': ['to_stdout', 'to_file'], 'level': 'DEBUG'},
}
logging.config.dictConfig(conf)

Note: Whether you use logging.config.fileConfig() or the logging.config.dictConfig(),
make sure that you also set disable_existing_loggers=False. Otherwise, it will not work as expected
in the case where you import tenpy before setting up the logging.

To also capture warnings, you might also want to call logging.captureWarnings().

In fact, the above is the default configuration used by tenpy.tools.misc.setup_logging(). If you use a
Simulation class, it will automatically call setup_logging() for you, saving the log to the same filename as
the Simulation.output_filename but with a .log ending. Moreover, you can easily adjust the log levels
with simple parameters, for example with the following configuration (using [yaml] notation):

logging_params:
to_stdout: # nothing in yaml -> None in python => no logging to stdout
to_file: INFO
log_levels:

tenpy.tools.params : WARNING # suppres INFO/DEBUG output for any logging of
→˓parameters

Of course, you can also explicilty call the setup_logging() yourself, if you don’t use the Simulation classes:

tenpy.tools.misc.setup_logging({'to_stdout': None, 'to_file': 'INFO', 'filename': 'my_
→˓log.txt',

'log_levels': {'tenpy.tools.params': 'WARNING'}})

10.6.2 How to write your own logging (and warning) code

Of course, you can still use simple print(...) statements in your code, and they will just appear on your screen.
In fact, this is one of the benefits of logging: you can make sure that you only get the print statements you have put
yourself, and at the same time redirect the logging messages of tenpy to a file, if you want.

However, these print(...) statements are not re-directed to the log-files. Therefore, if you write your own sub-
classes like Models, I would recommended that you also use the loggers instead of simple print statements. You can
read the official logging tutorial for details, but it’s actually straight-forward, and just requires at most two steps.

1. If necessary, import the necessary modules and create a logger at the top of your module:

98 Chapter 10. Introductions

https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
https://docs.python.org/3/library/logging.html#logging.captureWarnings
https://docs.python.org/3/howto/logging.html

TeNPy, Release 0.8.1

import warnings
import logging
logger = logging.getLogger(__name__)

Note: Most TeNPy classes that you might want to subclass, like models, algorithm engines or simulations,
provide a Logger as self.logger class attribute. In that case you can even skip this step and just use
self.logger instead of logger in the snippets below.

2. Inside your funtions/methods/. . . , make calls like this:

if is_likely_bad(options['parameter']):
this can be fixed by the user!
warnings.warn("This is a bad parameter, you shouldn't do this!")

if "old_parameter" in options:
warnings.warn("Use `new_parameter` instead of `old_parameter`", FutureWarning,

→˓ 2)

logger.info("starting some lengthy calculation")
n_steps = do_calculation()
if something_bad_happened():

the user can't do anything about it
logger.warn("Something bad happend")

logger.info("calculation finished after %d steps", n_steps)

You can use printf-formatting for the arguments of logger.debug(...), logger.info(...),
logger.warn(...), as illustrated in the last line.

In summary, instead of just print("do X") statements, use self.logger.info("do X") inside TeNPy
classes, or just logger.info("do X") for the module-wide logger, which you can initialize right at the top
of your file with the import statements. If you have non-string arguments, add a formatter string, e.g. replace
print(max(psi.chi)) with logger.info("%d", max(psi.chi)), or even better, logger.info(
"max(chi)=%d", max(psi.chi)). For genereic types, use "%s" or "%r", which converts the other argu-
ments to strings with str(...) or repr(...), respectively.

10.7 Parameters and options

(We use parameter and option synonymously.)

Standard simulations in TeNPy can be defined by just set of options collected in a dictionary (possibly containing
other parameter dictionaries). It can be convenient to represent these options in a [yaml] file, say parameters.
yml, which might look like this:

output_filename : params_output.h5
overwrite_output : True
model_class : SpinChain
model_params :

L : 14
bc_MPS : finite

initial_state_params:
method : lat_product_state
product_state : [[up], [down]]

(continues on next page)

10.7. Parameters and options 99

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting

TeNPy, Release 0.8.1

(continued from previous page)

algorithm_class: TwoSiteDMRG
algorithm_params:

trunc_params:
chi_max: 120
svd_min: 1e.-8

max_sweeps: 10
mixer : True

Note that the default values and even the allowed/used option names often depend on other parameters. For example,
the model_class parameter above given to a Simulation selects a model class, and diffent model classes might
have completely different parameters. This gives you freedom to define your own parameters when you implement a
model, but it also makes it a little bit harder to keep track of allowed values.

In the TeNPy documentation, we use the Options sections of doc-strings to define parameters that are read out.
Each documented parameter is attributed to one set of parameters, called “config”, and managed in a Config
class at runtime. The above example represents the config for a Simulation, with the model_params represent-
ing the config given as options to the model for initialization. Sometimes, there is also a structure of one con-
fig including the parameters from another one: For example, the generic parameters for time evolution algorithms,
TimeEvolutionAlgorithm are included into the TEBDEngine config, similarly to the sub-classing used.

During runtime, the Config class logs the first use of any parameter (with DEBUG log-level, if the default is used,
and with INFO log-level, if it is non-default). Moreover, the default is saved into the parameter dictionary. Hence,
it will contain the full set of all used parameters, default and non-default, at the end of a simulation, e.g., in the
sim_params of the results returned by tenpy.simulations.Simulation.run().

You can find a list of all the different configs in the cfg-config-index, and a list of all parameters in cfg-option-index.

If you add extra options to your configuration that TeNPy doesn’t read out by the end of the simulation, it will issue
a warning. Getting such a warnings is an indicator for a typo in your configuration, or an option being in the wrong
config dictionary.

10.8 Saving to disk: input/output

10.8.1 Using pickle

A simple and pythonic way to store data of TeNPy arrays is to use pickle from the Python standard library. Pickle
allows to store (almost) arbitrary python objects, and the Array is no exception (and neither are other TeNPy classes).

Say that you have run DMRG to get a ground state psi as an MPS. With pickle, you can save it to disk as follows:

import pickle
with open('my_psi_file.pkl', 'wb') as f:

pickle.dump(psi, f)

Here, the with ... : structure ensures that the file gets closed after the pickle dump, and the 'wb' indicates the
file opening mode “write binary”. Reading the data from disk is as easy as ('rb' for reading binary):

with open('my_psi_file.pkl', 'rb') as f:
psi = pickle.load(f)

Note: It is a good (scientific) practice to include meta-data to the file, like the parameters you used to generate that
state. Instead of just the psi, you can simply store a dictionary containing psi and other data, e.g., data = {'psi':

100 Chapter 10. Introductions

https://docs.python.org/3/library/pickle.html#module-pickle

TeNPy, Release 0.8.1

psi, 'dmrg_params': dmrg_params, 'model_params': model_params}. This can save you a lot
of pain, when you come back looking at the files a few month later and forgot what you’ve done to generate them!

In some cases, compression can significantly reduce the space needed to save the data. This can for example be
done with gzip (as well in the Python standard library). However, be warned that it might cause longer loading and
saving times, i.e. it comes at the penalty of more CPU usage for the input/output. In Python, this requires only small
adjustments:

import pickle
import gzip

to save:
with gzip.open('my_data_file.pkl', 'wb') as f:

pickle.dump(data, f)
and to load:
with gzip.open('my_data_file.pkl', 'rb') as f:

data = pickle.load(data, f)

10.8.2 Using HDF5 with h5py

While pickle is great for simple input/output of python objects, it also has disadvantages. The probably most
dramatic one is the limited portability: saving data on one PC and loading it on another one might fail! Even exporting
data from Python 2 to load them in Python 3 on the same machine can give quite some troubles. Moreover, pickle
requires to load the whole file at once, which might be unnecessary if you only need part of the data, or even lead to
memory problems if you have more data on disk than fits into RAM.

Hence, we support saving to HDF5 files as an alternative. The h5py package provides a dictionary-like interface for
the file/group objects with numpy-like data sets, and is quite easy to use. If you don’t know about HDF5, read the
quickstart of the h5py documentation (and this guide).

The implementation can be found in the tenpy.tools.hdf5_io module with the Hdf5Saver and
Hdf5Loader classes and the wrapper functions save_to_hdf5(), load_from_hdf5().

The usage is very similar to pickle:

import h5py
from tenpy.tools import hdf5_io

data = {"psi": psi, # e.g. an MPS
"model": my_model,
"parameters": {"L": 6, "g": 1.3}}

with h5py.File("file.h5", 'w') as f:
hdf5_io.save_to_hdf5(f, data)

...
with h5py.File("file.h5", 'r') as f:

data = hdf5_io.load_from_hdf5(f)
or for partial reading:
pars = hdf5_io.load_from_hdf5(f, "/parameters")

Warning: Like loading a pickle file, loading data from a manipulated HDF5 file with the functions described has
the potential to cause arbitrary code execution. Only load data from trusted sources!

10.8. Saving to disk: input/output 101

https://docs.python.org/3/library/gzip.html#module-gzip
https://docs.python.org/3/library/pickle.html#module-pickle
https://portal.hdfgroup.org/display/HDF5/HDF5
https://docs.h5py.org
https://docs.h5py.org/en/stable/quick.html#quick
https://docs.h5py.org

TeNPy, Release 0.8.1

Note: The hickle package imitates the pickle functionality while saving the data to HDF5 files. However, since it
aims to be close to pickle, it results in a more complicated data structure than we want here.

Note: To use the export/import features to HDF5, you need to install the h5py python package (and hence some
version of the HDF5 library).

Data format specification for saving to HDF5

This section motivates and defines the format how we save data of TeNPy-defined classes. The goal is to have the
save_to_hdf5() function for saving sufficiently simple enough python objects (supported by the format) to disk
in an HDF5 file, such that they can be reconstructed with the load_from_hdf5() function, as outlined in the
example code above.

Guidelines of the format:

0. Store enough data such that load_from_hdf5() can reconstruct a copy of the object (provided that the save
did not fail with an error).

1. Objects of a type supported by the HDF5 datasets (with the h5py interface) should be directly stored as h5py
Dataset. Such objects are for example numpy arrays (of non-object dtype), scalars and strings.

2. Allow to save (nested) python lists, tuples and dictionaries with values (and keys) which can be saved.

3. Allow user-defined classes to implement a well-defined interface which allows to save instances of that class,
hence extending what data can be saved. An instance of a class supporting the interface gets saved as an HDF5
Group. Class attributes are stored as entries of the group, metadata like the type should be stored in HDF5
attributes, see attributes.

4. Simple and intuitive, human-readable structure for the HDF5 paths. For example, saving a simple dictionary
{'a': np.arange(10), 'b': 123.45} should result in an HDF5 file with just the two data sets /a
and /b.

5. Allow loading only a subset of the data by specifying the path of the HDF5 group to be loaded. For the above
example, specifying the path /b should result in loading the float 123.45, not the array.

6. Avoid unnecessary copies if the same python object is referenced by different names, e.g, for the data {'c':
large_obj, 'd': large_obj}with to references to the same large_obj, save it only once and use HDF5
hard-links such that /c and /d are the same HDF5 dataset/group. Also avoid the copies during the loading, i.e.,
the loaded dictionary should again have two references to a single object large_obj. This is also necessary to
allow saving and loading of objects with cyclic references.

The full format specification is given by the what the code in hdf5_io does. . . Since this is not trivial to understand,
let me summarize it here:

• Following 1), simple scalars, strings and numpy arrays are saved as Dataset. Other objects are saved as
a HDF5 Group, with the actual data being saved as group members (as sub-groups and sub-datasets) or as
attributes (for metadata or simple data).

• The type of the object is stored in the HDF5 attribute 'type', which is one of the global REPR_* variables in
tenpy.tools.hdf5_io. The type determines the format for saving/loading of builtin types (list, . . .)

• Userdefined classes which should be possible to export/import need to implement the methods save_hdf5
and from_hdf5 as specified in Hdf5Exportable. When saving such a class, the attribute 'type' is
automatically set to 'instance', and the class name and module are saved under the attributes 'module'
and 'class'. During loading, this information is used to automatically import the module, get the class and

102 Chapter 10. Introductions

https://github.com/telegraphic/hickle
https://docs.h5py.org
https://docs.h5py.org
https://docs.h5py.org/en/stable/high/attr.html#attributes

TeNPy, Release 0.8.1

call the classmethod from_hdf5 for reconstruction. This can only work if the class definition already exists,
i.e., you can only save class instances, not classes itself.

• For most (python) classes, simply subclassing Hdf5Exportable should work to make the class exportable.
The latter saves the contents of __dict__, with the extra attribute 'format' specifying whether the dictio-
nary is “simple” (see below.).

• The None object is saved as a group with the attribute 'type' being 'None' and no subgroups.

• For iterables (list, tuple and set), we simple enumerate the entries and save entries as group members under the
names '0', '1', '2', ..., and a maximum 'len' attribute.

• The format for dictionaries depends on whether all keys are “simple”, which we define as being strings which
are valid path names in HDF5, see valid_hdf5_path_component(). Following 4), the keys of a sim-
ple dictionary are directly used as names for group members, and the values being whatever object the group
member represents.

• Partial loading along 5) is possible by directly specifying the subgroup or the path to load_from_hdf5().

• Guideline 6) is ensured as much as possible. However, there is a bug/exception: tuples with cyclic references are
not re-constructed correctly; the inner objects will be lists instead of tuples (but with the same object entries).

Finally, we have to mention that many TeNPy classes are Hdf5Exportable. In particular, the Array supports
this. To see what the exact format for those classes is, look at the save_hdf5 and from_hdf5 methods of those classes.

Note: There can be multiple possible output formats for the same object. The dictionary – with the format for simple
keys or general keys – is such an example, but userdefined classes can use the same technique in their from_hdf5
method. The user might also explicitly choose a “lossy” output format (e.g. “flat” for np_conserved Arrays and
LegCharges).

Tip: The above format specification is quite general and not bound to TeNPy. Feel free to use it in your own projects
;-) To separate the development, versions and issues of the format clearly from TeNPy, we maintain the code for it in
a separate git repository, https://github.com/tenpy/hdf5_io

10.9 Fermions and the Jordan-Wigner transformation

The Jordan-Wigner tranformation maps fermionic creation- and annihilation operators to (bosonic) spin-operators.

10.9.1 Spinless fermions in 1D

Let’s start by explicitly writing down the transformation. With the Pauli matrices 𝜎𝑥,𝑦,𝑧
𝑗 and 𝜎±

𝑗 = (𝜎𝑥
𝑗 ± i𝜎𝑦

𝑗)/2 on
each site, we can map

𝑛𝑗 ↔ (𝜎𝑧
𝑗 + 1)/2

𝑐𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛𝑙𝜎−
𝑗

𝑐†𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛𝑙𝜎+
𝑗

The 𝑛𝑙 in the second and third row are defined in terms of Pauli matrices according to the first row. We do not interpret
the Pauli matrices as spin-1/2; they have nothing to do with the spin in the spin-full case. If you really want to interpret
them physically, you might better think of them as hard-core bosons (𝑏𝑗 = 𝜎−

𝑗 , 𝑏
†
𝑗 = 𝜎+

𝑗), with a spin of the fermions
mapping to a spin of the hard-core bosons.

10.9. Fermions and the Jordan-Wigner transformation 103

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://github.com/tenpy/hdf5_io
https://en.wikipedia.org/wiki/Jordan-Wigner_transformation

TeNPy, Release 0.8.1

Note that this transformation maps the fermionic operators 𝑐𝑗 and 𝑐†𝑗 to global operators; although they carry an
index j indicating a site, they actually act on all sites l <= j! Thus, clearly the operators C and Cd defined in the
FermionSite do not directly correspond to 𝑐𝑗 and 𝑐†𝑗 . The part (−1)

∑︀
𝑙<𝑗 𝑛𝑙 is called Jordan-Wigner string and in

the FermionSite is given by the local operator 𝐽𝑊 := (−1)𝑛𝑙 acting all sites l < j. Since this important, let me
stress it again:

Warning: The fermionic operator 𝑐𝑗 (and similar 𝑐†𝑗) maps to a global operator consisting of the Jordan-Wigner
string built by the local operator JW on sites l < j and the local operator C (or Cd, respectively) on site j.

On the sites itself, the onsite operators C and Cd in the FermionSite fulfill the correct anti-commutation relation,
without the need to include JW strings. The JW string is necessary to ensure the anti-commutation for operators acting
on different sites.

Written in terms of onsite operators defined in the FermionSite, with the i-th entry entry in the list acting on site i,
the relations are thus:

["JW", ..., "JW", "C", "Id", ..., "Id"] # for the annihilation operator
["JW", ..., "JW", "Cd", "Id", ..., "Id"] # for the creation operator

Note that "JW" squares to the identity, "JW JW" == "Id", which is the reason that the Jordan-wigner string
completely cancels in 𝑛𝑗 = 𝑐†𝑗𝑐𝑗 . In the above notation, this can be written as:

["JW", ..., "JW", "Cd", "Id", ..., "Id"] * ["JW", ..., "JW", "C", "Id", ..., "Id"]
== ["JW JW", ..., "JW JW", "Cd C", "Id Id", ..., "Id Id"] # by definition of
→˓the tensorproduct
== ["Id", ..., "Id", "N", "Id", ..., "Id"] # by definition of
→˓the local operators
("X Y" stands for the local operators X and Y applied on the same site. We assume
→˓that the "Cd" and "C" on the first line act on the same site.)

For a pair of operators acting on different sites, JW strings have to be included for every site between the operators.
For example, taking i < j, 𝑐†𝑖 𝑐𝑗 ↔ 𝜎+

𝑖 (−1)
∑︀

𝑖<=𝑙<𝑗 𝑛𝑙𝜎−
𝑗 . More explicitly, for j = i+2 we get:

["JW", ..., "JW", "Cd", "Id", "Id", "Id", ..., "Id"] * ["JW", ..., "JW", "JW", "JW",
→˓"C", "Id", ..., "Id"]
== ["JW JW", ..., "JW JW", "Cd JW", "Id JW", "Id C", ..., "Id"]
== ["Id", ..., "Id", "Cd JW", "JW", "C", ..., "Id"]

In other words, the Jordan-Wigner string appears only in the range i <= l < j, i.e. between the two sites and on
the smaller/left one of them. (You can easily generalize this rule to cases with more than two 𝑐 or 𝑐†.)

This last line (as well as the last line of the previous example) can be rewritten by changing the order of the operators
Cd JW to "JW Cd" == - "Cd". (This is valid because either site i is occupied, yielding a minus sign from the
JW, or it is empty, yielding a 0 from the Cd.)

This is also the case for j < i, say j = i-2: 𝑐†𝑖 𝑐𝑗 ↔ (−1)
∑︀

𝑗<=𝑙<𝑖 𝑛𝑙𝜎+
𝑖 𝜎

−
𝑗 . As shown in the following, the JW

again appears on the left site, but this time acting after C:

["JW", ..., "JW", "JW", "JW", "Cd", "Id", ..., "Id"] * ["JW", ..., "JW", "C", "Id",
→˓"Id", "Id", ..., "Id"]
== ["JW JW", ..., "JW JW", "JW C", "JW", "Cd Id", ..., "Id"]
== ["Id", ..., "Id", "JW C", "JW", "Cd", ..., "Id"]

104 Chapter 10. Introductions

TeNPy, Release 0.8.1

10.9.2 Higher dimensions

For an MPO or MPS, you always have to define an ordering of all your sites. This ordering effectifely maps the higher-
dimensional lattice to a 1D chain, usually at the expence of long-range hopping/interactions. With this mapping, the
Jordan-Wigner transformation generalizes to higher dimensions in a straight-forward way.

10.9.3 Spinful fermions

As illustrated in the above picture, you can think of spin-1/2 fermions on a chain as spinless fermions living on
a ladder (and analogous mappings for higher dimensional lattices). Each rung (a blue box in the picture) forms a
SpinHalfFermionSite which is composed of two FermionSite (the circles in the picture) for spin-up and
spin-down. The mapping of the spin-1/2 fermions onto the ladder induces an ordering of the spins, as the final result
must again be a one-dimensional chain, now containing both spin species. The solid line indicates the convention for
the ordering, the dashed lines indicate spin-preserving hopping 𝑐†𝑠,𝑖𝑐𝑠,𝑖+1 + ℎ.𝑐. and visualize the ladder structure.
More generally, each species of fermions appearing in your model gets a separate label, and its Jordan-Wigner string
includes the signs (−1)𝑛𝑙 of all species of fermions to the ‘left’ of it (in the sense of the ordering indicated by the solid
line in the picture).

In the case of spin-1/2 fermions labeled by ↑ and ↓ on each site, the complete mapping is given (where j and l are
indices of the FermionSite):

𝑛↑,𝑗 ↔ (𝜎𝑧
↑,𝑗 + 1)/2

𝑛↓,𝑗 ↔ (𝜎𝑧
↓,𝑗 + 1)/2

𝑐↑,𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛↑,𝑙+𝑛↓,𝑙𝜎−
↑,𝑗

𝑐†↑,𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛↑,𝑙+𝑛↓,𝑙𝜎+
↑,𝑗

𝑐↓,𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛↑,𝑙+𝑛↓,𝑙(−1)𝑛↑,𝑗𝜎−
↓,𝑗

𝑐†↓,𝑗 ↔ (−1)
∑︀

𝑙<𝑗 𝑛↑,𝑙+𝑛↓,𝑙(−1)𝑛↑,𝑗𝜎+
↓,𝑗

In each of the above mappings the operators on the right hand sides commute; we can rewrite (−1)
∑︀

𝑙<𝑗 𝑛↑,𝑙+𝑛↓,𝑙 =∏︀
𝑙<𝑗(−1)𝑛↑,𝑙(−1)𝑛↓,𝑙 , which resembles the actual structure in the code more closely. The parts of the opera-

tor acting in the same box of the picture, i.e. which have the same index j or l, are the ‘onsite’ operators in the
SpinHalfFermionSite: for example JW on site j is given by (−1)𝑛↑,𝑗 (−1)𝑛↓,𝑗 , Cu is just the 𝜎−

↑,𝑗 , Cdu is 𝜎+
↑,𝑗 ,

Cd is (−1)𝑛↑,𝑗𝜎−
↓,𝑗 . and Cdd is (−1)𝑛↑,𝑗𝜎+

↓,𝑗 . Note the asymmetry regarding the spin in the definition of the onsite op-
erators: the spin-down operators include Jordan-Wigner signs for the spin-up fermions on the same site. This asymetry
stems from the ordering convention introduced by the solid line in the picture, according to which the spin-up site is
“left” of the spin-down site. With the above definition, the operators within the same SpinHalfFermionSite
fulfill the expected commutation relations, for example "Cu Cdd" == - "Cdd Cu", but again the JW on sites
left of the operator pair is crucial to get the correct commutation relations globally.

Warning: Again, the fermionic operators 𝑐↓,𝑗 , 𝑐
†
↓,𝑗 , 𝑐↓,𝑗 , 𝑐

†
↓,𝑗 correspond to global operators consisting of the

Jordan-Wigner string built by the local operator JW on sites l < j and the local operators 'Cu', 'Cdu',
'Cd', 'Cdd' on site j.

Written explicitly in terms of onsite operators defined in the FermionSite, with the j-th entry entry in the list acting
on site j, the relations are:

10.9. Fermions and the Jordan-Wigner transformation 105

TeNPy, Release 0.8.1

["JW", ..., "JW", "Cu", "Id", ..., "Id"] # for the annihilation operator spin-up
["JW", ..., "JW", "Cd", "Id", ..., "Id"] # for the annihilation operator spin-down
["JW", ..., "JW", "Cdu", "Id", ..., "Id"] # for the creation operator spin-up
["JW", ..., "JW", "Cdd", "Id", ..., "Id"] # for the creation operator spin-down

As you can see, the asymmetry regaring the spins in the definition of the local onsite operators "Cu", "Cd", "Cdu
", "Cdd" lead to a symmetric definition in the global sense. If you look at the definitions very closely, you can see
that in terms like ["Id", "Cd JW", "JW", "Cd"] the Jordan-Wigner sign (−1)𝑛↑,2 appears twice (namely
once in the definition of "Cd" and once in the "JW" on site 2) and could in principle be canceled, however in favor of a
simplified handling in the code we do not recommend you to cancel it. Similar, within a spinless FermionSite, one
can simplify "Cd JW" == "Cd" and "JW C" == "C", but these relations do not hold in the SpinHalfSite,
and for consistency we recommend to explicitly keep the "JW" operator string even in nearest-neighbor models where
it is not strictly necessary.

10.9.4 How to handle Jordan-Wigner strings in practice

There are only a few pitfalls where you have to keep the mapping in mind: When building a model, you map the
physical fermionic operators to the usual spin/bosonic operators. The algorithms don’t care about the mapping, they
just use the given Hamiltonian, be it given as MPO for DMRG or as nearest neighbor couplings for TEBD. Only
when you do a measurement (e.g. by calculating an expectation value or a correlation function), you have to reverse
this mapping. Be aware that in certain cases, e.g. when calculating the entanglement entropy on a certain bond, you
cannot reverse this mapping (in a straightforward way), and thus your results might depend on how you defined the
Jordan-Wigner string.

Whatever you do, you should first think about if (and how much of) the Jordan-Wigner string cancels. For
example for many of the onsite operators (like the particle number operator N or the spin operators in the
SpinHalfFermionSite) the Jordan-Wigner string cancels completely and you can just ignore it both in onsite-
terms and couplings. In case of two operators acting on different sites, you typically have a Jordan-Wigner string
inbetween (e.g. for the 𝑐†𝑖 𝑐𝑗 examples described above and below) or no Jordan-Wigner strings at all (e.g. for density-
density interactions 𝑛𝑖𝑛𝑗). In fact, the case that the Jordan Wigner string on the left of the first non-trivial operator
does not cancel is currently not supported for models and expectation values, as it usually doesn’t appear in practice.
For terms involving more operators, things tend to get more complicated, e.g. 𝑐†𝑖 𝑐

†
𝑗𝑐𝑘𝑐𝑙 with 𝑖 < 𝑗 < 𝑘 < 𝑙 requires a

Jordan-Wigner string on sites m with 𝑖 ≤ 𝑚 < 𝑗 or 𝑘 ≤ 𝑚 < 𝑙, but not for 𝑗 < 𝑚 < 𝑘.

Note: TeNPy keeps track of which onsite operators need a Jordan-Wigner string in the Site class, specifically in
need_JW_string and op_needs_JW(). Hence, when you define custom sites or add extra operators to the sites,
make sure that op_needs_JW() returns the expected results.

When building a model the Jordan-Wigner strings need to be taken into account. If you just specify the H_MPO
or H_bond, it is your responsibility to use the correct mapping. However, if you use the add_coupling()
method of the CouplingModel , (or the generalization add_multi_coupling() for more than 2 opera-
tors), TeNPy can use the information from the Site class to automatically add Jordan-Wigner strings as needed.
Indeed, with the default argument op_string=None, add_coupling will automatically check whether the opera-
tors need Jordan-Wigner strings and correspondlingly set op_string='JW', str_on_first=True, if neces-
sary. For add_multi_coupling, you cann’t even explicitly specify the correct Jordan-Wigner strings, but you must use
op_string=None, from which it will automatically determine where Jordan-Wigner strings are needed.

Obviously, you should be careful about the convention which of the operators is applied first (in a physical sense as an
operator acting on a state), as this corresponds to a sign of the prefactor. Read the doc-strings of add_coupling()
add_multi_coupling() for details.

As a concrete example, let us specify a hopping
∑︀

𝑖(𝑐
†
𝑖 𝑐𝑖+1 + ℎ.𝑐.) =

∑︀
𝑖(𝑐

†
𝑖 𝑐𝑖+1 + 𝑐†𝑖 𝑐𝑖−1) in a 1D chain of

FermionSite with add_coupling(). The recommended way is just:

106 Chapter 10. Introductions

TeNPy, Release 0.8.1

self.add_coupling(strength, 0, 'Cd', 0, 'C', 1, plus_hc=True)

If you want to specify both the Jordan-Wigner string and the h.c. term explicitly, you can use:

self.add_coupling(strength, 0, 'Cd', 0, 'C', 1, op_string='JW', str_on_first=True)
self.add_coupling(strength, 0, 'Cd', 0, 'C', -1, op_string='JW', str_on_first=True)

Slightly more complicated, to specify the hopping
∑︀

⟨𝑖,𝑗⟩,𝑠(𝑐
†
𝑠,𝑖𝑐𝑠,𝑗+ℎ.𝑐.) in the Fermi-Hubbard model on a 2D square

lattice, we could use:

for (dx, dy) in [(1, 0), (0, 1)]:
self.add_coupling(strength, 0, 'Cdu', 0, 'Cu', (dx, dy), plus_hc=True) # spin up
self.add_coupling(strength, 0, 'Cdd', 0, 'Cd', (dx, dy), plus_hc=True) # spin

→˓down

or without `plus_hc`
for (dx, dy) in [(1, 0), (-1, 0), (0, 1), (0, -1)]: # include -dx !

self.add_coupling(strength, 0, 'Cdu', 0, 'Cu', (dx, dy)) # spin up
self.add_coupling(strength, 0, 'Cdd', 0, 'Cd', (dx, dy)) # spin down

or specifying the 'JW' string explicitly
for (dx, dy) in [(1, 0), (-1, 0), (0, 1), (0, -1)]:

self.add_coupling(strength, 0, 'Cdu', 0, 'Cu', (dx, dy), 'JW', True) # spin up
self.add_coupling(strength, 0, 'Cdd', 0, 'Cd', (dx, dy), 'JW', True) # spin down

The most important functions for doing measurements are probably expectation_value() and
correlation_function(). Again, if all the Jordan-Wigner strings cancel, you don’t have to worry about them
at all, e.g. for many onsite operators or correlation functions involving only number operators. If you build multi-site
operators to be measured by expectation_value, take care to include the Jordan-Wigner string correctly.

Some MPS methods like correlation_function(), expectation_value_term() and
expectation_value_terms_sum() automatically add Jordan-Wignder strings (at least with default ar-
guments). Other more low-level functions like expectation_value_multi_sites() don’t do it. Hence, you
should always watch out during measurements, if the function used needs special treatment for Jordan-Wigner strings.

10.10 Protocol for using (i)DMRG

While this documentation contains extensive guidance on how to interact with the tenpy, it is often unclear how to
approach a physics question using these methods. This page is an attempt to provide such guidance, describing a
protocol on how to go from a model implementation to an answered question.

The basic workflow for an (i)DMRG project is as follows, with individual steps expanded on later where necessary.

1. Confirm the correctness of the model implementation.

2. Run some low-effort tests to see whether the question seems answerable.

3. If the tests are successful, run production-quality simulations. This will be entirely particular to the project
you’re working on.

4. Confirm that your results are converged.

10.10. Protocol for using (i)DMRG 107

TeNPy, Release 0.8.1

10.10.1 Confirming the model is correct

Although TeNPy makes model implementation much easier than constructing the MPO by hand, one should still
ensure that the MPO represents the intended model faithfully. There are several possible ways to do this. Firstly, for
sufficiently small system sizes, one can contract the entire MPO into a matrix, and inspect the matrix elements. In
TeNPy, this can be done using get_full_hamiltonian(). These should reproduce the analytical Hamiltonian
up to machine precision, or any other necessary cut-off (e.g., long-range interactions may be truncated at some finite
distance).

Secondly, if the model basis allows it, one can construct (product state) MPSs for known eigenstates of the model and
evaluate whether these reproduce the correct eigenvalues upon contraction with the MPO.

Finally, one can sometimes construct a basis of single- or even two-particle MPSs in some basis, and evaluate the MPO
on this basis to get a representation of the single- and two-particle Hamiltonian. If the model contains only single- and
two-body terms, this latter approach should reproduce all terms in the Hamiltonian.

10.10.2 Low-effort tests

As not every state can be accurately represented by an MPS, some results are outside the reach of (i)DMRG. To prevent
wasting considerable numerical resources on a fruitless project, it is recommended to run some low-effort trials first,
and see whether any indication of the desired result can be found. If so, one can then go on to more computationally
expensive simulations. If not, one should evaluate:

1. Whether there is a mistake in the model or simulation set-up,

2. Whether a slightly more computationally expensive test would potentially yield a result, or

3. Whether your approach is unfortunately out of reach of (i)DMRG.

To set up low-effort trials, one should limit system size, bond dimension and the range of interactions, as well as (if
possible) target a non-critical region of phase space. All these measures reduce the size of and/or entanglement entropy
needing to be captured by the MPS, which yields both memory and run time advantages. Of course, one introduces a
trade-off between computational cost and accuracy, which is why one should be careful to not put too much faith into
results obtained at this stage.

10.10.3 Detecting convergence issues

Ensuring that the results of an (i)DMRG simulation are well-converged and thus reliable is a hugely important part of
any (i)DMRG study. Possible indications that there might be a convergence issue include:

1. The simulation shows a non-monotonous decrease of energy, and/or a non-monotonous increase of entanglement
entropy. An increase of energy or decrease of entanglement entropy on subsequent steps within a sweep, or
between subsequent sweeps, are particularly suspicious.

2. The simulation does not halt because it reached a convergence criterion, but because it reached its maximum
number of sweeps.

3. Results vary wildly under small changes of parameters. In particular, if a small change in bond dimension yields
a big change in results, one should be suspicious of the data.

108 Chapter 10. Introductions

TeNPy, Release 0.8.1

10.10.4 Combating convergence issues

To combat convergence issues of the (i)DMRG algorithm, several strategies (short of switching to a different method)
can be attempted:

1. Ensure that there are no errors in the model (see above) or the simulation set-up.

2. Increase the maximum bond dimension.

3. Ramp up the maximum bond dimension during simulation, rather than starting at the highest value. I.e., define
a schedule wherein the first 𝑁sweeps sweeps run at some 𝜒1 < 𝜒max, the next 𝑁sweeps at 𝜒1 < 𝜒2 < 𝜒max,
etc. This can be done through the chi_list option of the DMRGEngine. You should also make sure that the
max_hours option is set to sufficiently long runtimes.

4. Increase the maximum number of sweeps the algorithm is allowed to make, through the max_sweeps option
of the DMRGEngine.

5. Change the Mixer settings to in- or decrease the effects of the mixer.

6. Change convergence criteria. This will not overcome convergence issues in itself, but can help fine tune the
(i)DMRG simulation if it takes a long time to converge (relax the convergence constraints), or if the simu-
lation finishes too soon (tighten the constraints). Criteria to consider are max_E_err and max_S_err, in
DMRGEngine.

7. Increase the minimum number of sweeps taken by the algorithm. Again, this will not resolve issues due to
bad convergence, but might prevent bad results due to premature convergence. This can be done through the
min_sweeps option of the DMRGEngine.

8. Change the size and shape of the MPS unit cell (where possible), in case an artificially enforced translational
invariance prevents the algorithm from finding a true ground state which is incommensurate with this periodicity.
For example, a chain system which has a true ground state that is periodic in three sites, will not be accurately
represented by a two-site MPS unit cell, as the latter enforces two-site periodicity.

In some instances, it is essentially unavoidable to encounter convergence issues. In particular, a simulation of a critical
state can cause problems with (i)DMRG convergence, as these states violate the area law underlying an accurate MPS
approximation. In these cases, one should acknowledge the difficulties imposed by the method and take care to be
very careful in interpreting the data.

10.10. Protocol for using (i)DMRG 109

TeNPy, Release 0.8.1

110 Chapter 10. Introductions

CHAPTER

ELEVEN

EXAMPLES

11.1 Toycodes

These toycodes are meant to give you a flavor of the different algorithms, while keeping the codes as readable and
simple as possible. The scripts are included in the [TeNPySource] repository in the folder toycodes/, but not part
of the basic TeNpy library; the only requirements to run them are Python 3, Numpy, and Scipy.

11.1.1 a_mps.py

on github.

"""Toy code implementing a matrix product state."""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np
from scipy.linalg import svd
if you get an error message "LinAlgError: SVD did not converge",
uncomment the following line. (This requires TeNPy to be installed.)
from tenpy.linalg.svd_robust import svd # (works like scipy.linalg.svd)

class SimpleMPS:
"""Simple class for a matrix product state.

We index sites with `i` from 0 to L-1; bond `i` is left of site `i`.
We *assume* that the state is in right-canonical form.

Parameters

Bs, Ss, bc:

Same as attributes.

Attributes

Bs : list of np.Array[ndim=3]

The 'matrices' in right-canonical form, one for each physical site
(within the unit-cell for an infinite MPS).
Each `B[i]` has legs (virtual left, physical, virtual right), in short ``vL i

→˓vR``
Ss : list of np.Array[ndim=1]

The Schmidt values at each of the bonds, ``Ss[i]`` is left of ``Bs[i]``.
bc : 'infinite', 'finite'

(continues on next page)

111

https://github.com/tenpy/tenpy/tree/main/toycodes/a_mps.py

TeNPy, Release 0.8.1

(continued from previous page)

Boundary conditions.
L : int

Number of sites (in the unit-cell for an infinite MPS).
nbonds : int

Number of (non-trivial) bonds: L-1 for 'finite' boundary conditions
"""
def __init__(self, Bs, Ss, bc='finite'):

assert bc in ['finite', 'infinite']
self.Bs = Bs
self.Ss = Ss
self.bc = bc
self.L = len(Bs)
self.nbonds = self.L - 1 if self.bc == 'finite' else self.L

def copy(self):
return SimpleMPS([B.copy() for B in self.Bs], [S.copy() for S in self.Ss],

→˓self.bc)

def get_theta1(self, i):
"""Calculate effective single-site wave function on sites i in mixed

→˓canonical form.

The returned array has legs ``vL, i, vR`` (as one of the Bs).
"""
return np.tensordot(np.diag(self.Ss[i]), self.Bs[i], [1, 0]) # vL [vL'],

→˓[vL] i vR

def get_theta2(self, i):
"""Calculate effective two-site wave function on sites i,j=(i+1) in mixed

→˓canonical form.

The returned array has legs ``vL, i, j, vR``.
"""
j = (i + 1) % self.L
return np.tensordot(self.get_theta1(i), self.Bs[j], [2, 0]) # vL i [vR],

→˓[vL] j vR

def get_chi(self):
"""Return bond dimensions."""
return [self.Bs[i].shape[2] for i in range(self.nbonds)]

def site_expectation_value(self, op):
"""Calculate expectation values of a local operator at each site."""
result = []
for i in range(self.L):

theta = self.get_theta1(i) # vL i vR
op_theta = np.tensordot(op, theta, axes=[1, 1]) # i [i*], vL [i] vR
result.append(np.tensordot(theta.conj(), op_theta, [[0, 1, 2], [1, 0,

→˓2]]))
[vL*] [i*] [vR*], [i] [vL] [vR]

return np.real_if_close(result)

def bond_expectation_value(self, op):
"""Calculate expectation values of a local operator at each bond."""
result = []
for i in range(self.nbonds):

theta = self.get_theta2(i) # vL i j vR
(continues on next page)

112 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

op_theta = np.tensordot(op[i], theta, axes=[[2, 3], [1, 2]])
i j [i*] [j*], vL [i] [j] vR
result.append(np.tensordot(theta.conj(), op_theta, [[0, 1, 2, 3], [2, 0,

→˓1, 3]]))
[vL*] [i*] [j*] [vR*], [i] [j] [vL] [vR]

return np.real_if_close(result)

def entanglement_entropy(self):
"""Return the (von-Neumann) entanglement entropy for a bipartition at any of

→˓the bonds."""
bonds = range(1, self.L) if self.bc == 'finite' else range(0, self.L)
result = []
for i in bonds:

S = self.Ss[i].copy()
S[S < 1.e-20] = 0. # 0*log(0) should give 0; avoid warning or NaN.
S2 = S * S
assert abs(np.linalg.norm(S) - 1.) < 1.e-14
result.append(-np.sum(S2 * np.log(S2)))

return np.array(result)

def correlation_length(self):
"""Diagonalize transfer matrix to obtain the correlation length."""
import scipy.sparse.linalg.eigen.arpack as arp
assert self.bc == 'infinite' # works only in the infinite case
B = self.Bs[0] # vL i vR
chi = B.shape[0]
T = np.tensordot(B, np.conj(B), axes=[1, 1]) # vL [i] vR, vL* [i*] vR*
T = np.transpose(T, [0, 2, 1, 3]) # vL vL* vR vR*
for i in range(1, self.L):

B = self.Bs[i]
T = np.tensordot(T, B, axes=[2, 0]) # vL vL* [vR] vR*, [vL] i vR
T = np.tensordot(T, np.conj(B), axes=[[2, 3], [0, 1]])
vL vL* [vR*] [i] vR, [vL*] [i*] vR*

T = np.reshape(T, (chi**2, chi**2))
Obtain the 2nd largest eigenvalue
eta = arp.eigs(T, k=2, which='LM', return_eigenvectors=False, ncv=20)
return -self.L / np.log(np.min(np.abs(eta)))

def init_FM_MPS(L, d, bc='finite'):
"""Return a ferromagnetic MPS (= product state with all spins up)"""
B = np.zeros([1, d, 1], dtype=float)
B[0, 0, 0] = 1.
S = np.ones([1], dtype=float)
Bs = [B.copy() for i in range(L)]
Ss = [S.copy() for i in range(L)]
return SimpleMPS(Bs, Ss, bc)

def split_truncate_theta(theta, chi_max, eps):
"""Split and truncate a two-site wave function in mixed canonical form.

Split a two-site wave function as follows::
vL --(theta)-- vR => vL --(A)--diag(S)--(B)-- vR

| | | |
i j i j

(continues on next page)

11.1. Toycodes 113

TeNPy, Release 0.8.1

(continued from previous page)

Afterwards, truncate in the new leg (labeled ``vC``).

Parameters

theta : np.Array[ndim=4]

Two-site wave function in mixed canonical form, with legs ``vL, i, j, vR``.
chi_max : int

Maximum number of singular values to keep
eps : float

Discard any singular values smaller than that.

Returns

A : np.Array[ndim=3]

Left-canonical matrix on site i, with legs ``vL, i, vC``
S : np.Array[ndim=1]

Singular/Schmidt values.
B : np.Array[ndim=3]

Right-canonical matrix on site j, with legs ``vC, j, vR``
"""
chivL, dL, dR, chivR = theta.shape
theta = np.reshape(theta, [chivL * dL, dR * chivR])
X, Y, Z = svd(theta, full_matrices=False)
truncate
chivC = min(chi_max, np.sum(Y > eps))
piv = np.argsort(Y)[::-1][:chivC] # keep the largest `chivC` singular values
X, Y, Z = X[:, piv], Y[piv], Z[piv, :]
renormalize
S = Y / np.linalg.norm(Y) # == Y/sqrt(sum(Y**2))
split legs of X and Z
A = np.reshape(X, [chivL, dL, chivC])
B = np.reshape(Z, [chivC, dR, chivR])
return A, S, B

11.1.2 b_model.py

on github.

"""Toy code implementing the transverse-field ising model."""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np

class TFIModel:
"""Simple class generating the Hamiltonian of the transverse-field Ising model.

The Hamiltonian reads
.. math ::

H = - J \\sum_{i} \\sigma^x_i \\sigma^x_{i+1} - g \\sum_{i} \\sigma^z_i

Parameters

L : int

Number of sites.

(continues on next page)

114 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/toycodes/b_model.py

TeNPy, Release 0.8.1

(continued from previous page)

J, g : float
Coupling parameters of the above defined Hamiltonian.

bc : 'infinite', 'finite'
Boundary conditions.

Attributes

L : int

Number of sites.
bc : 'infinite', 'finite'

Boundary conditions.
sigmax, sigmay, sigmaz, id :

Local operators, namely the Pauli matrices and identity.
H_bonds : list of np.Array[ndim=4]

The Hamiltonian written in terms of local 2-site operators, ``H = sum_i H_
→˓bonds[i]``.

Each ``H_bonds[i]`` has (physical) legs (i out, (i+1) out, i in, (i+1) in),
in short ``i j i* j*``.

H_mpo : lit of np.Array[ndim=4]
The Hamiltonian written as an MPO.
Each ``H_mpo[i]`` has legs (virutal left, virtual right, physical out,

→˓physical in),
in short ``wL wR i i*``.

"""
def __init__(self, L, J, g, bc='finite'):

assert bc in ['finite', 'infinite']
self.L, self.d, self.bc = L, 2, bc
self.J, self.g = J, g
self.sigmax = np.array([[0., 1.], [1., 0.]])
self.sigmay = np.array([[0., -1j], [1j, 0.]])
self.sigmaz = np.array([[1., 0.], [0., -1.]])
self.id = np.eye(2)
self.init_H_bonds()
self.init_H_mpo()

def init_H_bonds(self):
"""Initialize `H_bonds` hamiltonian.

Called by __init__().
"""
sx, sz, id = self.sigmax, self.sigmaz, self.id
d = self.d
nbonds = self.L - 1 if self.bc == 'finite' else self.L
H_list = []
for i in range(nbonds):

gL = gR = 0.5 * self.g
if self.bc == 'finite':

if i == 0:
gL = self.g

if i + 1 == self.L - 1:
gR = self.g

H_bond = -self.J * np.kron(sx, sx) - gL * np.kron(sz, id) - gR * np.
→˓kron(id, sz)

H_bond has legs ``i, j, i*, j*``
H_list.append(np.reshape(H_bond, [d, d, d, d]))

self.H_bonds = H_list

(continues on next page)

11.1. Toycodes 115

TeNPy, Release 0.8.1

(continued from previous page)

(note: not required for TEBD)
def init_H_mpo(self):

"""Initialize `H_mpo` Hamiltonian.

Called by __init__().
"""
w_list = []
for i in range(self.L):

w = np.zeros((3, 3, self.d, self.d), dtype=float)
w[0, 0] = w[2, 2] = self.id
w[0, 1] = self.sigmax
w[0, 2] = -self.g * self.sigmaz
w[1, 2] = -self.J * self.sigmax
w_list.append(w)

self.H_mpo = w_list

11.1.3 c_tebd.py

on github.

"""Toy code implementing the time evolving block decimation (TEBD)."""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np
from scipy.linalg import expm
from a_mps import split_truncate_theta

def calc_U_bonds(H_bonds, dt):
"""Given the H_bonds, calculate ``U_bonds[i] = expm(-dt*H_bonds[i])``.

Each local operator has legs (i out, (i+1) out, i in, (i+1) in), in short ``i j
→˓i* j*``.

Note that no imaginary 'i' is included, thus real `dt` means 'imaginary time'
→˓evolution!

"""
d = H_bonds[0].shape[0]
U_bonds = []
for H in H_bonds:

H = np.reshape(H, [d * d, d * d])
U = expm(-dt * H)
U_bonds.append(np.reshape(U, [d, d, d, d]))

return U_bonds

def run_TEBD(psi, U_bonds, N_steps, chi_max, eps):
"""Evolve for `N_steps` time steps with TEBD."""
Nbonds = psi.L - 1 if psi.bc == 'finite' else psi.L
assert len(U_bonds) == Nbonds
for n in range(N_steps):

for k in [0, 1]: # even, odd
for i_bond in range(k, Nbonds, 2):

update_bond(psi, i_bond, U_bonds[i_bond], chi_max, eps)
done

(continues on next page)

116 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/toycodes/c_tebd.py

TeNPy, Release 0.8.1

(continued from previous page)

def update_bond(psi, i, U_bond, chi_max, eps):
"""Apply `U_bond` acting on i,j=(i+1) to `psi`."""
j = (i + 1) % psi.L
construct theta matrix
theta = psi.get_theta2(i) # vL i j vR
apply U
Utheta = np.tensordot(U_bond, theta, axes=([2, 3], [1, 2])) # i j [i*] [j*], vL

→˓[i] [j] vR
Utheta = np.transpose(Utheta, [2, 0, 1, 3]) # vL i j vR
split and truncate
Ai, Sj, Bj = split_truncate_theta(Utheta, chi_max, eps)
put back into MPS
Gi = np.tensordot(np.diag(psi.Ss[i]**(-1)), Ai, axes=[1, 0]) # vL [vL*], [vL] i

→˓vC
psi.Bs[i] = np.tensordot(Gi, np.diag(Sj), axes=[2, 0]) # vL i [vC], [vC] vC
psi.Ss[j] = Sj # vC
psi.Bs[j] = Bj # vC j vR

def example_TEBD_gs_tf_ising_finite(L, g):
print("finite TEBD, imaginary time evolution, transverse field Ising")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
import a_mps
import b_model
M = b_model.TFIModel(L=L, J=1., g=g, bc='finite')
psi = a_mps.init_FM_MPS(M.L, M.d, M.bc)
for dt in [0.1, 0.01, 0.001, 1.e-4, 1.e-5]:

U_bonds = calc_U_bonds(M.H_bonds, dt)
run_TEBD(psi, U_bonds, N_steps=500, chi_max=30, eps=1.e-10)
E = np.sum(psi.bond_expectation_value(M.H_bonds))
print("dt = {dt:.5f}: E = {E:.13f}".format(dt=dt, E=E))

print("final bond dimensions: ", psi.get_chi())
mag_x = np.sum(psi.site_expectation_value(M.sigmax))
mag_z = np.sum(psi.site_expectation_value(M.sigmaz))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result

from tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

return E, psi, M

def example_TEBD_gs_tf_ising_infinite(g):
print("infinite TEBD, imaginary time evolution, transverse field Ising")
print("g={g:.2f}".format(g=g))
import a_mps
import b_model
M = b_model.TFIModel(L=2, J=1., g=g, bc='infinite')
psi = a_mps.init_FM_MPS(M.L, M.d, M.bc)
for dt in [0.1, 0.01, 0.001, 1.e-4, 1.e-5]:

U_bonds = calc_U_bonds(M.H_bonds, dt)
run_TEBD(psi, U_bonds, N_steps=500, chi_max=30, eps=1.e-10)
E = np.mean(psi.bond_expectation_value(M.H_bonds))
print("dt = {dt:.5f}: E (per site) = {E:.13f}".format(dt=dt, E=E))

(continues on next page)

11.1. Toycodes 117

TeNPy, Release 0.8.1

(continued from previous page)

print("final bond dimensions: ", psi.get_chi())
mag_x = np.mean(psi.site_expectation_value(M.sigmax))
mag_z = np.mean(psi.site_expectation_value(M.sigmaz))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
compare to exact result
from tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, M

def example_TEBD_tf_ising_lightcone(L, g, tmax, dt):
print("finite TEBD, real time evolution, transverse field Ising")
print("L={L:d}, g={g:.2f}, tmax={tmax:.2f}, dt={dt:.3f}".format(L=L, g=g,

→˓tmax=tmax, dt=dt))
find ground state with TEBD or DMRG
E, psi, M = example_TEBD_gs_tf_ising_finite(L, g)
from d_dmrg import example_DMRG_tf_ising_finite
E, psi, M = example_DMRG_tf_ising_finite(L, g)
i0 = L // 2
apply sigmaz on site i0
SzB = np.tensordot(M.sigmaz, psi.Bs[i0], axes=[1, 1]) # i [i*], vL [i] vR
psi.Bs[i0] = np.transpose(SzB, [1, 0, 2]) # vL i vR
U_bonds = calc_U_bonds(M.H_bonds, 1.j * dt) # (imaginary dt -> realtime

→˓evolution)
S = [psi.entanglement_entropy()]
Nsteps = int(tmax / dt + 0.5)
for n in range(Nsteps):

if abs((n * dt + 0.1) % 0.2 - 0.1) < 1.e-10:
print("t = {t:.2f}, chi =".format(t=n * dt), psi.get_chi())

run_TEBD(psi, U_bonds, 1, chi_max=50, eps=1.e-10)
S.append(psi.entanglement_entropy())

import matplotlib.pyplot as plt
plt.figure()
plt.imshow(S[::-1],

vmin=0.,
aspect='auto',
interpolation='nearest',
extent=(0, L - 1., -0.5 * dt, (Nsteps + 0.5) * dt))

plt.xlabel('site i')
plt.ylabel('time t/J')
plt.ylim(0., tmax)
plt.colorbar().set_label('entropy S')
filename = 'c_tebd_lightcone_{g:.2f}.pdf'.format(g=g)
plt.savefig(filename)
print("saved " + filename)

if __name__ == "__main__":
example_TEBD_gs_tf_ising_finite(L=10, g=1.)
print("-" * 100)
example_TEBD_gs_tf_ising_infinite(g=1.5)
print("-" * 100)
example_TEBD_tf_ising_lightcone(L=20, g=1.5, tmax=3., dt=0.01)

118 Chapter 11. Examples

TeNPy, Release 0.8.1

11.1.4 d_dmrg.py

on github.

"""Toy code implementing the density-matrix renormalization group (DMRG)."""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np
from a_mps import split_truncate_theta
import scipy.sparse
import scipy.sparse.linalg.eigen.arpack as arp

class SimpleHeff(scipy.sparse.linalg.LinearOperator):
"""Class for the effective Hamiltonian.

To be diagonalized in `SimpleDMRGEnginge.update_bond`. Looks like this::

.--vL* vR*--.
| i* j* |
| | | |
(LP)---(W1)--(W2)----(RP)
| | | |
| i j |
.--vL vR--.

"""
def __init__(self, LP, RP, W1, W2):

self.LP = LP # vL wL* vL*
self.RP = RP # vR* wR* vR
self.W1 = W1 # wL wC i i*
self.W2 = W2 # wC wR j j*
chi1, chi2 = LP.shape[0], RP.shape[2]
d1, d2 = W1.shape[2], W2.shape[2]
self.theta_shape = (chi1, d1, d2, chi2) # vL i j vR
self.shape = (chi1 * d1 * d2 * chi2, chi1 * d1 * d2 * chi2)
self.dtype = W1.dtype

def _matvec(self, theta):
"""Calculate |theta'> = H_eff |theta>.

This function is used by :func:scipy.sparse.linalg.eigen.arpack.eigsh` to
→˓diagonalize

the effective Hamiltonian with a Lanczos method, withouth generating the full
→˓matrix."""

x = np.reshape(theta, self.theta_shape) # vL i j vR
x = np.tensordot(self.LP, x, axes=(2, 0)) # vL wL* [vL*], [vL] i j vR
x = np.tensordot(x, self.W1, axes=([1, 2], [0, 3])) # vL [wL*] [i] j vR,

→˓[wL] wC i [i*]
x = np.tensordot(x, self.W2, axes=([3, 1], [0, 3])) # vL [j] vR [wC] i, [wC]

→˓wR j [j*]
x = np.tensordot(x, self.RP, axes=([1, 3], [0, 1])) # vL [vR] i [wR] j,

→˓[vR*] [wR*] vR
x = np.reshape(x, self.shape[0])
return x

class SimpleDMRGEngine:
"""DMRG algorithm, implemented as class holding the necessary data.

(continues on next page)

11.1. Toycodes 119

https://github.com/tenpy/tenpy/tree/main/toycodes/d_dmrg.py

TeNPy, Release 0.8.1

(continued from previous page)

Parameters

psi, model, chi_max, eps:

See attributes

Attributes

psi : SimpleMPS

The current ground-state (approximation).
model :

The model of which the groundstate is to be calculated.
chi_max, eps:

Truncation parameters, see :func:`a_mps.split_truncate_theta`.
LPs, RPs : list of np.Array[ndim=3]

Left and right parts ("environments") of the effective Hamiltonian.
``LPs[i]`` is the contraction of all parts left of site `i` in the network ``

→˓<psi|H|psi>``,
and similar ``RPs[i]`` for all parts right of site `i`.
Each ``LPs[i]`` has legs ``vL wL* vL*``, ``RPS[i]`` has legs ``vR* wR* vR``

"""
def __init__(self, psi, model, chi_max, eps):

assert psi.L == model.L and psi.bc == model.bc # ensure compatibility
self.H_mpo = model.H_mpo
self.psi = psi
self.LPs = [None] * psi.L
self.RPs = [None] * psi.L
self.chi_max = chi_max
self.eps = eps
initialize left and right environment
D = self.H_mpo[0].shape[0]
chi = psi.Bs[0].shape[0]
LP = np.zeros([chi, D, chi], dtype=float) # vL wL* vL*
RP = np.zeros([chi, D, chi], dtype=float) # vR* wR* vR
LP[:, 0, :] = np.eye(chi)
RP[:, D - 1, :] = np.eye(chi)
self.LPs[0] = LP
self.RPs[-1] = RP
initialize necessary RPs
for i in range(psi.L - 1, 1, -1):

self.update_RP(i)

def sweep(self):
sweep from left to right
for i in range(self.psi.nbonds - 1):

self.update_bond(i)
sweep from right to left
for i in range(self.psi.nbonds - 1, 0, -1):

self.update_bond(i)

def update_bond(self, i):
j = (i + 1) % self.psi.L
get effective Hamiltonian
Heff = SimpleHeff(self.LPs[i], self.RPs[j], self.H_mpo[i], self.H_mpo[j])
Diagonalize Heff, find ground state `theta`
theta0 = np.reshape(self.psi.get_theta2(i), [Heff.shape[0]]) # initial guess
e, v = arp.eigsh(Heff, k=1, which='SA', return_eigenvectors=True, v0=theta0)

(continues on next page)

120 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

theta = np.reshape(v[:, 0], Heff.theta_shape)
split and truncate
Ai, Sj, Bj = split_truncate_theta(theta, self.chi_max, self.eps)
put back into MPS
Gi = np.tensordot(np.diag(self.psi.Ss[i]**(-1)), Ai, axes=[1, 0]) # vL [vL*],

→˓ [vL] i vC
self.psi.Bs[i] = np.tensordot(Gi, np.diag(Sj), axes=[2, 0]) # vL i [vC],

→˓[vC*] vC
self.psi.Ss[j] = Sj # vC
self.psi.Bs[j] = Bj # vC j vR
self.update_LP(i)
self.update_RP(j)

def update_RP(self, i):
"""Calculate RP right of site `i-1` from RP right of site `i`."""
j = (i - 1) % self.psi.L
RP = self.RPs[i] # vR* wR* vR
B = self.psi.Bs[i] # vL i vR
Bc = B.conj() # vL* i* vR*
W = self.H_mpo[i] # wL wR i i*
RP = np.tensordot(B, RP, axes=[2, 0]) # vL i [vR], [vR*] wR* vR
RP = np.tensordot(RP, W, axes=[[1, 2], [3, 1]]) # vL [i] [wR*] vR, wL [wR] i

→˓[i*]
RP = np.tensordot(RP, Bc, axes=[[1, 3], [2, 1]]) # vL [vR] wL [i], vL* [i*]

→˓[vR*]
self.RPs[j] = RP # vL wL vL* (== vR* wR* vR on site i-1)

def update_LP(self, i):
"""Calculate LP left of site `i+1` from LP left of site `i`."""
j = (i + 1) % self.psi.L
LP = self.LPs[i] # vL wL vL*
B = self.psi.Bs[i] # vL i vR
G = np.tensordot(np.diag(self.psi.Ss[i]), B, axes=[1, 0]) # vL [vL*], [vL] i

→˓vR
A = np.tensordot(G, np.diag(self.psi.Ss[j]**-1), axes=[2, 0]) # vL i [vR],

→˓[vR*] vR
Ac = A.conj() # vL* i* vR*
W = self.H_mpo[i] # wL wR i i*
LP = np.tensordot(LP, A, axes=[2, 0]) # vL wL* [vL*], [vL] i vR
LP = np.tensordot(W, LP, axes=[[0, 3], [1, 2]]) # [wL] wR i [i*], vL [wL*]

→˓[i] vR
LP = np.tensordot(Ac, LP, axes=[[0, 1], [2, 1]]) # [vL*] [i*] vR*, wR [i]

→˓[vL] vR
self.LPs[j] = LP # vR* wR vR (== vL wL* vL* on site i+1)

def example_DMRG_tf_ising_finite(L, g):
print("finite DMRG, transverse field Ising")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
import a_mps
import b_model
M = b_model.TFIModel(L=L, J=1., g=g, bc='finite')
psi = a_mps.init_FM_MPS(M.L, M.d, M.bc)
eng = SimpleDMRGEngine(psi, M, chi_max=30, eps=1.e-10)
for i in range(10):

eng.sweep()
E = np.sum(psi.bond_expectation_value(M.H_bonds))

(continues on next page)

11.1. Toycodes 121

TeNPy, Release 0.8.1

(continued from previous page)

print("sweep {i:2d}: E = {E:.13f}".format(i=i + 1, E=E))
print("final bond dimensions: ", psi.get_chi())
mag_x = np.sum(psi.site_expectation_value(M.sigmax))
mag_z = np.sum(psi.site_expectation_value(M.sigmaz))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result

from tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

return E, psi, M

def example_DMRG_tf_ising_infinite(g):
print("infinite DMRG, transverse field Ising")
print("g={g:.2f}".format(g=g))
import a_mps
import b_model
M = b_model.TFIModel(L=2, J=1., g=g, bc='infinite')
psi = a_mps.init_FM_MPS(M.L, M.d, M.bc)
eng = SimpleDMRGEngine(psi, M, chi_max=20, eps=1.e-14)
for i in range(20):

eng.sweep()
E = np.mean(psi.bond_expectation_value(M.H_bonds))
print("sweep {i:2d}: E (per site) = {E:.13f}".format(i=i + 1, E=E))

print("final bond dimensions: ", psi.get_chi())
mag_x = np.mean(psi.site_expectation_value(M.sigmax))
mag_z = np.mean(psi.site_expectation_value(M.sigmaz))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
compare to exact result
from tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, M

if __name__ == "__main__":
example_DMRG_tf_ising_finite(L=10, g=1.)
print("-" * 100)
example_DMRG_tf_ising_infinite(g=1.5)

11.1.5 tfi_exact.py

on github.

"""Provides exact ground state energies for the transverse field ising model for
→˓comparison.

The Hamiltonian reads
.. math ::

H = - J \\sum_{i} \\sigma^x_i \\sigma^x_{i+1} - g \\sum_{i} \\sigma^z_i

(continues on next page)

122 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/toycodes/tfi_exact.py

TeNPy, Release 0.8.1

(continued from previous page)

"""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

import numpy as np
import scipy.sparse as sparse
import scipy.sparse.linalg.eigen.arpack as arp
import warnings
import scipy.integrate

def finite_gs_energy(L, J, g):
"""For comparison: obtain ground state energy from exact diagonalization.

Exponentially expensive in L, only works for small enough `L` <~ 20.
"""
if L >= 20:

warnings.warn("Large L: Exact diagonalization might take a long time!")
get single site operaors
sx = sparse.csr_matrix(np.array([[0., 1.], [1., 0.]]))
sz = sparse.csr_matrix(np.array([[1., 0.], [0., -1.]]))
id = sparse.csr_matrix(np.eye(2))
sx_list = [] # sx_list[i] = kron([id, id, ..., id, sx, id, id])
sz_list = []
for i_site in range(L):

x_ops = [id] * L
z_ops = [id] * L
x_ops[i_site] = sx
z_ops[i_site] = sz
X = x_ops[0]
Z = z_ops[0]
for j in range(1, L):

X = sparse.kron(X, x_ops[j], 'csr')
Z = sparse.kron(Z, z_ops[j], 'csr')

sx_list.append(X)
sz_list.append(Z)

H_xx = sparse.csr_matrix((2**L, 2**L))
H_z = sparse.csr_matrix((2**L, 2**L))
for i in range(L - 1):

H_xx = H_xx + sx_list[i] * sx_list[(i + 1) % L]
for i in range(L):

H_z = H_z + sz_list[i]
H = -J * H_xx - g * H_z
E, V = arp.eigsh(H, k=1, which='SA', return_eigenvectors=True, ncv=20)
return E[0]

def infinite_gs_energy(J, g):
"""For comparison: Calculate groundstate energy density from analytic formula.

The analytic formula stems from mapping the model to free fermions, see P. Pfeuty,
→˓ The one-

dimensional Ising model with a transverse field, Annals of Physics 57, p. 79
→˓(1970). Note that

we use Pauli matrices compared this reference using spin-1/2 matrices and replace
→˓the sum_k ->

integral dk/2pi to obtain the result in the N -> infinity limit.
"""

(continues on next page)

11.1. Toycodes 123

TeNPy, Release 0.8.1

(continued from previous page)

def f(k, lambda_):
return np.sqrt(1 + lambda_**2 + 2 * lambda_ * np.cos(k))

E0_exact = -g / (J * 2. * np.pi) * scipy.integrate.quad(f, -np.pi, np.pi, args=(J
→˓/ g,))[0]

return E0_exact

11.2 Python scripts

These example scripts illustrate the very basic interface for calling TeNPy. They are included in the [TeNPySource]
repository in the folder examples/, we include them here in the documentation for reference. You need to install
TeNPy to call them (see Installation instructions), but you can copy them anywhere before execution. (Some scripts
include other files from the same folder, though; copy those as well.)

11.2.1 a_np_conserved.py

on github.

"""An example code to demonstrate the usage of :class:`~tenpy.linalg.np_conserved.
→˓Array`.

This example includes the following steps:
1) create Arrays for an Neel MPS
2) create an MPO representing the nearest-neighbour AFM Heisenberg Hamiltonian
3) define 'environments' left and right
4) contract MPS and MPO to calculate the energy
5) extract two-site hamiltonian ``H2`` from the MPO
6) calculate ``exp(-1.j*dt*H2)`` by diagonalization of H2
7) apply ``exp(H2)`` to two sites of the MPS and truncate with svd

Note that this example uses only np_conserved, but no other modules.
Compare it to the example `b_mps.py`,
which does the same steps using a few predefined classes like MPS and MPO.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc
import numpy as np

model parameters
Jxx, Jz = 1., 1.
L = 20
dt = 0.1
cutoff = 1.e-10
print("Jxx={Jxx}, Jz={Jz}, L={L:d}".format(Jxx=Jxx, Jz=Jz, L=L))

print("1) create Arrays for an Neel MPS")

vL ->--B-->- vR
|
^
|

(continues on next page)

124 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/examples/a_np_conserved.py

TeNPy, Release 0.8.1

(continued from previous page)

p

create a ChargeInfo to specify the nature of the charge
chinfo = npc.ChargeInfo([1], ['2*Sz']) # the second argument is just a descriptive
→˓name

create LegCharges on physical leg and even/odd bonds
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]]) # charges for up, down
v_leg_even = npc.LegCharge.from_qflat(chinfo, [[0]])
v_leg_odd = npc.LegCharge.from_qflat(chinfo, [[1]])

B_even = npc.zeros([v_leg_even, v_leg_odd.conj(), p_leg],
labels=['vL', 'vR', 'p']) # virtual left/right, physical

B_odd = npc.zeros([v_leg_odd, v_leg_even.conj(), p_leg], labels=['vL', 'vR', 'p'])
B_even[0, 0, 0] = 1. # up
B_odd[0, 0, 1] = 1. # down

Bs = [B_even, B_odd] * (L // 2) + [B_even] * (L % 2) # (right-canonical)
Ss = [np.ones(1)] * L # Ss[i] are singular values between Bs[i-1] and Bs[i]

Side remark:
An MPS is expected to have non-zero entries everywhere compatible with the charges.
In general, we recommend to use `sort_legcharge` (or `as_completely_blocked`)
to ensure complete blocking. (But the code will also work, if you don't do it.)
The drawback is that this might introduce permutations in the indices of single
→˓legs,
which you have to keep in mind when converting dense numpy arrays to and from npc.
→˓Arrays.

print("2) create an MPO representing the AFM Heisenberg Hamiltonian")

p*
|
^
|
wL ->--W-->- wR
|
^
|
p

create physical spin-1/2 operators Sz, S+, S-
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]], [p_leg, p_leg.conj()], labels=['p
→˓', 'p*'])
Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]], [p_leg, p_leg.conj()], labels=['p',
→˓'p*'])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]], [p_leg, p_leg.conj()], labels=['p',
→˓'p*'])
Id = npc.eye_like(Sz, labels=Sz.get_leg_labels()) # identity

mpo_leg = npc.LegCharge.from_qflat(chinfo, [[0], [2], [-2], [0], [0]])

W_grid = [[Id, Sp, Sm, Sz, None],
[None, None, None, None, 0.5 * Jxx * Sm],
[None, None, None, None, 0.5 * Jxx * Sp],
[None, None, None, None, Jz * Sz],
[None, None, None, None, Id]] # yapf:disable

(continues on next page)

11.2. Python scripts 125

TeNPy, Release 0.8.1

(continued from previous page)

W = npc.grid_outer(W_grid, [mpo_leg, mpo_leg.conj()], grid_labels=['wL', 'wR'])
wL/wR = virtual left/right of the MPO
Ws = [W] * L

print("3) define 'environments' left and right")

.---->- vR vL ->----.
| |
envL->- wR wL ->-envR
| |
.---->- vR* vL*->----.

envL = npc.zeros([W.get_leg('wL').conj(), Bs[0].get_leg('vL').conj(), Bs[0].get_leg(
→˓'vL')],

labels=['wR', 'vR', 'vR*'])
envL[0, :, :] = npc.diag(1., envL.legs[1])
envR = npc.zeros([W.get_leg('wR').conj(), Bs[-1].get_leg('vR').conj(), Bs[-1].get_leg(
→˓'vR')],

labels=['wL', 'vL', 'vL*'])
envR[-1, :, :] = npc.diag(1., envR.legs[1])

print("4) contract MPS and MPO to calculate the energy <psi|H|psi>")
contr = envL
for i in range(L):

contr labels: wR, vR, vR*
contr = npc.tensordot(contr, Bs[i], axes=('vR', 'vL'))
wR, vR*, vR, p
contr = npc.tensordot(contr, Ws[i], axes=(['p', 'wR'], ['p*', 'wL']))
vR*, vR, wR, p
contr = npc.tensordot(contr, Bs[i].conj(), axes=(['p', 'vR*'], ['p*', 'vL*']))
vR, wR, vR*
note that the order of the legs changed, but that's no problem with labels:
the arrays are automatically transposed as necessary

E = npc.inner(contr, envR, axes=(['vR', 'wR', 'vR*'], ['vL', 'wL', 'vL*']))
print("E =", E)

print("5) calculate two-site hamiltonian ``H2`` from the MPO")
label left, right physical legs with p, q
W0 = W.replace_labels(['p', 'p*'], ['p0', 'p0*'])
W1 = W.replace_labels(['p', 'p*'], ['p1', 'p1*'])
H2 = npc.tensordot(W0, W1, axes=('wR', 'wL')).itranspose(['wL', 'wR', 'p0', 'p1', 'p0*
→˓', 'p1*'])
H2 = H2[0, -1] # (If H has single-site terms, it's not that simple anymore)
print("H2 labels:", H2.get_leg_labels())

print("6) calculate exp(H2) by diagonalization of H2")
diagonalization requires to view H2 as a matrix
H2 = H2.combine_legs([('p0', 'p1'), ('p0*', 'p1*')], qconj=[+1, -1])
print("labels after combine_legs:", H2.get_leg_labels())
E2, U2 = npc.eigh(H2)
print("Eigenvalues of H2:", E2)
U_expE2 = U2.scale_axis(np.exp(-1.j * dt * E2), axis=1) # scale_axis ~= apply an
→˓diagonal matrix
exp_H2 = npc.tensordot(U_expE2, U2.conj(), axes=(1, 1))
exp_H2.iset_leg_labels(H2.get_leg_labels())
exp_H2 = exp_H2.split_legs() # by default split all legs which are `LegPipe`

(continues on next page)

126 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

(this restores the originial labels ['p0', 'p1', 'p0*', 'p1*'] of `H2` in `exp_H2`)

print("7) apply exp(H2) to even/odd bonds of the MPS and truncate with svd")
(this implements one time step of first order TEBD)
for even_odd in [0, 1]:

for i in range(even_odd, L - 1, 2):
B_L = Bs[i].scale_axis(Ss[i], 'vL').ireplace_label('p', 'p0')
B_R = Bs[i + 1].replace_label('p', 'p1')
theta = npc.tensordot(B_L, B_R, axes=('vR', 'vL'))
theta = npc.tensordot(exp_H2, theta, axes=(['p0*', 'p1*'], ['p0', 'p1']))
view as matrix for SVD
theta = theta.combine_legs([('vL', 'p0'), ('p1', 'vR')], new_axes=[0, 1],

→˓qconj=[+1, -1])
now theta has labels '(vL.p0)', '(p1.vR)'
U, S, V = npc.svd(theta, inner_labels=['vR', 'vL'])
truncate
keep = S > cutoff
S = S[keep]
invsq = np.linalg.norm(S)
Ss[i + 1] = S / invsq
U = U.iscale_axis(S / invsq, 'vR')
Bs[i] = U.split_legs('(vL.p0)').iscale_axis(Ss[i]**(-1), 'vL').ireplace_label(

→˓'p0', 'p')
Bs[i + 1] = V.split_legs('(p1.vR)').ireplace_label('p1', 'p')

print("finished")

11.2.2 b_mps.py

on github.

"""Simplified version of `a_np_conserved.py` making use of other classes (like MPS,
→˓MPO).

This example includes the following steps:
1) create Arrays for an Neel MPS
2) create an MPO representing the nearest-neighbour AFM Heisenberg Hamiltonian
3) define 'environments' left and right
4) contract MPS and MPO to calculate the energy
5) extract two-site hamiltonian ``H2`` from the MPO
6) calculate ``exp(-1.j*dt*H2)`` by diagonalization of H2
7) apply ``exp(H2)`` to two sites of the MPS and truncate with svd

Note that this example performs the same steps as `a_np_conserved.py`,
but makes use of other predefined classes except npc.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc
import numpy as np

some more imports
from tenpy.networks.site import SpinHalfSite
from tenpy.models.lattice import Chain
from tenpy.networks.mps import MPS
from tenpy.networks.mpo import MPO, MPOEnvironment

(continues on next page)

11.2. Python scripts 127

https://github.com/tenpy/tenpy/tree/main/examples/b_mps.py

TeNPy, Release 0.8.1

(continued from previous page)

from tenpy.algorithms.truncation import svd_theta

model parameters
Jxx, Jz = 1., 1.
L = 20
dt = 0.1
cutoff = 1.e-10
print("Jxx={Jxx}, Jz={Jz}, L={L:d}".format(Jxx=Jxx, Jz=Jz, L=L))

print("1) create Arrays for an Neel MPS")
site = SpinHalfSite(conserve='Sz') # predefined charges and Sp,Sm,Sz operators
p_leg = site.leg
chinfo = p_leg.chinfo
make lattice from unit cell and create product state MPS
lat = Chain(L, site, bc_MPS='finite')
state = ["up", "down"] * (L // 2) + ["up"] * (L % 2) # Neel state
print("state = ", state)
psi = MPS.from_product_state(lat.mps_sites(), state, lat.bc_MPS)

print("2) create an MPO representing the AFM Heisenberg Hamiltonian")

predefined physical spin-1/2 operators Sz, S+, S-
Sz, Sp, Sm, Id = site.Sz, site.Sp, site.Sm, site.Id

mpo_leg = npc.LegCharge.from_qflat(chinfo, [[0], [2], [-2], [0], [0]])

W_grid = [[Id, Sp, Sm, Sz, None],
[None, None, None, None, 0.5 * Jxx * Sm],
[None, None, None, None, 0.5 * Jxx * Sp],
[None, None, None, None, Jz * Sz],
[None, None, None, None, Id]] # yapf:disable

W = npc.grid_outer(W_grid, [mpo_leg, mpo_leg.conj()], grid_labels=['wL', 'wR'])
wL/wR = virtual left/right of the MPO
Ws = [W] * L
Ws[0] = W[:1, :]
Ws[-1] = W[:, -1:]
H = MPO(psi.sites, Ws, psi.bc, IdL=0, IdR=-1)

print("3) define 'environments' left and right")

this is automatically done during initialization of MPOEnvironment
env = MPOEnvironment(psi, H, psi)
envL = env.get_LP(0)
envR = env.get_RP(L - 1)

print("4) contract MPS and MPO to calculate the energy <psi|H|psi>")

E = env.full_contraction(L - 1)
print("E =", E)

print("5) calculate two-site hamiltonian ``H2`` from the MPO")
label left, right physical legs with p, q
W0 = H.get_W(0).replace_labels(['p', 'p*'], ['p0', 'p0*'])
W1 = H.get_W(1).replace_labels(['p', 'p*'], ['p1', 'p1*'])
H2 = npc.tensordot(W0, W1, axes=('wR', 'wL')).itranspose(['wL', 'wR', 'p0', 'p1', 'p0*
→˓', 'p1*'])

(continues on next page)

128 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

H2 = H2[H.IdL[0], H.IdR[2]] # (If H has single-site terms, it's not that simple
→˓anymore)
print("H2 labels:", H2.get_leg_labels())

print("6) calculate exp(H2) by diagonalization of H2")
diagonalization requires to view H2 as a matrix
H2 = H2.combine_legs([('p0', 'p1'), ('p0*', 'p1*')], qconj=[+1, -1])
print("labels after combine_legs:", H2.get_leg_labels())
E2, U2 = npc.eigh(H2)
print("Eigenvalues of H2:", E2)
U_expE2 = U2.scale_axis(np.exp(-1.j * dt * E2), axis=1) # scale_axis ~= apply a
→˓diagonal matrix
exp_H2 = npc.tensordot(U_expE2, U2.conj(), axes=(1, 1))
exp_H2.iset_leg_labels(H2.get_leg_labels())
exp_H2 = exp_H2.split_legs() # by default split all legs which are `LegPipe`
(this restores the originial labels ['p0', 'p1', 'p0*', 'p1*'] of `H2` in `exp_H2`)

alternative way: use :func:`~tenpy.linalg.np_conserved.expm`
exp_H2_alternative = npc.expm(-1.j * dt * H2).split_legs()
assert (npc.norm(exp_H2_alternative - exp_H2) < 1.e-14)

print("7) apply exp(H2) to even/odd bonds of the MPS and truncate with svd")
(this implements one time step of first order TEBD)
trunc_par = {'svd_min': cutoff, 'trunc_cut': None}
for even_odd in [0, 1]:

for i in range(even_odd, L - 1, 2):
theta = psi.get_theta(i, 2) # handles canonical form (i.e. scaling with 'S')
theta = npc.tensordot(exp_H2, theta, axes=(['p0*', 'p1*'], ['p0', 'p1']))
view as matrix for SVD
theta = theta.combine_legs([('vL', 'p0'), ('p1', 'vR')], new_axes=[0, 1],

→˓qconj=[+1, -1])
now theta has labels '(vL.p0)', '(p1.vR)'
U, S, V, err, invsq = svd_theta(theta, trunc_par, inner_labels=['vR', 'vL'])
psi.set_SR(i, S)
A_L = U.split_legs('(vL.p0)').ireplace_label('p0', 'p')
B_R = V.split_legs('(p1.vR)').ireplace_label('p1', 'p')
psi.set_B(i, A_L, form='A') # left-canonical form
psi.set_B(i + 1, B_R, form='B') # right-canonical form

print("finished")

11.2.3 c_tebd.py

on github.

"""Example illustrating the use of TEBD in tenpy.

The example functions in this class do the same as the ones in `toycodes/c_tebd.py`,
→˓but make use
of the classes defined in tenpy.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np

from tenpy.networks.mps import MPS

(continues on next page)

11.2. Python scripts 129

https://github.com/tenpy/tenpy/tree/main/examples/c_tebd.py

TeNPy, Release 0.8.1

(continued from previous page)

from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import tebd

def example_TEBD_gs_tf_ising_finite(L, g):
print("finite TEBD, imaginary time evolution, transverse field Ising")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
model_params = dict(L=L, J=1., g=g, bc_MPS='finite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
tebd_params = {

'order': 2,
'delta_tau_list': [0.1, 0.01, 0.001, 1.e-4, 1.e-5],
'N_steps': 10,
'max_error_E': 1.e-6,
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

},
}
eng = tebd.TEBDEngine(psi, M, tebd_params)
eng.run_GS() # the main work...

expectation values
E = np.sum(M.bond_energies(psi)) # M.bond_energies() works only a for

→˓NearestNeighborModel
alternative: directly measure E2 = np.sum(psi.expectation_value(M.H_bond[1:]))
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.sum(psi.expectation_value("Sigmax"))
mag_z = np.sum(psi.expectation_value("Sigmaz"))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result

from tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

return E, psi, M

def example_TEBD_gs_tf_ising_infinite(g):
print("infinite TEBD, imaginary time evolution, transverse field Ising")
print("g={g:.2f}".format(g=g))
model_params = dict(L=2, J=1., g=g, bc_MPS='infinite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
tebd_params = {

'order': 2,
'delta_tau_list': [0.1, 0.01, 0.001, 1.e-4, 1.e-5],
'N_steps': 10,
'max_error_E': 1.e-8,
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

(continues on next page)

130 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

},
}
eng = tebd.TEBDEngine(psi, M, tebd_params)
eng.run_GS() # the main work...
E = np.mean(M.bond_energies(psi)) # M.bond_energies() works only a for

→˓NearestNeighborModel
alternative: directly measure E2 = np.mean(psi.expectation_value(M.H_bond))
print("E (per site) = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.mean(psi.expectation_value("Sigmax"))
mag_z = np.mean(psi.expectation_value("Sigmaz"))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
compare to exact result
from tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, M

def example_TEBD_tf_ising_lightcone(L, g, tmax, dt):
print("finite TEBD, real time evolution")
print("L={L:d}, g={g:.2f}, tmax={tmax:.2f}, dt={dt:.3f}".format(L=L, g=g,

→˓tmax=tmax, dt=dt))
find ground state with TEBD or DMRG
E, psi, M = example_TEBD_gs_tf_ising_finite(L, g)
from d_dmrg import example_DMRG_tf_ising_finite
print("(run DMRG to get the groundstate)")
E, psi, M = example_DMRG_tf_ising_finite(L, g)
print("(DMRG finished)")
i0 = L // 2
apply sigmaz on site i0
psi.apply_local_op(i0, 'Sigmaz', unitary=True)
dt_measure = 0.05
tebd.TEBDEngine makes 'N_steps' steps of `dt` at once;
for second order this is more efficient.
tebd_params = {

'order': 2,
'dt': dt,
'N_steps': int(dt_measure / dt + 0.5),
'trunc_params': {

'chi_max': 50,
'svd_min': 1.e-10,
'trunc_cut': None

},
}
eng = tebd.TEBDEngine(psi, M, tebd_params)
S = [psi.entanglement_entropy()]
for n in range(int(tmax / dt_measure + 0.5)):

eng.run()
S.append(psi.entanglement_entropy())

import matplotlib.pyplot as plt
plt.figure()
plt.imshow(S[::-1],

vmin=0.,
(continues on next page)

11.2. Python scripts 131

TeNPy, Release 0.8.1

(continued from previous page)

aspect='auto',
interpolation='nearest',
extent=(0, L - 1., -0.5 * dt_measure, eng.evolved_time + 0.5 * dt_

→˓measure))
plt.xlabel('site i')
plt.ylabel('time t/J')
plt.ylim(0., tmax)
plt.colorbar().set_label('entropy S')
filename = 'c_tebd_lightcone_{g:.2f}.pdf'.format(g=g)
plt.savefig(filename)
print("saved " + filename)

def example_TEBD_gs_tf_ising_next_nearest_neighbor(L, g, Jp):
from tenpy.models.spins_nnn import SpinChainNNN2
from tenpy.models.model import NearestNeighborModel
print("finite TEBD, imaginary time evolution, transverse field Ising next-nearest

→˓neighbor")
print("L={L:d}, g={g:.2f}, Jp={Jp:.2f}".format(L=L, g=g, Jp=Jp))
model_params = dict(

L=L,
Jx=1.,
Jy=0.,
Jz=0.,
Jxp=Jp,
Jyp=0.,
Jzp=0.,
hz=g,
bc_MPS='finite',
conserve=None,

)
we start with the non-grouped sites, but next-nearest neighbor interactions,

→˓building the MPO
M = SpinChainNNN2(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)

now we group each to sites ...
psi.group_sites(n=2) # ... in the state
M.group_sites(n=2) # ... and model
now, M has only 'nearest-neighbor' interactions with respect to the grouped

→˓sites
thus, we can convert the MPO into H_bond terms:
M_nn = NearestNeighborModel.from_MPOModel(M) # hence, we can initialize H_bond

→˓from the MPO

now, we continue to run TEBD as before
tebd_params = {

'order': 2,
'delta_tau_list': [0.1, 0.01, 0.001, 1.e-4, 1.e-5],
'N_steps': 10,
'max_error_E': 1.e-6,
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

},
}

(continues on next page)

132 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

eng = tebd.TEBDEngine(psi, M_nn, tebd_params) # use M_nn and grouped psi
eng.run_GS() # the main work...

expectation values:
E = np.sum(M_nn.bond_energies(psi)) # bond_energies() works only a for

→˓NearestNeighborModel
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
we can split the sites of the state again for an easier evaluation of

→˓expectation values
psi.group_split()
mag_x = 2. * np.sum(psi.expectation_value("Sx")) # factor of 2 for Sx vs Sigmax
mag_z = 2. * np.sum(psi.expectation_value("Sz"))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
return E, psi, M

if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.INFO)
example_TEBD_gs_tf_ising_finite(L=10, g=1.)
print("=" * 100, '', '', "=" * 100, sep='\n')
example_TEBD_gs_tf_ising_infinite(g=1.5)
print("=" * 100, '', '', "=" * 100, sep='\n')
example_TEBD_tf_ising_lightcone(L=20, g=1.5, tmax=3., dt=0.01)
print("=" * 100, '', '', "=" * 100, sep='\n')
example_TEBD_gs_tf_ising_next_nearest_neighbor(L=10, g=1.0, Jp=0.1)

11.2.4 d_dmrg.py

on github.

"""Example illustrating the use of DMRG in tenpy.

The example functions in this class do the same as the ones in `toycodes/d_dmrg.py`,
but make use of the classes defined in tenpy.
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import numpy as np

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.models.spins import SpinModel
from tenpy.algorithms import dmrg

def example_DMRG_tf_ising_finite(L, g):
print("finite DMRG, transverse field Ising model")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
model_params = dict(L=L, J=1., g=g, bc_MPS='finite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)

(continues on next page)

11.2. Python scripts 133

https://github.com/tenpy/tenpy/tree/main/examples/d_dmrg.py

TeNPy, Release 0.8.1

(continued from previous page)

dmrg_params = {
'mixer': None, # setting this to True helps to escape local minima
'max_E_err': 1.e-10,
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

},
'combine': True

}
info = dmrg.run(psi, M, dmrg_params) # the main work...
E = info['E']
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.sum(psi.expectation_value("Sigmax"))
mag_z = np.sum(psi.expectation_value("Sigmaz"))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result

from tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

return E, psi, M

def example_1site_DMRG_tf_ising_finite(L, g):
print("single-site finite DMRG, transverse field Ising model")
print("L={L:d}, g={g:.2f}".format(L=L, g=g))
model_params = dict(L=L, J=1., g=g, bc_MPS='finite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
dmrg_params = {

'mixer': True, # setting this to True is essential for the 1-site algorithm
→˓to work.

'max_E_err': 1.e-10,
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

},
'combine': False,
'active_sites': 1 # specifies single-site

}
info = dmrg.run(psi, M, dmrg_params)
E = info['E']
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.sum(psi.expectation_value("Sigmax"))
mag_z = np.sum(psi.expectation_value("Sigmaz"))
print("magnetization in X = {mag_x:.5f}".format(mag_x=mag_x))
print("magnetization in Z = {mag_z:.5f}".format(mag_z=mag_z))
if L < 20: # compare to exact result

from tfi_exact import finite_gs_energy
E_exact = finite_gs_energy(L, 1., g)
print("Exact diagonalization: E = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

return E, psi, M
(continues on next page)

134 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

def example_DMRG_tf_ising_infinite(g):
print("infinite DMRG, transverse field Ising model")
print("g={g:.2f}".format(g=g))
model_params = dict(L=2, J=1., g=g, bc_MPS='infinite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
dmrg_params = {

'mixer': True, # setting this to True helps to escape local minima
'trunc_params': {

'chi_max': 30,
'svd_min': 1.e-10

},
'max_E_err': 1.e-10,

}
Sometimes, we want to call a 'DMRG engine' explicitly
eng = dmrg.TwoSiteDMRGEngine(psi, M, dmrg_params)
E, psi = eng.run() # equivalent to dmrg.run() up to the return parameters.
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.mean(psi.expectation_value("Sigmax"))
mag_z = np.mean(psi.expectation_value("Sigmaz"))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
compare to exact result
from tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))
return E, psi, M

def example_1site_DMRG_tf_ising_infinite(g):
print("single-site infinite DMRG, transverse field Ising model")
print("g={g:.2f}".format(g=g))
model_params = dict(L=2, J=1., g=g, bc_MPS='infinite', conserve=None)
M = TFIChain(model_params)
product_state = ["up"] * M.lat.N_sites
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
dmrg_params = {

'mixer': True, # setting this to True is essential for the 1-site algorithm
→˓to work.

'trunc_params': {
'chi_max': 30,
'svd_min': 1.e-10

},
'max_E_err': 1.e-10,
'combine': True

}
eng = dmrg.SingleSiteDMRGEngine(psi, M, dmrg_params)
E, psi = eng.run() # equivalent to dmrg.run() up to the return parameters.
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
mag_x = np.mean(psi.expectation_value("Sigmax"))

(continues on next page)

11.2. Python scripts 135

TeNPy, Release 0.8.1

(continued from previous page)

mag_z = np.mean(psi.expectation_value("Sigmaz"))
print("<sigma_x> = {mag_x:.5f}".format(mag_x=mag_x))
print("<sigma_z> = {mag_z:.5f}".format(mag_z=mag_z))
print("correlation length:", psi.correlation_length())
compare to exact result
from tfi_exact import infinite_gs_energy
E_exact = infinite_gs_energy(1., g)
print("Analytic result: E (per site) = {E:.13f}".format(E=E_exact))
print("relative error: ", abs((E - E_exact) / E_exact))

def example_DMRG_heisenberg_xxz_infinite(Jz, conserve='best'):
print("infinite DMRG, Heisenberg XXZ chain")
print("Jz={Jz:.2f}, conserve={conserve!r}".format(Jz=Jz, conserve=conserve))
model_params = dict(

L=2,
S=0.5, # spin 1/2
Jx=1.,
Jy=1.,
Jz=Jz, # couplings
bc_MPS='infinite',
conserve=conserve)

M = SpinModel(model_params)
product_state = ["up", "down"] # initial Neel state
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
dmrg_params = {

'mixer': True, # setting this to True helps to escape local minima
'trunc_params': {

'chi_max': 100,
'svd_min': 1.e-10,

},
'max_E_err': 1.e-10,

}
info = dmrg.run(psi, M, dmrg_params)
E = info['E']
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
Sz = psi.expectation_value("Sz") # Sz instead of Sigma z: spin-1/2 operators!
mag_z = np.mean(Sz)
print("<S_z> = [{Sz0:.5f}, {Sz1:.5f}]; mean ={mag_z:.5f}".format(Sz0=Sz[0],

Sz1=Sz[1],
mag_z=mag_z))

note: it's clear that mean(<Sz>) is 0: the model has Sz conservation!
print("correlation length:", psi.correlation_length())
corrs = psi.correlation_function("Sz", "Sz", sites1=range(10))
print("correlations <Sz_i Sz_j> =")
print(corrs)
return E, psi, M

if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.INFO)
example_DMRG_tf_ising_finite(L=10, g=1.)
print("-" * 100)
example_1site_DMRG_tf_ising_finite(L=10, g=1.)
print("-" * 100)

(continues on next page)

136 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

example_DMRG_tf_ising_infinite(g=1.5)
print("-" * 100)
example_1site_DMRG_tf_ising_infinite(g=1.5)
print("-" * 100)
example_DMRG_heisenberg_xxz_infinite(Jz=1.5)

11.2.5 e_tdvp.py

on github.

"""Example illustrating the use of TDVP in tenpy.

As of now, we have TDVP only for finite systems. The call structure is quite similar
→˓to TEBD. A
difference is that we can run one-site TDVP or two-site TDVP. In the former, the bond
→˓dimension can
not grow; the latter allows to grow the bond dimension and hence requires a
→˓truncation.
"""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3
import numpy as np
import tenpy.linalg.np_conserved as npc
import tenpy.models.spins
import tenpy.networks.mps as mps
import tenpy.networks.site as site
from tenpy.algorithms import tdvp
from tenpy.networks.mps import MPS
import copy

def run_out_of_equilibrium():
L = 10
chi = 5
delta_t = 0.1
model_params = {

'L': L,
'S': 0.5,
'conserve': 'Sz',
'Jz': 1.0,
'Jy': 1.0,
'Jx': 1.0,
'hx': 0.0,
'hy': 0.0,
'hz': 0.0,
'muJ': 0.0,
'bc_MPS': 'finite',

}

heisenberg = tenpy.models.spins.SpinChain(model_params)
product_state = ["up"] * (L // 2) + ["down"] * (L - L // 2)
starting from a domain-wall product state which is not an eigenstate of the

→˓Heisenberg model
psi = MPS.from_product_state(heisenberg.lat.mps_sites(),

product_state,
bc=heisenberg.lat.bc_MPS,

(continues on next page)

11.2. Python scripts 137

https://github.com/tenpy/tenpy/tree/main/examples/e_tdvp.py

TeNPy, Release 0.8.1

(continued from previous page)

form='B')

tdvp_params = {
'start_time': 0,
'dt': delta_t,
'trunc_params': {

'chi_max': chi,
'svd_min': 1.e-10,
'trunc_cut': None

}
}
tdvp_engine = tdvp.TDVPEngine(psi, heisenberg, tdvp_params)
times = []
S_mid = []
for i in range(30):

tdvp_engine.run_two_sites(N_steps=1)
times.append(tdvp_engine.evolved_time)
S_mid.append(psi.entanglement_entropy(bonds=[L // 2])[0])

for i in range(30):
tdvp_engine.run_one_site(N_steps=1)
#psi_2=copy.deepcopy(psi)
#psi_2.canonical_form()
times.append(tdvp_engine.evolved_time)
S_mid.append(psi.entanglement_entropy(bonds=[L // 2])[0])

import matplotlib.pyplot as plt
plt.figure()
plt.plot(times, S_mid)
plt.xlabel('t')
plt.ylabel('S')
plt.axvline(x=3.1, color='red')
plt.text(0.0, 0.0000015, "Two sites update")
plt.text(3.1, 0.0000015, "One site update")
plt.show()

if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.INFO)
run_out_of_equilibrium()

11.2.6 purification.py

on github.

from tenpy.models.tf_ising import TFIChain
from tenpy.networks.purification_mps import PurificationMPS
from tenpy.algorithms.purification import PurificationTEBD, PurificationApplyMPO

def imag_tebd(L=30, beta_max=3., dt=0.05, order=2, bc="finite"):
model_params = dict(L=L, J=1., g=1.2)
M = TFIChain(model_params)
psi = PurificationMPS.from_infiniteT(M.lat.mps_sites(), bc=bc)
options = {

'trunc_params': {

(continues on next page)

138 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/examples/purification.py

TeNPy, Release 0.8.1

(continued from previous page)

'chi_max': 100,
'svd_min': 1.e-8

},
'order': order,
'dt': dt,
'N_steps': 1

}
beta = 0.
eng = PurificationTEBD(psi, M, options)
Szs = [psi.expectation_value("Sz")]
betas = [0.]
while beta < beta_max:

beta += 2. * dt # factor of 2: |psi> ~= exp^{- dt H}, but rho = |psi><psi|
betas.append(beta)
eng.run_imaginary(dt) # cool down by dt
Szs.append(psi.expectation_value("Sz")) # and further measurements...

return {'beta': betas, 'Sz': Szs}

def imag_apply_mpo(L=30, beta_max=3., dt=0.05, order=2, bc="finite", approx="II"):
model_params = dict(L=L, J=1., g=1.2)
M = TFIChain(model_params)
psi = PurificationMPS.from_infiniteT(M.lat.mps_sites(), bc=bc)
options = {'trunc_params': {'chi_max': 100, 'svd_min': 1.e-8}}
beta = 0.
if order == 1:

Us = [M.H_MPO.make_U(-dt, approx)]
elif order == 2:

Us = [M.H_MPO.make_U(-d * dt, approx) for d in [0.5 + 0.5j, 0.5 - 0.5j]]
eng = PurificationApplyMPO(psi, Us[0], options)
Szs = [psi.expectation_value("Sz")]
betas = [0.]
while beta < beta_max:

beta += 2. * dt # factor of 2: |psi> ~= exp^{- dt H}, but rho = |psi><psi|
betas.append(beta)
for U in Us:

eng.init_env(U) # reset environment, initialize new copy of psi
eng.run() # apply U to psi

Szs.append(psi.expectation_value("Sz")) # and further measurements...
return {'beta': betas, 'Sz': Szs}

if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.INFO)
data_tebd = imag_tebd()
data_mpo = imag_apply_mpo()

import numpy as np
from matplotlib.pyplot import plt

plt.plot(data_mpo['beta'], np.sum(data_mpo['Sz'], axis=1), label='MPO')
plt.plot(data_tebd['beta'], np.sum(data_tebd['Sz'], axis=1), label='TEBD')
plt.xlabel(r'β')
plt.ylabel(r'total S^z')
plt.show()

11.2. Python scripts 139

TeNPy, Release 0.8.1

11.2.7 tfi_exact.py

on github.

"""Provides exact ground state energies for the transverse field ising model for
→˓comparison.

The Hamiltonian reads
.. math ::

H = - J \\sum_{i} \\sigma^x_i \\sigma^x_{i+1} - g \\sum_{i} \\sigma^z_i
"""
Copyright 2019-2021 TeNPy Developers, GNU GPLv3

import numpy as np
import scipy.sparse as sparse
import scipy.sparse.linalg.eigen.arpack as arp
import warnings
import scipy.integrate

def finite_gs_energy(L, J, g):
"""For comparison: obtain ground state energy from exact diagonalization.

Exponentially expensive in L, only works for small enough `L` <~ 20.
"""
if L >= 20:

warnings.warn("Large L: Exact diagonalization might take a long time!")
get single site operaors
sx = sparse.csr_matrix(np.array([[0., 1.], [1., 0.]]))
sz = sparse.csr_matrix(np.array([[1., 0.], [0., -1.]]))
id = sparse.csr_matrix(np.eye(2))
sx_list = [] # sx_list[i] = kron([id, id, ..., id, sx, id, id])
sz_list = []
for i_site in range(L):

x_ops = [id] * L
z_ops = [id] * L
x_ops[i_site] = sx
z_ops[i_site] = sz
X = x_ops[0]
Z = z_ops[0]
for j in range(1, L):

X = sparse.kron(X, x_ops[j], 'csr')
Z = sparse.kron(Z, z_ops[j], 'csr')

sx_list.append(X)
sz_list.append(Z)

H_xx = sparse.csr_matrix((2**L, 2**L))
H_z = sparse.csr_matrix((2**L, 2**L))
for i in range(L - 1):

H_xx = H_xx + sx_list[i] * sx_list[(i + 1) % L]
for i in range(L):

H_z = H_z + sz_list[i]
H = -J * H_xx - g * H_z
E, V = arp.eigsh(H, k=1, which='SA', return_eigenvectors=True, ncv=20)
return E[0]

def infinite_gs_energy(J, g):
"""For comparison: Calculate groundstate energy density from analytic formula.

(continues on next page)

140 Chapter 11. Examples

https://github.com/tenpy/tenpy/tree/main/examples/tfi_exact.py

TeNPy, Release 0.8.1

(continued from previous page)

The analytic formula stems from mapping the model to free fermions, see P. Pfeuty,
→˓ The one-

dimensional Ising model with a transverse field, Annals of Physics 57, p. 79
→˓(1970). Note that

we use Pauli matrices compared this reference using spin-1/2 matrices and replace
→˓the sum_k ->

integral dk/2pi to obtain the result in the N -> infinity limit.
"""
def f(k, lambda_):

return np.sqrt(1 + lambda_**2 + 2 * lambda_ * np.cos(k))

E0_exact = -g / (J * 2. * np.pi) * scipy.integrate.quad(f, -np.pi, np.pi, args=(J
→˓/ g,))[0]

return E0_exact

11.2.8 z_exact_diag.py

on github.

"""A simple example comparing DMRG output with full diagonalization (ED).

Sorry that this is not well documented! ED is meant to be used for debugging only ;)
"""
Copyright 2018-2021 TeNPy Developers, GNU GPLv3

import tenpy.linalg.np_conserved as npc
from tenpy.models.xxz_chain import XXZChain
from tenpy.networks.mps import MPS

from tenpy.algorithms.exact_diag import ExactDiag
from tenpy.algorithms import dmrg

def example_exact_diagonalization(L, Jz):
xxz_pars = dict(L=L, Jxx=1., Jz=Jz, hz=0.0, bc_MPS='finite')
M = XXZChain(xxz_pars)

product_state = ["up", "down"] * (xxz_pars['L'] // 2) # this selects a charge
→˓sector!

psi_DMRG = MPS.from_product_state(M.lat.mps_sites(), product_state)
charge_sector = psi_DMRG.get_total_charge(True) # ED charge sector should match

ED = ExactDiag(M, charge_sector=charge_sector, max_size=2.e6)
ED.build_full_H_from_mpo()
ED.build_full_H_from_bonds() # whatever you prefer
print("start diagonalization")
ED.full_diagonalization() # the expensive part for large L
E0_ED, psi_ED = ED.groundstate() # return the ground state
print("psi_ED =", psi_ED)

print("run DMRG")
dmrg.run(psi_DMRG, M, {'verbose': 0}) # modifies psi_DMRG in place!
first way to compare ED with DMRG: convert MPS to ED vector
psi_DMRG_full = ED.mps_to_full(psi_DMRG)

(continues on next page)

11.2. Python scripts 141

https://github.com/tenpy/tenpy/tree/main/examples/z_exact_diag.py

TeNPy, Release 0.8.1

(continued from previous page)

print("psi_DMRG_full =", psi_DMRG_full)
ov = npc.inner(psi_ED, psi_DMRG_full, axes='range', do_conj=True)
print("<psi_ED|psi_DMRG_full> =", ov)
assert (abs(abs(ov) - 1.) < 1.e-13)

second way: convert ED vector to MPS
psi_ED_mps = ED.full_to_mps(psi_ED)
ov2 = psi_ED_mps.overlap(psi_DMRG)
print("<psi_ED_mps|psi_DMRG> =", ov2)
assert (abs(abs(ov2) - 1.) < 1.e-13)
assert (abs(ov - ov2) < 1.e-13)
-> advantage: expectation_value etc. of MPS are available!
print("<Sz> =", psi_ED_mps.expectation_value('Sz'))

if __name__ == "__main__":
example_exact_diagonalization(10, 1.)

11.3 Jupyter Notebooks

This is a collection of [jupyter] notebooks from the [TeNPyNotebooks] repository. You need to install TeNPy to
execute them (see Installation instructions), but you can copy them anywhere before execution. Note that some of
them might take a while to run, as they contain more extensive examples.

11.3.1 A first TEBD Example

Like examples/c_tebd.py, this notebook shows the basic interface for TEBD. It initalized the transverse field
Ising model 𝐻 = 𝐽𝑋𝑋 + 𝑔𝑍 at the critical point 𝐽 = 𝑔 = 1, and an MPS in the all-up state | ↑ · · · ↑⟩. It then
performs a real-time evolution with TEBD and measures a few observables. This setup correspond to a global quench
from 𝑔 = ∞ to 𝑔 = 1.

[1]: import numpy as np
import scipy
import matplotlib.pyplot as plt
import matplotlib

[2]: import tenpy
import tenpy.linalg.np_conserved as npc
from tenpy.algorithms import tebd
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain

[3]: L = 30

[4]: model_params = {
'J': 1. , 'g': 1., # critical
'L': L,
'bc_MPS': 'finite',

}

M = TFIChain(model_params)

142 Chapter 11. Examples

TeNPy, Release 0.8.1

Reading 'bc_MPS'='finite' for config TFIChain
Reading 'L'=30 for config TFIChain
Reading 'J'=1.0 for config TFIChain
Reading 'g'=1.0 for config TFIChain

[5]: psi = MPS.from_lat_product_state(M.lat, [['up']])

[6]: tebd_params = {
'N_steps': 1,
'dt': 0.1,
'order': 4,
'trunc_params': {'chi_max': 100, 'svd_min': 1.e-12}

}
eng = tebd.Engine(psi, M, tebd_params)

Subconfig 'trunc_params'=Config(<3 options>, 'trunc_params') for config TEBD

[7]: def measurement(eng, data):
keys = ['t', 'entropy', 'Sx', 'Sz', 'corr_XX', 'corr_ZZ', 'trunc_err']
if data is None:

data = dict([(k, []) for k in keys])
data['t'].append(eng.evolved_time)
data['entropy'].append(eng.psi.entanglement_entropy())
data['Sx'].append(eng.psi.expectation_value('Sigmax'))
data['Sz'].append(eng.psi.expectation_value('Sigmaz'))
data['corr_XX'].append(eng.psi.correlation_function('Sigmax', 'Sigmax'))
data['trunc_err'].append(eng.trunc_err.eps)
return data

[8]: data = measurement(eng, None)

[9]: while eng.evolved_time < 5.:
eng.run()
measurement(eng, data)

Reading 'dt'=0.1 for config TEBD
Reading 'N_steps'=1 for config TEBD
Reading 'order'=4 for config TEBD
Calculate U for {'order': 4, 'delta_t': 0.1, 'type_evo': 'real', 'E_offset': None,
→˓'tau': 0.1}
--> time=0.100, max_chi=6, Delta_S=5.5243e-02, S=0.0552432967, since last update: 0.5
→˓s
--> time=0.200, max_chi=6, Delta_S=1.0453e-01, S=0.1597705686, since last update: 0.5
→˓s
--> time=0.300, max_chi=8, Delta_S=1.1368e-01, S=0.2734471407, since last update: 0.5
→˓s
--> time=0.400, max_chi=10, Delta_S=1.0226e-01, S=0.3757082127, since last update: 0.
→˓5 s
--> time=0.500, max_chi=12, Delta_S=8.2474e-02, S=0.4581821173, since last update: 0.
→˓5 s
--> time=0.600, max_chi=12, Delta_S=6.3393e-02, S=0.5215746922, since last update: 0.
→˓5 s
--> time=0.700, max_chi=15, Delta_S=5.0837e-02, S=0.5724119006, since last update: 0.
→˓5 s
--> time=0.800, max_chi=18, Delta_S=4.7046e-02, S=0.6194580889, since last update: 0.
→˓5 s

(continues on next page)

11.3. Jupyter Notebooks 143

TeNPy, Release 0.8.1

(continued from previous page)

--> time=0.900, max_chi=20, Delta_S=5.0606e-02, S=0.6700636890, since last update: 0.
→˓5 s
--> time=1.000, max_chi=20, Delta_S=5.7462e-02, S=0.7275254979, since last update: 0.
→˓5 s
--> time=1.100, max_chi=24, Delta_S=6.3115e-02, S=0.7906402648, since last update: 0.
→˓5 s
--> time=1.200, max_chi=26, Delta_S=6.4779e-02, S=0.8554189184, since last update: 0.
→˓5 s
--> time=1.300, max_chi=30, Delta_S=6.2269e-02, S=0.9176882429, since last update: 0.
→˓5 s
--> time=1.400, max_chi=34, Delta_S=5.7451e-02, S=0.9751394599, since last update: 0.
→˓5 s
--> time=1.500, max_chi=40, Delta_S=5.2899e-02, S=1.0280386118, since last update: 0.
→˓5 s
--> time=1.600, max_chi=40, Delta_S=5.0543e-02, S=1.0785817862, since last update: 0.
→˓5 s
--> time=1.700, max_chi=46, Delta_S=5.0852e-02, S=1.1294340516, since last update: 0.
→˓5 s
--> time=1.800, max_chi=52, Delta_S=5.2841e-02, S=1.1822748827, since last update: 0.
→˓7 s
--> time=1.900, max_chi=57, Delta_S=5.4804e-02, S=1.2370787276, since last update: 0.
→˓9 s
--> time=2.000, max_chi=62, Delta_S=5.5311e-02, S=1.2923895877, since last update: 0.
→˓9 s
--> time=2.100, max_chi=71, Delta_S=5.3906e-02, S=1.3462960135, since last update: 1.
→˓0 s
--> time=2.200, max_chi=80, Delta_S=5.1209e-02, S=1.3975050668, since last update: 1.
→˓2 s
--> time=2.300, max_chi=85, Delta_S=4.8446e-02, S=1.4459514729, since last update: 1.
→˓4 s
--> time=2.400, max_chi=95, Delta_S=4.6732e-02, S=1.4926837515, since last update: 1.
→˓4 s
--> time=2.500, max_chi=100, Delta_S=4.6486e-02, S=1.5391700161, since last update: 1.
→˓8 s
--> time=2.600, max_chi=100, Delta_S=4.7282e-02, S=1.5864521162, since last update: 1.
→˓9 s
--> time=2.700, max_chi=100, Delta_S=4.8160e-02, S=1.6346120966, since last update: 1.
→˓9 s
--> time=2.800, max_chi=100, Delta_S=4.8202e-02, S=1.6828138289, since last update: 1.
→˓6 s
--> time=2.900, max_chi=100, Delta_S=4.7044e-02, S=1.7298576742, since last update: 1.
→˓7 s
--> time=3.000, max_chi=100, Delta_S=4.5033e-02, S=1.7748910539, since last update: 1.
→˓6 s
--> time=3.100, max_chi=100, Delta_S=4.2960e-02, S=1.8178514255, since last update: 1.
→˓5 s
--> time=3.200, max_chi=100, Delta_S=4.1575e-02, S=1.8594265450, since last update: 1.
→˓4 s
--> time=3.300, max_chi=100, Delta_S=4.1182e-02, S=1.9006080872, since last update: 1.
→˓4 s
--> time=3.400, max_chi=100, Delta_S=4.1503e-02, S=1.9421110677, since last update: 1.
→˓4 s
--> time=3.500, max_chi=100, Delta_S=4.1873e-02, S=1.9839839097, since last update: 1.
→˓6 s
--> time=3.600, max_chi=100, Delta_S=4.1645e-02, S=2.0256293591, since last update: 1.
→˓6 s
--> time=3.700, max_chi=100, Delta_S=4.0570e-02, S=2.0661996178, since last update: 1.
→˓8 s (continues on next page)

144 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

--> time=3.800, max_chi=100, Delta_S=3.8897e-02, S=2.1050963078, since last update: 1.
→˓6 s
--> time=3.900, max_chi=100, Delta_S=3.7189e-02, S=2.1422855970, since last update: 2.
→˓0 s
--> time=4.000, max_chi=100, Delta_S=3.5994e-02, S=2.1782792652, since last update: 1.
→˓6 s
--> time=4.100, max_chi=100, Delta_S=3.5534e-02, S=2.2138131347, since last update: 1.
→˓6 s
--> time=4.200, max_chi=100, Delta_S=3.5597e-02, S=2.2494096463, since last update: 1.
→˓6 s
--> time=4.300, max_chi=100, Delta_S=3.5673e-02, S=2.2850830917, since last update: 1.
→˓5 s
--> time=4.400, max_chi=100, Delta_S=3.5272e-02, S=2.3203546259, since last update: 1.
→˓4 s
--> time=4.500, max_chi=100, Delta_S=3.4188e-02, S=2.3545423452, since last update: 1.
→˓4 s
--> time=4.600, max_chi=100, Delta_S=3.2596e-02, S=2.3871383468, since last update: 1.
→˓4 s
--> time=4.700, max_chi=100, Delta_S=3.0915e-02, S=2.4180531110, since last update: 1.
→˓6 s
--> time=4.800, max_chi=100, Delta_S=2.9546e-02, S=2.4475988717, since last update: 1.
→˓7 s
--> time=4.900, max_chi=100, Delta_S=2.8630e-02, S=2.4762292780, since last update: 1.
→˓6 s
--> time=5.000, max_chi=100, Delta_S=2.7962e-02, S=2.5041913364, since last update: 1.
→˓6 s
--> time=5.100, max_chi=100, Delta_S=2.7099e-02, S=2.5312904883, since last update: 1.
→˓6 s

[10]: plt.plot(data['t'], np.array(data['entropy'])[:, L//2])
plt.xlabel('time t')
plt.ylabel('entropy S')

[10]: Text(0, 0.5, 'entropy S')

The growth of 𝑆 linear in time is typical for a global quench and to be expected from the quasi-particle picture

11.3. Jupyter Notebooks 145

TeNPy, Release 0.8.1

[11]: plt.plot(data['t'], np.sum(data['Sx'], axis=1), label="X")
plt.plot(data['t'], np.sum(data['Sz'], axis=1), label="Z")

plt.xlabel('time t')
plt.ylabel('magnetization')
plt.legend(loc='best')

[11]: <matplotlib.legend.Legend at 0x7f1018760e80>

The strict conservation of X being zero is ensured by charge conservation, because X changes the parity sector.

Nevertheless, the XX correlation function can be nontrivial:

[12]: corrs = np.array(data['corr_XX'])
tmax = data['t'][-1]
x = np.arange(L)
cmap = matplotlib.cm.viridis
for i, t in list(enumerate(data['t'])):

if i == 0 or i == len(data['t']) - 1:
label = '{t:.2f}'.format(t=t)

else:
label = None

plt.plot(x, corrs[i, L//2, :], color=cmap(t/tmax), label=label)

plt.xlabel(r'time t')
plt.ylabel(r'correlations $\langle X_i X_{j:d}\rangle$'.format(j=L//2))
plt.yscale('log')
plt.ylim(1.e-6, 1.)
plt.legend()
plt.show()

146 Chapter 11. Examples

TeNPy, Release 0.8.1

The output of the run showed that we gradually increased the bond dimension and only reached the maximum chi
around 𝑡 = 2.5. At this point we start to truncate significantly, because we cut off the tail whatever the singular values
are. This is clearly visible if we plot the truncation error vs. time. Note the log-scale, though: if you are fine with an
error of say 1 permille for expectation values, you can still go on for a bit more!

[13]: plt.plot(data['t'], data['trunc_err'])

plt.yscale('log')
#plt.ylim(1.e-15, 1.)
plt.xlabel('time t')
plt.ylabel('truncation error')

[13]: Text(0, 0.5, 'truncation error')

[]:

11.3. Jupyter Notebooks 147

TeNPy, Release 0.8.1

11.3.2 A first finite DMRG Example

Like examples/d_dmrg.py, this notebook shows the basic interface for DMRG. It initalized the transverse field
Ising model 𝐻 = 𝐽𝑋𝑋 + 𝑔𝑍 at the critical point 𝐽 = 𝑔 = 1, and a finite MPS in the all-up state | ↑ · · · ↑⟩. It then
runs DMRG to find the ground state. Finally, we look at the profile of the entanglement-cuts.

[1]: import numpy as np
import scipy
import matplotlib.pyplot as plt

[2]: import tenpy
import tenpy.linalg.np_conserved as npc
from tenpy.algorithms import dmrg
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain

[3]: L = 100

[4]: model_params = {
'J': 1. , 'g': 1., # critical
'L': L,
'bc_MPS': 'finite',

}

M = TFIChain(model_params)

Reading 'bc_MPS'='finite' for config TFIChain
Reading 'L'=100 for config TFIChain
Reading 'J'=1.0 for config TFIChain
Reading 'g'=1.0 for config TFIChain

[5]: psi = MPS.from_lat_product_state(M.lat, [['up']])

[6]: dmrg_params = {
'mixer': None, # setting this to True helps to escape local minima
'max_E_err': 1.e-10,
'trunc_params': {

'chi_max': 100,
'svd_min': 1.e-10,

},
'verbose': True,
'combine': True

}
eng = dmrg.TwoSiteDMRGEngine(psi, M, dmrg_params)
E, psi = eng.run() # the main work; modifies psi in place

Reading 'combine'=True for config TwoSiteDMRGEngine
Subconfig 'trunc_params'=Config(<3 options>, 'trunc_params') for config
→˓TwoSiteDMRGEngine
Reading 'max_E_err'=1e-10 for config TwoSiteDMRGEngine
Reading 'mixer'=None for config TwoSiteDMRGEngine
==
sweep 1, age = 100
Energy = -126.9290280127265333, S = 0.3766760098039985, norm_err = 1.2e-01
Current memory usage 97.4 MB, time elapsed: 2.3 s
Delta E = nan, Delta S = nan (per sweep)
max_trunc_err = 0.0000e+00, max_E_trunc = 1.8474e-13

(continues on next page)

148 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

MPS bond dimensions: [2, 4,
→˓4, 4,
→˓4, 4,
→˓4, 2]
==
sweep 2, age = 100
Energy = -126.9618018107068309, S = 0.5108558254154341, norm_err = 7.0e-03
Current memory usage 99.5 MB, time elapsed: 5.6 s
Delta E = -3.2774e-02, Delta S = 1.3418e-01 (per sweep)
max_trunc_err = 0.0000e+00, max_E_trunc = 1.9895e-13
MPS bond dimensions: [2, 4, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
→˓ 16,
→˓ 16,
→˓ 16,
→˓ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 4, 2]
==
sweep 3, age = 100
Energy = -126.9618767383882130, S = 0.5277643082687588, norm_err = 1.1e-05
Current memory usage 107.0 MB, time elapsed: 10.1 s
Delta E = -7.4928e-05, Delta S = 1.6908e-02 (per sweep)
max_trunc_err = 4.7789e-20, max_E_trunc = 2.8422e-13
MPS bond dimensions: [2, 4, 8, 16, 27, 35, 39, 43, 46, 49, 49, 52, 55, 60, 62, 64, 64,
→˓ 64,
→˓ 64,
→˓ 64,
→˓ 64, 64, 61, 59, 60, 55, 51, 47, 44, 42, 42, 38, 35, 32, 23, 16, 8, 4, 2]
==
sweep 4, age = 100
Energy = -126.9618767396799086, S = 0.5277994024302479, norm_err = 5.8e-10
Current memory usage 115.4 MB, time elapsed: 16.9 s
Delta E = -1.2917e-09, Delta S = 3.5094e-05 (per sweep)
max_trunc_err = 1.3388e-18, max_E_trunc = 2.8422e-13
MPS bond dimensions: [2, 4, 8, 16, 22, 30, 34, 36, 41, 45, 47, 48, 52, 54, 57, 61, 61,
→˓ 63, 64, 66, 67, 70, 71, 72, 74, 76, 76, 77, 79, 79, 80, 82, 83, 83, 83, 84, 84, 84,
→˓ 84, 86, 86, 89, 88, 89, 89, 88, 88, 89, 88, 88, 88, 87, 86, 87, 87, 87, 87, 86, 86,
→˓ 85, 85, 84, 84, 84, 83, 83, 83, 83, 81, 80, 79, 77, 77, 77, 75, 73, 71, 70, 67, 66,
→˓ 64, 62, 61, 61, 57, 54, 52, 48, 47, 45, 41, 36, 34, 30, 22, 16, 8, 4, 2]
==
sweep 5, age = 100
Energy = -126.9618767396792691, S = 0.5277994025033066, norm_err = 2.1e-13
Current memory usage 115.4 MB, time elapsed: 20.4 s
Delta E = 6.3949e-13, Delta S = 7.3059e-11 (per sweep)
max_trunc_err = 6.5986e-20, max_E_trunc = 3.1264e-13
MPS bond dimensions: [2, 4, 8, 16, 22, 30, 34, 36, 41, 45, 47, 48, 52, 54, 57, 61, 61,
→˓ 63, 64, 66, 67, 71, 71, 74, 77, 77, 78, 79, 81, 81, 81, 83, 83, 84, 85, 85, 85, 85,
→˓ 86, 88, 89, 90, 90, 90, 90, 90, 90, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 89,
→˓ 88, 86, 86, 85, 85, 85, 84, 83, 83, 81, 81, 81, 79, 78, 78, 77, 73, 71, 71, 67, 66,
→˓ 64, 63, 61, 61, 57, 54, 52, 48, 47, 45, 41, 36, 34, 30, 22, 16, 8, 4, 2]
==
DMRG finished after 5 sweeps.
total size = 100, maximum chi = 91
==

11.3. Jupyter Notebooks 149

TeNPy, Release 0.8.1

Expectation Values

[7]: # the ground state energy was directly returned by dmrg.run()
print("ground state energy = ", E)

there are other ways to extract the energy from psi:
E1 = M.H_MPO.expectation_value(psi) # based on the MPO
E2 = np.sum(M.bond_energies(psi)) # based on bond terms of H, works only for a
→˓NearestNeighborModel
assert abs(E-E1) < 1.e-10 and abs(E-E2) < 1.e-10

ground state energy = -126.96187673967927

[8]: # onsite expectation values

X = psi.expectation_value("Sigmax")
Z = psi.expectation_value("Sigmaz")
x = np.arange(psi.L)
plt.figure()
plt.plot(x, Z, label="Z")
plt.plot(x, X, label="X") # note: it's clear that this is zero due to charge
→˓conservation!
plt.xlabel("site")
plt.ylabel("onsite expectation value")
plt.legend()
plt.show()

[9]: # correlation functions

i0 = psi.L // 4 # for fixed `i`
j = np.arange(i0 + 1, psi.L)
XX = psi.term_correlation_function_right([("Sigmax", 0)], [("Sigmax", 0)], i_L=i0, j_
→˓R=j)
XX_disc = XX - X[i0] * X[j]
ZZ = psi.term_correlation_function_right([("Sigmaz", 0)], [("Sigmaz", 0)], i_L=i0, j_
→˓R=j)
ZZ_disc = ZZ - Z[i0] * Z[j]

dx = j - i0
(continues on next page)

150 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

plt.figure()
plt.plot(dx, XX_disc, label="X X")
plt.plot(dx, ZZ_disc, label="Z Z")
plt.xlabel(r"distance $|i-j|$")
plt.ylabel(r"disconnected correlations $\langle A_i A_j\rangle - \langle A_i \rangle\
→˓langle A_j\rangle$")
plt.legend()
plt.loglog()
plt.show()

We find power-law decaying correlations, as expected for a critical model. For a gapped model, we would expect
exponentially decaying correlations.

We now look at the entanglement entropy. The transverse-field Ising model is critical at 𝑔 = 𝐽 . Conformal field
theory, Calabrese,Cardy 2004, predicts an entanglement entropy profile of

𝑆(𝑙, 𝐿) =
𝑐

6
log

(︂
2𝐿

𝜋𝑎
sin

(︂
𝜋𝑙

𝐿

)︂)︂
+ const

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑐 = 0.5‘𝑖𝑠𝑡ℎ𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑐ℎ𝑎𝑟𝑔𝑒, : 𝑚𝑎𝑡ℎ : ‘𝑎‘𝑖𝑠𝑡ℎ𝑒𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠𝑝𝑎𝑐𝑖𝑛𝑔(𝑤𝑒𝑠𝑒𝑡 : 𝑚𝑎𝑡ℎ : ‘𝑎 = 1‘), : 𝑚𝑎𝑡ℎ : ‘𝐿‘𝑖𝑠𝑡ℎ𝑒𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑛𝑑𝑤𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑜𝑓𝑠𝑖𝑧𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑙‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝐿− 𝑙‘𝑎𝑠𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡.𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡𝑡ℎ𝑖𝑠𝑦𝑖𝑒𝑙𝑑𝑠𝑡ℎ𝑒𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟 : 𝑚𝑎𝑡ℎ : ‘𝑆(𝐿/2, 𝐿) =
𝑐

6
log(𝐿) + const‘𝑓𝑜𝑟𝑡ℎ𝑒ℎ𝑎𝑙𝑓 − 𝑐ℎ𝑎𝑖𝑛𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑎𝑠𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑖𝑧𝑒.

[12]: S = psi.entanglement_entropy()

bonds = np.arange(0.5, psi.L-1)
plt.plot(bonds, S, 'o', label="S")

preform fit to extract the central charge
central_charge, const, res = tenpy.tools.fit.central_charge_from_S_profile(psi)
fit = tenpy.tools.fit.entropy_profile_from_CFT(bonds + 0.5, psi.L, central_charge,
→˓const)
print(f"extraced central charge {central_charge:.5f} with residuum {res:.2e}")
print("(Expect central charge = 0.5 for the transverse field Ising model.)")
plt.plot(bonds, fit, label=f"fit with $c={central_charge:.3f}$")
plt.xlabel("bond")
plt.ylabel("entanglement entropy S")

(continues on next page)

11.3. Jupyter Notebooks 151

https://arxiv.org/abs/hep-th/0405152

TeNPy, Release 0.8.1

(continued from previous page)

plt.legend()
plt.show()

extraced central charge 0.50788 with residuum 1.95e-09
(Expect central charge = 0.5 for the transverse field Ising model.)

[]:

11.3.3 Lattices: visualization and further examples

This notebook demonstrates a few ways to visualize lattices and couplings inside the lattice.

[1]: import tenpy

[2]: import numpy as np
import matplotlib.pyplot as plt
from tenpy.models import lattice

In the following, we will focus on the Honeycomb lattice as an example with a non-trivial unit cell. If you want to try
it out yourself for a different lattice, simply adjust the following alias and re-run all the cells below:

[3]: MyLattice = lattice.Honeycomb
Lu = MyLattice.Lu # = 2 = the number of sites in the unit cell
fig_args = dict(figsize=(7, 5), dpi=150) # make figures a bit larger

plotting the lattice itself

To get started, let’s recall that a lattice consists of a unit cell that is repeated in the directions of the basis. The following
plot visualizes the first unit cell and basis and plots the sites in the whole lattice. For the Honeycomb lattice, we have
two different sites in the unit cell, which get visualized by different markers.

[4]: lat = MyLattice(5, 4, sites=None, bc='periodic')

152 Chapter 11. Examples

TeNPy, Release 0.8.1

[5]: plt.figure(**fig_args)
ax = plt.gca()
lat.plot_sites(ax)
ax.set_aspect('equal')

lat.plot_basis(ax, origin=-0.5*(lat.basis[0] + lat.basis[1]))
ax.set_xlim(-1)
ax.set_ylim(-1)

[5]: (-1, 5.525)

We can also plot the nearest- and next-nearest-neighbor bonds:

[6]: plt.figure(**fig_args)

(continues on next page)

11.3. Jupyter Notebooks 153

TeNPy, Release 0.8.1

(continued from previous page)

ax = plt.gca()
lat.plot_sites(ax)
lat.plot_coupling(ax)
lat.plot_coupling(ax, lat.pairs['next_nearest_neighbors'], linestyle=':', color='r')
ax.set_aspect('equal')

If you have a 1D MPS, it’s winding through the lattice is defined by the order (See the userguide with “Details on
the lattice geometry”). You can plot it as follows:

[7]: plt.figure(**fig_args)
ax = plt.gca()
lat.plot_sites(ax)
lat.plot_order(ax)

(continues on next page)

154 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

ax.set_aspect('equal')

11.3. Jupyter Notebooks 155

TeNPy, Release 0.8.1

Visually verifying pairs of couplings by plotting them

In this section, we visually verify that the lattice pairs like the nearest_neighbors are indeed what they claim
to be. To acchieve this, we first get all the possible distances of them, plot circles with these distances and lines
connecting the points for each distance.

Then, you have to stare at the plots and verify that these couplings include all pairs you want to have.

[8]: lat = MyLattice(12, 12, sites=None, bc='periodic') # the lattice to plot
lat_pairs = lat.pairs # the coupling pairs to plot

[9]: # get distances of the couplings
dist_pair = {}
for pair in lat_pairs:

#print(pair)
dist = None
for u1, u2, dx in lat_pairs[pair]:

d = lat.distance(u1, u2, dx)
#print(u1, u2, dx, d)
if dist is None:

dist = d
dist_pair[d] = pair

else:
assert abs(dist-d) < 1.e-14

dists = sorted(dist_pair.keys())
if len(dists) != len(lat_pairs):

raise ValueError("no unique mapping dist -> pair")

[10]: print("(dist) (pairs)")
for d in dists:

print("{0:.6f} {1}".format(d, dist_pair[d]))

(dist) (pairs)
0.577350 nearest_neighbors
1.000000 next_nearest_neighbors
1.154701 next_next_nearest_neighbors
1.527525 fourth_nearest_neighbors
1.732051 fifth_nearest_neighbors

[11]: colors = [plt.cm.viridis(r/dists[-1]) for r in dists]
centers = np.array([[3, 3, 0], [8, 3, 1], [3, 8, 2], [8, 8, 3]]) # one center for
→˓each site in the unit cell
us = list(range(Lu))

[12]: fig = plt.figure(**fig_args)
ax = plt.gca()

lat.plot_sites(ax, markersize=1.3)
for u, center in zip(us, centers):

center = lat.position(center)
for r, c in zip(dists, colors):

circ = plt.Circle(center, r, fill=False, color=c)
ax.add_artist(circ)

ax.set_aspect(1.)
t = ax.set_title("distances: " + ' '.join(['{0:.2f}'.format(d) for d in dists]))

156 Chapter 11. Examples

TeNPy, Release 0.8.1

[13]: for dist in dists:
pair_name = dist_pair[dist]
print(dist, pair_name)
pairs = lat.pairs[pair_name]
fig = plt.figure(**fig_args)
ax = plt.gca()
lat.plot_sites(ax, markersize=1.3)
for u, center in zip(us, centers):

center = lat.position(center)
for r, c in zip(dists, colors):

(continues on next page)

11.3. Jupyter Notebooks 157

TeNPy, Release 0.8.1

(continued from previous page)

circ = plt.Circle(center, r, fill=False, color=c)
ax.add_artist(circ)

pairs_with_reverse = pairs + [(u2, u1, -np.array(dx)) for u1, u2, dx in pairs]
for u1, u2, dx in pairs_with_reverse:

print(u1, u2, dx, lat.distance(u1, u2, dx))
start = centers[u1]
end = start.copy()
end[-1] = u2
end[:-1] = start[:-1] + dx
x1, y1 = lat.position(start)
x2, y2 = lat.position(end)
ax.arrow(x1, y1, x2-x1, y2 - y1)

for u in us:
x, y = lat.position(centers[u])
number = lat.count_neighbors(u, pair_name)
ax.text(x, y, str(number), color='r')

ax.set_aspect(1.)
ax.set_title(pair_name + ' distance = {0:.3f}'.format(dist))

0.5773502691896258 nearest_neighbors
0 1 [0 0] 0.5773502691896258
1 0 [1 0] 0.5773502691896257
1 0 [0 1] 0.5773502691896258
1 0 [0 0] 0.5773502691896258
0 1 [-1 0] 0.5773502691896257
0 1 [0 -1] 0.5773502691896258
0.9999999999999999 next_nearest_neighbors
0 0 [1 0] 0.9999999999999999
0 0 [0 1] 1.0
0 0 [1 -1] 0.9999999999999999
1 1 [1 0] 0.9999999999999999
1 1 [0 1] 1.0
1 1 [1 -1] 0.9999999999999999
0 0 [-1 0] 0.9999999999999999
0 0 [0 -1] 1.0
0 0 [-1 1] 0.9999999999999999
1 1 [-1 0] 0.9999999999999999
1 1 [0 -1] 1.0
1 1 [-1 1] 0.9999999999999999
1.1547005383792515 next_next_nearest_neighbors
1 0 [1 1] 1.1547005383792515
0 1 [-1 1] 1.1547005383792515
0 1 [1 -1] 1.1547005383792515
0 1 [-1 -1] 1.1547005383792515
1 0 [1 -1] 1.1547005383792515
1 0 [-1 1] 1.1547005383792515
1.5275252316519468 fourth_nearest_neighbors
0 1 [0 1] 1.5275252316519468
0 1 [1 0] 1.5275252316519465
0 1 [1 -2] 1.5275252316519465
0 1 [0 -2] 1.5275252316519468
0 1 [-2 0] 1.5275252316519465
0 1 [-2 1] 1.5275252316519465
1 0 [0 -1] 1.5275252316519468
1 0 [-1 0] 1.5275252316519465
1 0 [-1 2] 1.5275252316519465
1 0 [0 2] 1.5275252316519468

(continues on next page)

158 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

1 0 [2 0] 1.5275252316519465
1 0 [2 -1] 1.5275252316519465
1.7320508075688772 fifth_nearest_neighbors
0 0 [1 1] 1.7320508075688772
0 0 [2 -1] 1.7320508075688772
0 0 [-1 2] 1.7320508075688772
1 1 [1 1] 1.7320508075688772
1 1 [2 -1] 1.7320508075688772
1 1 [-1 2] 1.7320508075688772
0 0 [-1 -1] 1.7320508075688772
0 0 [-2 1] 1.7320508075688772
0 0 [1 -2] 1.7320508075688772
1 1 [-1 -1] 1.7320508075688772
1 1 [-2 1] 1.7320508075688772
1 1 [1 -2] 1.7320508075688772

11.3. Jupyter Notebooks 159

TeNPy, Release 0.8.1

160 Chapter 11. Examples

TeNPy, Release 0.8.1

11.3. Jupyter Notebooks 161

TeNPy, Release 0.8.1

162 Chapter 11. Examples

TeNPy, Release 0.8.1

11.3. Jupyter Notebooks 163

TeNPy, Release 0.8.1

[]:

164 Chapter 11. Examples

TeNPy, Release 0.8.1

11.3.4 Toric Code

This notebook shows how to implement Kitaev’s Toric Code model on an infinite cylinder geometry. The Hamiltonian
of the Toric Code is:

ℋ = −
∑︁
𝑝

𝐵𝑝 −
∑︁
𝑠

𝐴𝑠

where 𝐵𝑝 =
∏︀

𝑖∈𝑝 𝜎
𝑧
𝑖 denotes the product of 𝜎𝑧 around an elementary plaquette and 𝐴𝑠 =

∏︀
𝑖∈𝑠 𝜎

𝑥
𝑖 denotes the

product of 𝜎𝑥 on the four links sticking out of a site of the lattice. The 𝐵𝑝 and 𝐴𝑠 operators commute with each other
and have eigenvalues ±1, hence the ground state will have eigenvalue +1 for each of them.

On an infinite cylinder, the model exhibits a four-fold degeneracy of the ground state, characterized by the different
values ±1 of the incontractible Wilson and t’Hooft loops. These loop operators are defined by the products

𝑊 =
∏︁

vert links

𝜎𝑧 𝐻 =
∏︁

hor links

𝜎𝑥

around the cylinder.

TeNPy already implements this hamiltonian in tenpy.models.toric_code.ToricCode. This notebook
demonstrates how to extend the existing model by additinoal terms in the Hamiltonian and convenient functions of the
loop operators for simplified measurements. Then we run iDMRG to obtain the four different ground states and check
that they are indeed orthogonal and degenerate.

[1]: import numpy as np
import scipy
import matplotlib.pyplot as plt
np.set_printoptions(precision=5, suppress=True, linewidth=120)

[2]: import tenpy
import tenpy.linalg.np_conserved as npc
from tenpy.algorithms.dmrg import TwoSiteDMRGEngine
from tenpy.networks.mps import MPS
from tenpy.networks.terms import TermList
from tenpy.models.toric_code import ToricCode, DualSquare
from tenpy.models.lattice import Square

Let’s plot the DualSquare lattice first to get the geometry clear. The unit cell consists of two sites, the blue one on the
vertical links (𝑢 = 0), and the orange one on the horizontal links (𝑢 = 1). We also plot lines illustrating where the
Wilson and t’Hooft loops go.

[3]: plt.figure(figsize=(7, 5))
ax = plt.gca()
lat = DualSquare(4, 4, None, bc='periodic')
sq = Square(4, 4, None, bc='periodic')
sq.plot_coupling(ax, linewidth=3.)
ax.plot([2., 2.], [-0.5, 4.3], 'r:', linewidth=5., label="Wilson")
ax.plot([2.5, 2.5], [-0.5, 4.3], 'b:', linewidth=5., label="t'Hooft")
lat.plot_sites(ax)
lat.plot_basis(ax, origin=-0.25*(lat.basis[0] + lat.basis[1]))
ax.set_aspect('equal')
ax.set_xlim(-1, 6)
ax.set_ylim(-1)
ax.legend()
plt.show()

11.3. Jupyter Notebooks 165

TeNPy, Release 0.8.1

Extending the existing model

We will implement additional parameters which allow to optionally add terms for the Wilson and t’Hooft loop opera-
tors 𝑊,𝐻 defined above,

𝐻 → 𝐻 − JWL𝑊 − JHL𝐻

Note that we only want to add a single loop for each of them, not one at each possible starting point. Hence, the correct
method is add_local_term, not add_multi_coupling_term or add_coupling_term.

The sign of JWL, JHL will allow us to select sectors with ⟨𝜓|𝑊 |𝜓⟩ = ±1 and ⟨𝜓|𝐻|𝜓⟩ = ±1, respectively. Note that
so far the constraints commute with the Hamiltonian and with each other. However, this is no longer the case if we
add another global field 𝐻 → 𝐻 − h

∑︀
𝑖 𝜎

𝑧
𝑖 , which makes the Hamiltonian no longer exactly solvable.

[4]: class ExtendedToricCode(ToricCode):

def init_terms(self, model_params):
ToricCode.init_terms(self, model_params) # add terms of the original

→˓ToricCode model

Ly = self.lat.shape[1]
J_WL = model_params.get('J_WL', 0.)
J_HL = model_params.get('J_HL', 0.)
unit-cell indices:
u=0: vertical links
u=1: horizontal links

Wilson Loop
x, u = 0, 0 # vertical links
self.add_local_term(-J_WL, [('Sigmaz', [x, y, u]) for y in range(Ly)])

t'Hooft Loop
x, u = 0, 1 # vertical links
self.add_local_term(-J_HL, [('Sigmax', [x, y, u]) for y in range(Ly)])

(continues on next page)

166 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

h = model_params.get('h', 0.)
for u in range(2):

self.add_onsite(-h, u, 'Sigmaz')

def wilson_loop_y(self, psi):
"""Measure wilson loop around the cylinder."""
Ly = self.lat.shape[1]
x, u = 0, 0 # vertical links
W = TermList.from_lattice_locations(self.lat, [[("Sigmaz",[x, y, u]) for y in

→˓range(Ly)]])
return psi.expectation_value_terms_sum(W)[0]

def hooft_loop_y(self, psi):
"""Measure t'Hooft loop around the cylinder."""
Ly = self.lat.shape[1]
x, u = 0, 1 # horizontal links
H = TermList.from_lattice_locations(self.lat, [[("Sigmax",[x, y, u]) for y in

→˓range(Ly)]])
return psi.expectation_value_terms_sum(H)[0]

iDMRG

We now run the iDMRG algorithm for the four different sectors to obtain the four degenerate ground states of the
system.

To reliably get the 4 different ground states, we will add the energetic constraints for the loops. In this case, the
original Hamiltonian will completely commute with the loop operators, such that you directly get the correct ground
state. However, this is a very peculiar case - in general, e.g. when you add the external field with ℎ ̸= 0, this will
no longer be the case. We hence demonstrate a more “robust” way of getting the four different ground states (at least
if you have an idea which operator distinguishes them): For each sector, we run DMRG twice: first with the energy
penalties for the 𝑊,𝐻 loops to get an initial |𝜓⟩ in the desired sector. Then we run DMRG again for the clean toric
code model, without the 𝑊,𝐻 added, to make sure we have a ground state of the clean model.

[5]: dmrg_params = {
'mixer': True,
'trunc_params': {'chi_max': 64,

'svd_min': 1.e-8},
'max_E_err': 1.e-8,
'max_S_err': 1.e-7,
'N_sweeps_check': 4,
'max_sweeps':24,
'verbose': 0,

}
model_params = {

'Lx': 1, 'Ly': 4, # Ly is set below
'bc_MPS': "infinite",
'conserve': None,
'verbose': 0,

}

def run_DMRG(Ly, J_WL, J_HL, h=0.):
print("="*80)
print(f"Start iDMRG for Ly={Ly:d}, J_WL={J_WL:.2f}, J_HL={J_HL:.2f}, h={h:.2f}")

(continues on next page)

11.3. Jupyter Notebooks 167

TeNPy, Release 0.8.1

(continued from previous page)

model_params_clean = model_params.copy()
model_params_clean['Ly'] = Ly
model_params_clean['h'] = h
model_clean = ExtendedToricCode(model_params_clean)
model_params_seed = model_params_clean.copy()
model_params_seed['J_WL'] = J_WL
model_params_seed['J_HL'] = J_HL
model = ExtendedToricCode(model_params_seed)
psi = MPS.from_lat_product_state(model.lat, [[["up"]]])

eng = TwoSiteDMRGEngine(psi, model, dmrg_params)
E0, psi = eng.run()
WL = model.wilson_loop_y(psi)
HL = model.hooft_loop_y(psi)
print(f"after first DMRG run: <psi|W|psi> = {WL: .3f}")
print(f"after first DMRG run: <psi|H|psi> = {HL: .3f}")
print(f"after first DMRG run: E (including W/H loops) = {E0:.10f}")

E0_clean = model_clean.H_MPO.expectation_value(psi)
print(f"after first DMRG run: E (excluding W/H loops) = {E0_clean:.10f}")

switch to model without Wilson/Hooft loops
eng.init_env(model=model_clean)

E1, psi = eng.run()

WL = model_clean.wilson_loop_y(psi)
HL = model_clean.hooft_loop_y(psi)
print(f"after second DMRG run: <psi|W|psi> = {WL: .3f}")
print(f"after second DMRG run: <psi|H|psi> = {HL: .3f}")
print(f"after second DMRG run: E (excluding W/H loops) = {E1:.10f}")
print("max chi: ", max(psi.chi))

return {'psi': psi,
'model': model_clean,
'E0': E0, 'E0_clean': E0_clean, 'E': E1,
'WL': WL, 'HL': HL}

print("="*80)

[6]: results_loops = {}
for J_WL in [-5., 5.]:

for J_HL in [-5., 5.]:
results_loops[(J_WL, J_HL)] = run_DMRG(4, J_WL, J_HL)

==
Start iDMRG for Ly=4, J_WL=-5.00, J_HL=-5.00, h=0.00
after first DMRG run: <psi|W|psi> = -1.000
after first DMRG run: <psi|H|psi> = -1.000
after first DMRG run: E (including W/H loops) = -2.2500000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = -1.000
after second DMRG run: <psi|H|psi> = -1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 8
==
Start iDMRG for Ly=4, J_WL=-5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = -1.000

(continues on next page)

168 Chapter 11. Examples

TeNPy, Release 0.8.1

(continued from previous page)

after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -2.2500000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = -1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 8
==
Start iDMRG for Ly=4, J_WL=5.00, J_HL=-5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = -1.000
after first DMRG run: E (including W/H loops) = -2.2500000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = -1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 8
==
Start iDMRG for Ly=4, J_WL=5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -2.2500000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 8

As we can see from the output, the idea worked and we indeed get the desired expectation values for the W/H loops.
Also, we can directly see that the ground states are degenerate in energy.

To check that we found indeed four orhogonal ground states, let’s calculate mutual overlaps ⟨𝜓𝑖|𝜓𝑗⟩ for 𝑖, 𝑗 ∈
𝑟𝑎𝑛𝑔𝑒(4):

[7]: psi_list = [res['psi'] for res in results_loops.values()]
overlaps= [[psi_i.overlap(psi_j) for psi_j in psi_list] for psi_i in psi_list]
print("overlaps")
print(np.array(overlaps))

overlaps
[[1.+0.j 0.+0.j -0.+0.j 0.-0.j]
[0.+0.j 1.+0.j 0.+0.j -0.+0.j]
[-0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.-0.j -0.+0.j 0.+0.j 1.+0.j]]

The correlation length is almost vanishing, as it should be:

[8]: print("Correlation lengths: ")
model = results_loops[(+5., +5.)]['model']
print(np.array([psi.correlation_length() / model.lat.N_sites_per_ring for psi in psi_
→˓list]))

Correlation lengths:
[0.0294 0.02924 0.02915 0.02876]

Intermezzo: Let’s quickly check for a single case that this still works for non-zero ℎ = 0.1, where the t’Hooft loop
no longer commutes with the Hamiltonian:

11.3. Jupyter Notebooks 169

TeNPy, Release 0.8.1

[9]: res_h = run_DMRG(4, +5., -5., 0.1)

==
Start iDMRG for Ly=4, J_WL=5.00, J_HL=-5.00, h=0.10
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = -1.000
after first DMRG run: E (including W/H loops) = -2.2516147149
after first DMRG run: E (excluding W/H loops) = -1.0018727133
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = -0.995
after second DMRG run: E (excluding W/H loops) = -1.0025283892
max chi: 64

The t’Hooft loop no longer is exactly 1 in the ground state, since it no longer commutes with the Hamiltonian, but it is
still close to one, so it still distinguishes the degenerate states. As expected, the local perturbation of the field can not
destry the global, topological nature of the ground state (manifold).

Topological entanglement entropy

Back to ℎ = 0. For the toric code, the half-cylinder entanglement entropy should be (𝐿𝑦 − 1) log 2. Indeed, we get
the correct value at bond 0:

[10]: print("Entanglement entropies / log(2)")
print(np.array([psi.entanglement_entropy()[0]/np.log(2) for psi in psi_list]))

Entanglement entropies / log(2)
[3. 3. 3. 3.]

Recall that bond 0 is usually a sensible cut for infinite DMRG on a common lattice. This is especially important if you
want to extract the topological entanglement entropy 𝛾 from a fit 𝑆(𝐿𝑦) = 𝛼𝐿𝑦 − 𝛾, as corners in the cut can also
contribute to 𝛾.

Let us demonstrate the extraction of 𝛾 = log(2) for the toric code:

[11]: model_params['order'] = 'Cstyle' # The effect doesn't appear with the "default"
→˓ordering for the toric code.
This is also a hint that you need bond 0: you want something independent of what
→˓order you choose
inside the MPS unit cell.

results_Ly = {}

for Ly in range(2, 7):
results_Ly[Ly] = run_DMRG(Ly, 5., 5.)

==
Start iDMRG for Ly=2, J_WL=5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -3.5000000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 4
==
Start iDMRG for Ly=3, J_WL=5.00, J_HL=5.00, h=0.00

(continues on next page)

170 Chapter 11. Examples

https://arxiv.org/abs/hep-th/0510092

TeNPy, Release 0.8.1

(continued from previous page)

after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -2.6666666667
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 8
==
Start iDMRG for Ly=4, J_WL=5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -2.2500000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 16
==
Start iDMRG for Ly=5, J_WL=5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -2.0000000000
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 32
==
Start iDMRG for Ly=6, J_WL=5.00, J_HL=5.00, h=0.00
after first DMRG run: <psi|W|psi> = 1.000
after first DMRG run: <psi|H|psi> = 1.000
after first DMRG run: E (including W/H loops) = -1.8333333333
after first DMRG run: E (excluding W/H loops) = -1.0000000000
after second DMRG run: <psi|W|psi> = 1.000
after second DMRG run: <psi|H|psi> = 1.000
after second DMRG run: E (excluding W/H loops) = -1.0000000000
max chi: 64

[12]: Lys = np.array(list(results_Ly.keys()))
S0s = np.array([res['psi'].entanglement_entropy()[0] for res in results_Ly.values()])
S1s = np.array([res['psi'].entanglement_entropy()[2] for res in results_Ly.values()])

plt.figure(figsize=(7, 5))
ax = plt.gca()
ax.plot(Lys, S0s / np.log(2), 'bo', label='data at bond 0')
ax.plot(Lys, S1s / np.log(2), 'rs', label='data at wrong bond')
Lys_all = np.arange(0., max(Lys) + 2.)
ax.plot(Lys_all, Lys_all - 1., '-', label='expected: $L_y - 1$')
ax.axhline(0., linestyle='--', color='k')
ax.set_xlabel('L_y')
ax.set_ylabel('$S / log(2)$')

ax.legend()
plt.show()

11.3. Jupyter Notebooks 171

TeNPy, Release 0.8.1

As expected, We find the scaling 𝑆(𝐿𝑦) = log(2)𝐿𝑦 − log(2) at bond 0, indicating that 𝛾 = log(2). Cutting the MPS
at bond 1 (red points) is a “wired” cut of the cylinder and does not show the expected scaling.

[]:

172 Chapter 11. Examples

CHAPTER

TWELVE

TROUBLESHOOTING AND FAQ

I updated to a new version and now I get and error/warning. Take a look at the section “Backwards incomptatible
changes” in /changelog of the corresponding versions since when you updated.

Where did all the output go? Take a look at Logging and terminal output.

What are possible parameters for . . . ? See Parameters and options.

How can I set the number of threads TeNPy is using? Most algorithms in TeNPy don’t use any parallelization be-
sides what the underlying BLAS provides, so that depends on how you installed TeNPy, numpy and scipy!
Using for example an export OMP_NUM_THREADS=4 should limit it to 4 threads under usual setups, but
you might also want to export MKL_NUM_THREADS=4 instead, if you are sure that you are using MKL.

Why is TeNPy not respecting MKL_NUM_THREADS? It might be that it is not using MKL. On linux, check
whether you have installed a pip version of numpy or scipy in $HOME/.local/lib/python3.* Those packages do
not use MKL - you would need to install numpy and scipy from conda. If you use the conda-forge channel as
recommended in the installation, also make sure that you select the BLAS provided by MKL, see the note in
install/conda.rst.

12.1 I get an error when . . .

. . . I try to measure Sx_i Sx_j correlations in a state with Sz conseration. Right now this is not possible. See
the basic facts in Charge conservation with np_conserved.

12.2 I get a warning about . . .

. . . an unused parameter. Make sure that you don’t have a typo and that it is in the right parameter set! Also, check
the logging output whether the parameter was actually used. For further details, see Parameters and options

173

TeNPy, Release 0.8.1

174 Chapter 12. Troubleshooting and FAQ

CHAPTER

THIRTEEN

LITERATURE AND REFERENCES

This is a (by far non-exhaustive) list of some references for the various ideas behind the code. They can be cited like
this:

• [TeNPyNotes] for TeNPy/software related sources

• [[white1992]] (lowercase first-author + year) for entries from literature.bib.

13.1 TeNPy related sources

[TeNPyNotes] are lecture notes, meant as an introduction to tensor networks (focusing on MPS), and introduced TeNPy
to the scientific community by giving examples how to call the algorithms in TeNPy. [TeNPySource] is the location of
the source code, and the place where you can report bugs. We have split example notebooks into [TeNPyNotebooks]
to keep the git history of the original repository clean. [TeNPyDoc] is where the documentation is hosted online.
[TeNPyForum] is the place where you can ask questions and look for help when you are stuck with implementing
something.

13.2 Software-related

The following links are not physics-related, but are good to know if you want to work with TeNPy (or more generally
Python).

13.3 General reading

[[schollwoeck2011]] is an extensive introduction to MPS, DMRG and TEBD with lots of details on the implementa-
tions, and a classic read, although a bit lengthy. Our [TeNPyNotes] are a shorter summary of the important concepts,
similar as [[orus2014]]. [[paeckel2019]] is a very good, recent review focusing on time evolution with MPS. The
lecture notes of [[eisert2013]] explain the area law as motivation for tensor networks very well. PEPS are for example
reviewed in [[verstraete2008]], [[eisert2013]] and [[orus2014]]. [[stoudenmire2012]] reviews the use of DMRG for
2D systems. [[cirac2009]] discusses the different groups of tensor network states.

175

TeNPy, Release 0.8.1

13.4 Algorithm developments

[[white1992], [white1993]] is the invention of DMRG, which started everything. [[vidal2004]] introduced TEBD.
[[white2005]] and [[hubig2015]] solved problems for single-site DMRG. [[mcculloch2008]] was a huge step forward
to solve convergence problems for infinite DMRG. [[singh2010], [singh2011]] explain how to incorporate Symmetries.
[[haegeman2011]] introduced TDVP, again explained more accessible in [[haegeman2016]]. [[zaletel2015]] is another
standard method for time-evolution with long-range Hamiltonians. [[karrasch2013]] gives some tricks to do finite-
temperature simulations (DMRG), which is a bit extended in [[hauschild2018a]]. [[vidal2007]] introduced MERA.
The scaling 𝑆 = 𝑐/6𝑙𝑜𝑔(𝜒) at a 1D critical point is explained in [[pollmann2009]].

13.5 References

176 Chapter 13. Literature and References

CHAPTER

FOURTEEN

PAPERS USING TENPY

This page collects papers using (and citing) the TeNPy library, both as an inspiration what can be done, as well as to
keep track of the usage, such that we can see how useful our work is to the community. It keeps us motivated!

To include your own work, you can either fill out this template on github, or you can directly add your citation in this
Zotero online library (and notify us about it or just wait).

Entries in the following list are sorted by year-author.

1. Johannes Hauschild, Eyal Leviatan, Jens H. Bardarson, Ehud Altman, Michael P. Zaletel, and Frank Poll-
mann. Finding purifications with minimal entanglement. Physical Review B, 98(23):235163, December 2018.
arXiv:1711.01288, doi:10.1103/PhysRevB.98.235163.

2. Johannes Hauschild and Frank Pollmann. Efficient numerical simulations with Tensor Networks: Ten-
sor Network Python (TeNPy). SciPost Physics Lecture Notes, pages 5, October 2018. arXiv:1805.00055,
doi:10.21468/SciPostPhysLectNotes.5.

3. Maximilian Schulz, Scott Richard Taylor, Christopher Andrew Hooley, and Antonello Scardicchio. En-
ergy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and
many-body localization. Physical Review B, 98(18):180201, November 2018. arXiv:1805.01036,
doi:10.1103/PhysRevB.98.180201.

4. Yasuhiro Tada. Non-thermodynamic nature of the orbital angular momentum in neutral fermionic superfluids.
Physical Review B, 97(21):214523, June 2018. arXiv:1805.11226, doi:10.1103/PhysRevB.97.214523.

5. Annabelle Bohrdt, Fabian Grusdt, and Michael Knap. Dynamical formation of a magnetic polaron in
a two-dimensional quantum antiferromagnet. arXiv:1907.08214 [cond-mat, physics:quant-ph], July 2019.
arXiv:1907.08214.

6. Fabian Grusdt, Annabelle Bohrdt, and Eugene Demler. Microscopic spinon-chargon theory of mag-
netic polarons in the t-J model. Physical Review B, 99(22):224422, June 2019. arXiv:1901.01113,
doi:10.1103/PhysRevB.99.224422.

7. Johannes Michael Hauschild. Quantum Many-Body Systems Far Out of Equilibrium — Simulations with Tensor
Networks. Dissertation, Technische Universität München, München, 2019.

8. Michael Rader and Andreas M. Läuchli. Floating Phases in One-Dimensional Rydberg Ising Chains.
arXiv:1908.02068 [cond-mat, physics:quant-ph], August 2019. arXiv:1908.02068.

9. Leon Schoonderwoerd, Frank Pollmann, and Gunnar Möller. Interaction-driven plateau transition between in-
teger and fractional Chern Insulators. arXiv:1908.00988 [cond-mat], August 2019. arXiv:1908.00988.

10. Bartholomew Andrews, Madhav Mohan, and Titus Neupert. Abelian topological order of \$\nu=2/5\$
and \$3/7\$ fractional quantum Hall states in lattice models. arXiv:2007.08870 [cond-mat], August 2020.
arXiv:2007.08870.

177

https://github.com/tenpy/tenpy/issues/new?&labels=doc&template=paper-using-tenpy.md&title={[}cite{]}
https://www.zotero.org/groups/2569413/tenpy/items
https://www.zotero.org/groups/2569413/tenpy/items
https://arxiv.org/abs/1711.01288
https://doi.org/10.1103/PhysRevB.98.235163
https://arxiv.org/abs/1805.00055
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://arxiv.org/abs/1805.01036
https://doi.org/10.1103/PhysRevB.98.180201
https://arxiv.org/abs/1805.11226
https://doi.org/10.1103/PhysRevB.97.214523
https://arxiv.org/abs/1907.08214
https://arxiv.org/abs/1901.01113
https://doi.org/10.1103/PhysRevB.99.224422
https://arxiv.org/abs/1908.02068
https://arxiv.org/abs/1908.00988
https://arxiv.org/abs/2007.08870

TeNPy, Release 0.8.1

11. Bartholomew Andrews and Alexey Soluyanov. Fractional quantum Hall states for moir\'e superstruc-
tures in the Hofstadter regime. Physical Review B, 101(23):235312, June 2020. arXiv:2004.06602,
doi:10.1103/PhysRevB.101.235312.

12. Mari Carmen Banuls, Michal P. Heller, Karl Jansen, Johannes Knaute, and Viktor Svensson. From spin chains
to real-time thermal field theory using tensor networks. Physical Review Research, 2(3):033301, August 2020.
arXiv:1912.08836, doi:10.1103/PhysRevResearch.2.033301.

13. A. Bohrdt, Y. Wang, J. Koepsell, M. Kánasz-Nagy, E. Demler, and F. Grusdt. Dominant fifth-order cor-
relations in doped quantum anti-ferromagnets. arXiv:2007.07249 [cond-mat, physics:quant-ph], July 2020.
arXiv:2007.07249.

14. Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz. Confined phases of one-dimensional
spinless fermions coupled to \$Z_2\$ gauge theory. Physical Review Letters, 124(12):120503, March 2020.
arXiv:1909.07399, doi:10.1103/PhysRevLett.124.120503.

15. Umberto Borla, Ruben Verresen, Jeet Shah, and Sergej Moroz. Gauging the Kitaev chain. arXiv:2010.00607
[cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph], October 2020. arXiv:2010.00607.

16. M. Michael Denner, Mark H. Fischer, and Titus Neupert. Efficient Learning of a One-dimensional Den-
sity Functional Theory. Physical Review Research, 2(3):033388, September 2020. arXiv:2005.03014,
doi:10.1103/PhysRevResearch.2.033388.

17. Elmer V. H. Doggen, Igor V. Gornyi, Alexander D. Mirlin, and Dmitry G. Polyakov. Slow many-body delocal-
ization beyond one dimension. arXiv:2002.07635 [cond-mat], July 2020. arXiv:2002.07635.

18. Xiao-Yu Dong and D. N. Sheng. Spin-1 Kitaev-Heisenberg model on a two-dimensional honeycomb lattice.
Physical Review B, 102(12):121102, September 2020. arXiv:1911.12854, doi:10.1103/PhysRevB.102.121102.

19. Axel Gagge and Jonas Larson. Superradiance, charge density waves and lattice gauge theory in a generalized
Rabi-Hubbard chain. arXiv:2006.13588 [cond-mat, physics:quant-ph], June 2020. arXiv:2006.13588.

20. Zi-Yong Ge, Rui-Zhen Huang, Zi Yang Meng, and Heng Fan. Approximating Lattice Gauge Theories on
Superconducting Circuits: Quantum Phase Transition and Quench Dynamics. arXiv:2009.13350 [cond-mat,
physics:quant-ph], September 2020. arXiv:2009.13350.

21. Yixuan Huang, Xiao-Yu Dong, D. N. Sheng, and C. S. Ting. Quantum phase diagram and chiral spin liq-
uid in the extended spin-\$\frac\1\\2\\$ honeycomb XY model. arXiv:1912.11156 [cond-mat], August 2020.
arXiv:1912.11156.

22. Yixuan Huang, D. N. Sheng, and C. S. Ting. Coupled dimer and bond-order-wave order in the quarter-filled
one-dimensional Kondo lattice model. arXiv:2009.13089 [cond-mat], September 2020. arXiv:2009.13089.

23. C. Hubig, A. Bohrdt, M. Knap, F. Grusdt, and J. I. Cirac. Evaluation of time-dependent correlators after a local
quench in iPEPS: hole motion in the t-J model. SciPost Physics, 8(2):021, February 2020. arXiv:1911.01159,
doi:10.21468/SciPostPhys.8.2.021.

24. Geoffrey Ji, Muqing Xu, Lev Haldar Kendrick, Christie S. Chiu, Justus C. Brüggenjürgen, Daniel Greif,
Annabelle Bohrdt, Fabian Grusdt, Eugene Demler, Martin Lebrat, and Markus Greiner. Dynamical interplay
between a single hole and a Hubbard antiferromagnet. arXiv:2006.06672 [cond-mat, physics:quant-ph], June
2020. arXiv:2006.06672.

25. Philipp W. Klein, Adolfo G. Grushin, and Karyn Le Hur. Stochastic Chern number from interactions and light
response. arXiv:2002.01742 [cond-mat, physics:hep-th, physics:math-ph, physics:quant-ph], August 2020.
arXiv:2002.01742.

26. Benedikt Kloss and Yevgeny Bar Lev. Spin transport in disordered long-range interacting spin chain. Physical
Review B, 102(6):060201, August 2020. arXiv:1911.07857, doi:10.1103/PhysRevB.102.060201.

27. Joannis Koepsell, Dominik Bourgund, Pimonpan Sompet, Sarah Hirthe, Annabelle Bohrdt, Yao Wang, Fabian
Grusdt, Eugene Demler, Guillaume Salomon, Christian Gross, and Immanuel Bloch. Microscopic evolution of

178 Chapter 14. Papers using TeNPy

https://arxiv.org/abs/2004.06602
https://doi.org/10.1103/PhysRevB.101.235312
https://arxiv.org/abs/1912.08836
https://doi.org/10.1103/PhysRevResearch.2.033301
https://arxiv.org/abs/2007.07249
https://arxiv.org/abs/1909.07399
https://doi.org/10.1103/PhysRevLett.124.120503
https://arxiv.org/abs/2010.00607
https://arxiv.org/abs/2005.03014
https://doi.org/10.1103/PhysRevResearch.2.033388
https://arxiv.org/abs/2002.07635
https://arxiv.org/abs/1911.12854
https://doi.org/10.1103/PhysRevB.102.121102
https://arxiv.org/abs/2006.13588
https://arxiv.org/abs/2009.13350
https://arxiv.org/abs/1912.11156
https://arxiv.org/abs/2009.13089
https://arxiv.org/abs/1911.01159
https://doi.org/10.21468/SciPostPhys.8.2.021
https://arxiv.org/abs/2006.06672
https://arxiv.org/abs/2002.01742
https://arxiv.org/abs/1911.07857
https://doi.org/10.1103/PhysRevB.102.060201

TeNPy, Release 0.8.1

doped Mott insulators from polaronic metal to Fermi liquid. arXiv:2009.04440 [cond-mat, physics:quant-ph],
September 2020. arXiv:2009.04440.

28. Korbinian Kottmann, Patrick Huembeli, Maciej Lewenstein, and Antonio Acin. Unsupervised phase
discovery with deep anomaly detection. arXiv:2003.09905 [cond-mat, physics:quant-ph], March 2020.
arXiv:2003.09905.

29. Yoshihito Kuno and Yasuhiro Hatsugai. Interaction Induced Topological Charge Pump. arXiv:2007.11215
[cond-mat], July 2020. arXiv:2007.11215.

30. Dongkeun Lee and Wonmin Son. Bell-type correlation at quantum phase transitions in spin-1 chain.
arXiv:2010.09999 [quant-ph], October 2020. arXiv:2010.09999.

31. Alessio Lerose, Michael Sonner, and Dmitry A. Abanin. Influence matrix approach to many-body Floquet
dynamics. arXiv:2009.10105 [cond-mat, physics:quant-ph], September 2020. arXiv:2009.10105.

32. Iman Mahyaeh, Jurriaan Wouters, and Dirk Schuricht. Phase diagram of the \$\mathbb\\vphantom
\Z\vphantom _3\$-Fock parafermion chain with pair hopping. arXiv:2003.07812 [cond-mat], September 2020.
arXiv:2003.07812.

33. Ivan Morera, Grigori E. Astrakharchik, Artur Polls, and Bruno Juliá-Díaz. Universal dimerized quan-
tum droplets in a one-dimensional lattice. arXiv:2007.01786 [cond-mat, physics:quant-ph], July 2020.
arXiv:2007.01786.

34. Ivan Morera, Irénée Frérot, Artur Polls, and Bruno Juliá-Díaz. Entanglement entropy in low-energy field
theories at finite chemical potential. Physical Review Research, 2(3):033016, July 2020. arXiv:1907.01204,
doi:10.1103/PhysRevResearch.2.033016.

35. Johannes Motruk and Ilyoun Na. Detecting fractional Chern insulators in optical lattices through quantized
displacement. arXiv:2005.09860 [cond-mat, physics:quant-ph], May 2020. arXiv:2005.09860.

36. Nelson Darkwah Oppong, Giulio Pasqualetti, Oscar Bettermann, Philip Zechmann, Michael Knap, Immanuel
Bloch, and Simon Fölling. Probing transport and slow relaxation in the mass-imbalanced Fermi-Hubbard model.
arXiv:2011.12411 [cond-mat, physics:quant-ph], November 2020. arXiv:2011.12411.

37. Thomas Quella. Symmetry protected topological phases beyond groups: The q-deformed bilinear-biquadratic
spin chain. arXiv:2011.12679 [cond-mat, physics:math-ph], November 2020. arXiv:2011.12679.

38. C. Repellin, J. Léonard, and N. Goldman. Hall drift of fractional Chern insulators in few-boson systems.
arXiv:2005.09689 [cond-mat, physics:quant-ph], July 2020. arXiv:2005.09689.

39. Ananda Roy, Johannes Hauschild, and Frank Pollmann. Quantum phases of a one-dimensional
Majorana-Bose-Hubbard model. Physical Review B, 101(7):075419, February 2020. arXiv:1911.08120,
doi:10.1103/PhysRevB.101.075419.

40. Ananda Roy, Frank Pollmann, and Hubert Saleur. Entanglement Hamiltonian of the 1+1-dimensional free,
compactified boson conformal field theory. Journal of Statistical Mechanics: Theory and Experiment,
2020(8):083104, August 2020. arXiv:2004.14370, doi:10.1088/1742-5468/aba498.

41. Ananda Roy, Dirk Schuricht, Johannes Hauschild, Frank Pollmann, and Hubert Saleur. The quantum
sine-Gordon model with quantum circuits. arXiv:2007.06874 [cond-mat, physics:hep-lat, physics:nlin,
physics:quant-ph], July 2020. arXiv:2007.06874.

42. Tomohiro Soejima, Daniel E. Parker, Nick Bultinck, Johannes Hauschild, and Michael P. Zaletel. Efficient
simulation of moire materials using the density matrix renormalization group. arXiv:2009.02354 [cond-mat],
September 2020. arXiv:2009.02354.

43. John Sous, Benedikt Kloss, Dante M. Kennes, David R. Reichman, and Andrew J. Millis. Phonon-induced
disorder in dynamics of optically pumped metals from non-linear electron-phonon coupling. arXiv:2009.00619
[cond-mat], September 2020. arXiv:2009.00619.

179

https://arxiv.org/abs/2009.04440
https://arxiv.org/abs/2003.09905
https://arxiv.org/abs/2007.11215
https://arxiv.org/abs/2010.09999
https://arxiv.org/abs/2009.10105
https://arxiv.org/abs/2003.07812
https://arxiv.org/abs/2007.01786
https://arxiv.org/abs/1907.01204
https://doi.org/10.1103/PhysRevResearch.2.033016
https://arxiv.org/abs/2005.09860
https://arxiv.org/abs/2011.12411
https://arxiv.org/abs/2011.12679
https://arxiv.org/abs/2005.09689
https://arxiv.org/abs/1911.08120
https://doi.org/10.1103/PhysRevB.101.075419
https://arxiv.org/abs/2004.14370
https://doi.org/10.1088/1742-5468/aba498
https://arxiv.org/abs/2007.06874
https://arxiv.org/abs/2009.02354
https://arxiv.org/abs/2009.00619

TeNPy, Release 0.8.1

44. Aaron Szasz, Johannes Motruk, Michael P. Zaletel, and Joel E. Moore. Chiral spin liquid phase of the triangular
lattice Hubbard model: a density matrix renormalization group study. Physical Review X, 10(2):021042, May
2020. arXiv:1808.00463, doi:10.1103/PhysRevX.10.021042.

45. Yasuhiro Tada. Quantum criticality of magnetic catalysis in two-dimensional correlated Dirac
fermions. Physical Review Research, 2(3):033363, September 2020. arXiv:2005.01990,
doi:10.1103/PhysRevResearch.2.033363.

46. Qicheng Tang and W. Zhu. Measurement-induced phase transition: A case study in the non-integrable model
by density-matrix renormalization group calculations. Physical Review Research, 2(1):013022, January 2020.
arXiv:1908.11253, doi:10.1103/PhysRevResearch.2.013022.

47. Ruben Verresen, Mikhail D. Lukin, and Ashvin Vishwanath. Prediction of Toric Code Topological Order
from Rydberg Blockade. arXiv:2011.12310 [cond-mat, physics:physics, physics:quant-ph], November 2020.
arXiv:2011.12310.

48. L. Villa, J. Despres, S. J. Thomson, and L. Sanchez-Palencia. Local quench spectroscopy of many-body quantum
systems. arXiv:2007.08381 [cond-mat], July 2020. arXiv:2007.08381.

49. Botao Wang, Xiao-Yu Dong, F. Nur Ünal, and André Eckardt. Robust and Ultrafast State Preparation
by Ramping Artificial Gauge Potentials. arXiv:2009.00560 [cond-mat, physics:quant-ph], September 2020.
arXiv:2009.00560.

50. Zhaoyou Wang and Emily J. Davis. Calculating Renyi Entropies with Neural Autoregressive Quantum States.
arXiv:2003.01358 [cond-mat, physics:quant-ph], March 2020. arXiv:2003.01358.

51. Jurriaan Wouters, Hosho Katsura, and Dirk Schuricht. Constructive approach for frustration-free models using
Witten's conjugation. arXiv:2005.12825 [cond-mat, physics:math-ph], May 2020. arXiv:2005.12825.

52. Elisabeth Wybo, Michael Knap, and Frank Pollmann. Entanglement dynamics of a many-body local-
ized system coupled to a bath. Physical Review B, 102(6):064304, August 2020. arXiv:2004.13072,
doi:10.1103/PhysRevB.102.064304.

53. Elisabeth Wybo, Frank Pollmann, S. L. Sondhi, and Yizhi You. Visualizing Quasiparticles from Quantum
Entanglement for general 1D phases. arXiv:2010.15137 [cond-mat, physics:hep-th, physics:quant-ph], October
2020. arXiv:2010.15137.

54. Ya-Hui Zhang and Zheng Zhu. Symmetric pseudogap metal in a generalized \$t-J\$ model. arXiv:2008.11204
[cond-mat], August 2020. arXiv:2008.11204.

55. Joaquin F. Rodriguez-Nieva, Alexander Schuckert, Dries Sels, Michael Knap, and Eugene Demler. Transverse
instability and universal decay of spin spiral order in the Heisenberg model. arXiv:2011.07058 [cond-mat],
November 2020. arXiv:2011.07058.

180 Chapter 14. Papers using TeNPy

https://arxiv.org/abs/1808.00463
https://doi.org/10.1103/PhysRevX.10.021042
https://arxiv.org/abs/2005.01990
https://doi.org/10.1103/PhysRevResearch.2.033363
https://arxiv.org/abs/1908.11253
https://doi.org/10.1103/PhysRevResearch.2.013022
https://arxiv.org/abs/2011.12310
https://arxiv.org/abs/2007.08381
https://arxiv.org/abs/2009.00560
https://arxiv.org/abs/2003.01358
https://arxiv.org/abs/2005.12825
https://arxiv.org/abs/2004.13072
https://doi.org/10.1103/PhysRevB.102.064304
https://arxiv.org/abs/2010.15137
https://arxiv.org/abs/2008.11204
https://arxiv.org/abs/2011.07058

CHAPTER

FIFTEEN

CONTRIBUTING

There are lots of things where you can help, even if you don’t wont to dig deep into the source code. You are welcome
to do any of the following things, all of them are very helpful!

• Report bugs and problems, such that they can be fixed.

• Implement new models.

• Update and extend the documentation.

• Provide examples of how to use TeNPy.

• Give feedback on how you like TeNPy and what you would like to see improved.

• Help fixing bugs.

• Help fixing minor issues.

• Extend the functionality by implementing new functions, methods, and algorithms.

The code is maintained in a git repository, the official repository is on github. Even if you’re not yet on the developer
team, you can still submit pull requests on github. If you’re unsure how or what to do, you can ask for help in the
[TeNPyForum]. If you want to become a member of the developer team, just ask ;-)

Thank You!

15.1 Coding Guidelines

To keep consistency, we ask you to comply with the following guidelines for contributions. However, these are just
guidelines - it still helps if you contribute something, even if doesn’t follow these rules ;-)

• Use a code style based on PEP 8. The git repo includes a config file .style.yapf for the python package
yapf. yapf is a tool to auto-format code, e.g., by the command yapf -i some/file (-i for “in place”). We
run yapf on a regular basis on the github main branch. If your branch diverged, it might help to run yapf before
merging.

Note: Since no tool is perfect, you can format some regions of code manually and enclose them with the special
comments # yapf: disable and # yapf: enable.

• Every function/class/module should be documented by its doc-string, see PEP 257. We auto-format the doc-
strings with docformatter on a regular basis.

Additional documentation for the user guide is in the folder doc/.

The documentation uses reStructuredText. If you are new to reStructuredText, read this introduction. We use
the numpy style for doc-strings (with the napoleon extension to sphinx). You can read abouth them in these

181

https://github.com/tenpy/tenpy
https://www.python.org/dev/peps/pep-0008
http://github.com/google/yapf
https://www.python.org/dev/peps/pep-0257
https://github.com/myint/docformatter
http://www.sphinx-doc.org/en/stable/rest.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

TeNPy, Release 0.8.1

Instructions for the doc strings. In addition, you can take a look at the following example file. Helpful hints on
top of that:

r"""<- this r makes me a raw string, thus '\' has no special meaning.
Otherwise you would need to escape backslashes, e.g. in math formulas.

You can include cross references to classes, methods, functions, modules like
:class:`~tenpy.linalg.np_conserved.Array`, :meth:`~tenpy.linalg.np_conserved.
→˓Array.to_ndarray`,
:func:`tenpy.tools.math.toiterable`, :mod:`tenpy.linalg.np_conserved`.
The ~ in the beginning makes only the last part of the name appear in the
→˓generated documentation.
Documents of the userguide can be referenced with :doc:`/intro_npc` even from
→˓inside the doc-strings.
You can also cross-link to other documentations, e.g. :class:`numpy.ndarray`, :
→˓func`scipy.linalg.svd` and :mod: will work.

Moreover, you can link to github issues, arXiv papers, dois, and topics in the
→˓community forum with
e.g. :issue:`5`, :arxiv:`1805.00055`, :doi:`10.1000/1` and :forum:`3`.

Citations from the literature list can be cited as :cite:`white1992` using the
→˓bibtex key.

Write inline formulas as :math:`H |\Psi\rangle = E |\Psi\rangle` or displayed
→˓equations as
.. math ::

e^{i\pi} + 1 = 0

In doc-strings, math can only be used in the Notes section.
To refer to variables within math, use `\mathtt{varname}`.

.. todo ::

This block can describe things which need to be done and is automatically
→˓included in a section of :doc:`todo`.
"""

• Use relative imports within TeNPy. Example:

from ..linalg import np_conserved as npc

• Use the python package pytest for testing. Run it simply with pytest in tests/. You should make sure that
all tests run through, before you git push back into the public repo. Long-running tests are marked with the
attribute slow; for a quick check you can also run pytest -m "not slow".

We have set up github actions to automatically run the tests.

• Reversely, if you write new functions, please also include suitable tests!

• During development, you might introduce # TODO comments. But also try to remove them again later! If
you’re not 100% sure that you will remove it soon, please add a doc-string with a .. todo :: block, such
that we can keep track of it.

Unfinished functions should raise NotImplementedError().

• Summarize the changes you have made in the Changelog under [latest].

• If you want to try out new things in temporary files: any folder named playground is ignored by git.

182 Chapter 15. Contributing

https://numpydoc.readthedocs.io/en/latest/format.html
http://github.com/numpy/numpy/blob/master/doc/example.py
https://pytest.org

TeNPy, Release 0.8.1

• If you add a new toycode or example: add a reference to include it in the documentation.

• We’ve created a sphinx extensions for documenting config-option dictionaries. If a class takes a dictionary
of options, we usually call it options, convert it to a Config at the very beginning of the __init__ with
asConfig(), save it as self.options, and document it in the class doc-string with a .. cfg:config
:: directive. The name of the config should usually be the class-name (if that is sufficiently unique), or for
algorithms directly the common name of the algorithm, e.g. “DMRG”; use the same name for the use the
same name for the documentation of the .. cfg:config :: directive as for the Config class instance.
Attributes which are simply read-out options should be documented by just referencing the options with the
:cfg:option:`configname.optionname` role.

15.2 Bulding the documentation

You can use Sphinx to generate the full documentation in various formats (including HTML or PDF) yourself, as
described in the following.

First, I will assume that you downloaded the [TeNPySource] repository with:

git clone --recursive https://github.com/tenpy/tenpy

This includes the [TeNPyNotebooks] as a git submodule; you might need to git submodule update if it is out of date.

Building the documentation requires a few more packages (including Sphinx). The recommended way is to create a
separate conda environment for it with:

conda env create -f doc/environment.yml # make sure to use the file from the doc/
→˓subfolder!
conda activate tenpydoc

Alternatively, you can use pip and pip install -r doc/requirements.txt, but this will not be able to
install all dependencies: some packages like Graphviz are not available from pip alone.

Afterwards, simply go to the folder doc/ and run the following command:

make html

This should generate the html documentation in the folder doc/sphinx_build/html. Open this folder (or to be precise:
the file index.html in it) in your webbroser and enjoy this and other documentation beautifully rendered, with cross
links, math formulas and even a search function. Other output formats are available as other make targets, e.g., make
latexpdf.

Note: Building the documentation with sphinx requires loading the TeNPy modules. The conf.py adjusts the python
sys.path to include the /tenpy folder from root directory of the git repository. It will not use the cython-compiled parts.

15.2. Bulding the documentation 183

https://sphinx-cfg-options.readthedocs.io/en/latest/
https://www.sphinx-doc.org
https://www.sphinx-doc.org
https://graphviz.org/

TeNPy, Release 0.8.1

15.3 To-Do list

You can check https://github.com/tenpy/tenpy/issues for things to be done.

The following list is auto-generated by sphinx, extracting .. todo :: blocks from doc-strings of the code.

Todo: TDVP is currently not implemented with the sweep class.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/algorithms/mps_common.py:docstring
of tenpy.algorithms.mps_common.Sweep, line 6.)

Todo:

• implement or wrap netcon.m, a function to find optimal contractionn sequences (arXiv:1304.6112)

• improve helpfulness of Warnings

• _do_trace: trace over all pairs of legs at once. need the corresponding npc function first.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/algorithms/network_contractor.py:docstring
of tenpy.algorithms.network_contractor, line 10.)

Todo: This is still a beta version, use with care. The interface might still change.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/algorithms/tdvp.py:docstring
of tenpy.algorithms.tdvp, line 12.)

Todo: long-term: Much of the code is similar as in DMRG. To avoid too much duplicated code, we should have a
general way to sweep through an MPS and updated one or two sites, used in both cases.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/algorithms/tdvp.py:docstring
of tenpy.algorithms.tdvp, line 16.)

Todo: add further terms (e.g. c^dagger c^dagger + h.c.) to the Hamiltonian.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/models/fermions_spinless.py:docstring
of tenpy.models.fermions_spinless, line 3.)

Todo: WARNING: These models are still under development and not yet tested for correctness. Use at your own
risk! Replicate known results to confirm models work correctly. Long term: implement different lattices. Long term:
implement variable hopping strengths Jx, Jy.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/models/hofstadter.py:docstring
of tenpy.models.hofstadter, line 3.)

Todo: This is a naive, expensive implementation contracting the full network. Try to follow arXiv:1711.01104 for a
better estimate; would that even work in the infinite limit?

184 Chapter 15. Contributing

https://github.com/tenpy/tenpy/issues
https://arxiv.org/abs/1304.6112
https://arxiv.org/abs/1711.01104

TeNPy, Release 0.8.1

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/networks/mpo.py:docstring
of tenpy.networks.mpo.MPO.variance, line 5.)

Todo: might be useful to add a “cleanup” function which removes operators cancelling each other and/or unused
states. Or better use a ‘compress’ of the MPO?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/networks/mpo.py:docstring
of tenpy.networks.mpo.MPOGraph, line 17.)

Todo: Make more general: it should be possible to specify states as strings.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/networks/mps.py:docstring
of tenpy.networks.mps.build_initial_state, line 14.)

Todo: test, provide more.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/simulations/measurement.py:docstring
of tenpy.simulations.measurement, line 7.)

Todo: provide examples, give user guide

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/simulations/simulation.py:docstring
of tenpy.simulations.simulation, line 8.)

Todo: For memory caching with big MPO environments, we need a Hdf5Cacher clearing the memo’s every now and
then (triggered by what?).

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.8.1/tenpy/tools/hdf5_io.py:docstring
of tenpy.tools.hdf5_io, line 65.)

15.3. To-Do list 185

TeNPy, Release 0.8.1

186 Chapter 15. Contributing

Part II

Reference

187

CHAPTER

SIXTEEN

TENPY MAIN MODULE

• full name: tenpy

• parent module: tenpy

• type: module

Submodules

algorithms A collection of algorithms such as TEBD and DMRG.
linalg Linear-algebra tools for tensor networks.
models Definition of the various models.
networks Definitions of tensor networks like MPS and MPO.
tools A collection of tools: mostly short yet quite useful func-

tions.
version Access to version of this library.

Module description

TeNPy - a Python library for Tensor Network Algorithms

TeNPy is a library for algorithms working with tensor networks, e.g., matrix product states and -operators, designed
to study the physics of strongly correlated quantum systems. The code is intended to be accessible for newcommers
and yet powerful enough for day-to-day research.

run_simulation([simulation_class_name, . . .]) Run the simulation with a simulation class.
console_main() Command line interface.
show_config() Print information about the version of tenpy and used

libraries.

189

TeNPy, Release 0.8.1

16.1 run_simulation

• full name: tenpy.run_simulation

• parent module: tenpy

• type: function

tenpy.run_simulation(simulation_class_name='GroundStateSearch', simulation_class_kwargs=None,
**simulation_params)

Run the simulation with a simulation class.

Parameters

• simulation_class_name (str) – The name of a (sub)class of Simulation to be
used for running the simulaiton.

• simulation_class_kwargs (dict | None) – A dictionary of keyword-arguments
to be used for the initializing the simulation.

• **simulation_params – Further keyword arguments as documented in the corre-
sponding simulation class, see :cfg:config`Simulation`.

Returns The results from running the simulation, i.e., what tenpy.simulations.
Simulation.run() returned.

Return type results

16.2 console_main

• full name: tenpy.console_main

• parent module: tenpy

• type: function

tenpy.console_main()
Command line interface.

See also run_simulation() for the python interface running a simulation.

When tenpy is installed correctly via pip/conda, a command line script called tenpy-run is set up,
which calls this function, i.e., you can do the following in the terminal:

tenpy-run --help

Equivalently, you can also invoke the tenpy module from your python interpreter like this:

python -m tenpy --help

usage: tenpy-run [-h] [--import-module MODULE] [--sim-class SIM_CLASS] [--option
→˓KEY VALUE]

[--version]
[parameters_file]

Command line interface to run a TeNPy simulation.

positional arguments:
parameters_file

(continues on next page)

190 Chapter 16. Tenpy main module

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

(continued from previous page)

A yaml (*.yml) file with the simulation parameters/options.

optional arguments:
-h, --help

show this help message and exit
--import-module MODULE, -i MODULE

Import the given python MODULE before setting up the simulation. This is
→˓useful if the

module contains user-defined subclasses. Use python-style names like
→˓`numpy` without the

.py ending.
--sim-class SIM_CLASS, -c SIM_CLASS

selects the Simulation (sub)class, e.g. 'GroundStateSearch' (default) or
'RealTimeEvolution'.

--option KEY VALUE, -o KEY VALUE
Allows overwriting some options from the yaml files. KEY can be recursive

→˓separated by
``/``, e.g. ``algorithm_params/trunc_params/chi``. VALUE is initialized

→˓by python's
``eval(VALUE)`` with `np`, `scipy` and `tenpy` defined. Thus ``'1.2'`` and
``'2.*np.pi*1.j/6'`` or ``'np.linspace(0., 1., 6)'`` will work if you

→˓include the quotes
on the command line to ensure that the VALUE is passed as a single

→˓argument.
--version, -v

show program's version number and exit

Examples

In the simplest case, you just give a single yaml file with all the parameters as
→˓argument:

tenpy-run my_params.yml

If you implemented a custom simulation class called ``MyGreatSimulation`` in a
file ``my_simulations.py``, you can use it like this:

tenpy-run -i my_simulations -c MyGreatSimulation my_params.yml

Further, you can overwrite one or multiple options of the parameters file:

tenpy-run my_params.yml -o output_filename '"output.h5"' -o model_params/Jz 2.

Note that string values for the options require double quotes on the command line.

16.2. console_main 191

TeNPy, Release 0.8.1

16.3 show_config

• full name: tenpy.show_config

• parent module: tenpy

• type: function

tenpy.show_config()
Print information about the version of tenpy and used libraries.

The information printed is tenpy.version.version_summary .

tenpy.__version__ = '0.8.1'
hard-coded version string

tenpy.__full_version__ = '0.8.1'
full version from git description, and numpy/scipy/python versions

Submodules

algorithms A collection of algorithms such as TEBD and DMRG.
linalg Linear-algebra tools for tensor networks.
models Definition of the various models.
networks Definitions of tensor networks like MPS and MPO.
simulations Simulation setup.
tools A collection of tools: mostly short yet quite useful func-

tions.
version Access to version of this library.

192 Chapter 16. Tenpy main module

CHAPTER

SEVENTEEN

ALGORITHMS

• full name: tenpy.algorithms

• parent module: tenpy

• type: module

Module description

A collection of algorithms such as TEBD and DMRG.

Submodules

algorithm This module contains some base classes for algorithms.
truncation Truncation of Schmidt values.
tebd Time evolving block decimation (TEBD).
mps_common ‘Sweep’ algorithm and effective Hamiltonians.
dmrg Density Matrix Renormalization Group (DMRG).
tdvp Time Dependant Variational Principle (TDVP) with

MPS (finite version only).
purification Algorithms for using Purification.
mpo_evolution Time evolution using the WI or WII approximation of

the time evolution operator.
network_contractor Network Contractor.
exact_diag Full diagonalization (ED) of the Hamiltonian.

17.1 algorithm

• full name: tenpy.algorithms.algorithm

• parent module: tenpy.algorithms

• type: module

193

TeNPy, Release 0.8.1

Classes

Algorithm

TimeEvolutionAlgorithm

Algorithm(psi, model, options, *[, resume_data]) Base class and common interface for a tensor-network
based algorithm in TeNPy.

TimeEvolutionAlgorithm(psi, model, options,
*)

Common interface for (real) time evolution algorithms.

Module description

This module contains some base classes for algorithms.

17.2 truncation

• full name: tenpy.algorithms.truncation

• parent module: tenpy.algorithms

• type: module

Classes

Hdf5Exportable

TruncationError

194 Chapter 17. algorithms

TeNPy, Release 0.8.1

TruncationError([eps, ov]) Class representing a truncation error.

17.2.1 TruncationError

• full name: tenpy.algorithms.truncation.TruncationError

• parent module: tenpy.algorithms.truncation

• type: class

Inheritance Diagram

Hdf5Exportable

TruncationError

Methods

TruncationError.__init__([eps, ov]) Initialize self.
TruncationError.copy() Return a copy of self.
TruncationError.from_S(S_discarded[,
norm_old])

Construct TruncationError from discarded singular val-
ues.

TruncationError.from_hdf5(hdf5_loader,
h5gr, . . .)

Load instance from a HDF5 file.

TruncationError.from_norm(norm_new[,
norm_old])

Construct TruncationError from norm after and before
the truncation.

TruncationError.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

Class Attributes and Properties

TruncationError.ov_err Error 1.-ov of the overlap with the correct state.

class tenpy.algorithms.truncation.TruncationError(eps=0.0, ov=1.0)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Class representing a truncation error.

The default initialization represents “no truncation”.

17.2. truncation 195

TeNPy, Release 0.8.1

Warning: For imaginary time evolution, this is not the error you are interested in!

Parameters

• eps (float) – See below.

• ov (float) – See below.

eps
The total sum of all discared Schmidt values squared. Note that if you keep singular values up to 1.e-14 (=
a bit more than machine precision for 64bit floats), eps is on the order of 1.e-28 (due to the square)!

Type float

ov
A lower bound for the overlap |⟨𝜓𝑡𝑟𝑢𝑛𝑐|𝜓𝑐𝑜𝑟𝑟𝑒𝑐𝑡⟩|2 (assuming normalization of both states). This is prob-
ably the quantity you are actually interested in. Takes into account the factor 2 explained in the section on
Errors in the TEBD Wikipedia article <https://en.wikipedia.org/wiki/Time-evolving_block_decimation>.

Type float

copy()
Return a copy of self.

classmethod from_norm(norm_new, norm_old=1.0)
Construct TruncationError from norm after and before the truncation.

Parameters

• norm_new (float) – Norm of Schmidt values kept,
√︁∑︀

𝑎𝑘𝑒𝑝𝑡 𝜆
2
𝑎 (before re-

normalization).

• norm_old (float) – Norm of all Schmidt values before truncation,
√︀∑︀

𝑎 𝜆
2
𝑎.

classmethod from_S(S_discarded, norm_old=None)
Construct TruncationError from discarded singular values.

Parameters

• S_discarded (1D numpy array) – The singular values discarded.

• norm_old (float) – Norm of all Schmidt values before truncation,
√︀∑︀

𝑎 𝜆
2
𝑎. Default

(None) is 1.

property ov_err
Error 1.-ov of the overlap with the correct state.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

196 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

Functions

svd_theta(theta, trunc_par[, qtotal_LR, . . .]) Performs SVD of a matrix theta (= the wavefunction)
and truncates it.

truncate(S, options) Given a Schmidt spectrum S, determine which values to
keep.

17.2.2 svd_theta

• full name: tenpy.algorithms.truncation.svd_theta

• parent module: tenpy.algorithms.truncation

• type: function

tenpy.algorithms.truncation.svd_theta(theta, trunc_par, qtotal_LR=[None, None], in-
ner_labels=['vR', 'vL'])

Performs SVD of a matrix theta (= the wavefunction) and truncates it.

Perform a singular value decomposition (SVD) with svd() and truncates with truncate(). The re-
sult is an approximation theta ~= tensordot(U.scale_axis(S*renormalization, 1), VH,
axes=1)

Parameters

• theta (Array , shape (M, N)) – The matrix, on which the singular value decomposition
(SVD) is performed. Usually, theta represents the wavefunction, such that the SVD is a
Schmidt decomposition.

• trunc_par (dict) – truncation parameters as described in truncate().

• qtotalLR ((charges, charges)) – The total charges for the returned U and VH.

• inner_labels ((string, string)) – Labels for the U and VH on the newly-
created bond.

Returns

• U (Array) – Matrix with left singular vectors as columns. Shape (M, M) or (M, K)
depending on full_matrices.

• S (1D ndarray) – The singluar values of the array. If no cutoff is given, it has lenght min(M,
N). Normalized to np.linalg.norm(S)==1.

17.2. truncation 197

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

• VH (Array) – Matrix with right singular vectors as rows. Shape (N, N) or (K, N)
depending on full_matrices.

• err (TruncationError) – The truncation error introduced.

• renormalization (float) – Factor, by which S was renormalized.

Module description

Truncation of Schmidt values.

Often, it is necessary to truncate the number of states on a virtual bond of an MPS, keeping only the state with the
largest Schmidt values. The function truncate() picks exactly those from a given Schmidt spectrum 𝜆𝑎, depending
on some parameters explained in the doc-string of the function.

Further, we provide TruncationError for a simple way to keep track of the total truncation error.

The SVD on a virtual bond of an MPS actually gives a Schmidt decomposition |𝜓⟩ =
∑︀

𝑎 𝜆𝑎|𝐿𝑎⟩|𝑅𝑎⟩ where |𝐿𝑎⟩
and |𝑅𝑎⟩ form orthonormal bases of the parts left and right of the virtual bond. Let us assume that the state is properly
normalized, ⟨𝜓|𝜓⟩ =

∑︀
𝑎 𝜆

2
𝑎 = 1. Assume that the singular values are ordered descending, and that we keep the first

𝜒𝑐 of the initially 𝜒 Schmidt values.

Then we decompose the untruncated state as |𝜓⟩ =
√

1 − 𝜖|𝜓𝑡𝑟⟩ +
√
𝜖|𝜓⊥

𝑡𝑟⟩ where |𝜓𝑡𝑟⟩ = 1√
1−𝜖

∑︀
𝑎<𝜒𝑐

𝜆𝑎|𝐿𝑎⟩|𝑅𝑎⟩
is the truncated state kept (normalized to 1), |𝜓⊥

𝑡𝑟⟩ = 1√
𝜖

∑︀
𝑎>=𝜒𝑐

𝜆𝑎|𝐿𝑎⟩|𝑅𝑎⟩ is the discarded part (orthogonal to the
kept part) and the truncation error of a single truncation is defined as 𝜖 = 1 − |⟨𝜓|𝜓𝑡𝑟⟩|2 =

∑︀
𝑎>=𝜒𝑐

𝜆2𝑎.

Warning: For imaginary time evolution (e.g. with TEBD), you try to project out the ground state. Then, looking
at the truncation error defined in this module does not give you any information how good the found state coincides
with the actual ground state! (Instead, the returned truncation error depends on the overlap with the initial state,
which is arbitrary > 0)

Warning: This module takes only track of the errors coming from the truncation of Schmidt values. There might
be other sources of error as well, for example TEBD has also an discretisation error depending on the chosen time
step.

17.3 tebd

• full name: tenpy.algorithms.tebd

• parent module: tenpy.algorithms

• type: module

198 Chapter 17. algorithms

TeNPy, Release 0.8.1

Classes

Algorithm

TimeEvolutionAlgorithm

Engine

TEBDEngine

RandomUnitaryEvolution

Engine(psi, model, options) Deprecated old name of TEBDEngine.
RandomUnitaryEvolution(psi, options) Evolution of an MPS with random two-site unitaries in

a TEBD-like fashion.
TEBDEngine(psi, model, options, **kwargs) Time Evolving Block Decimation (TEBD) algorithm.

17.3.1 Engine

• full name: tenpy.algorithms.tebd.Engine

• parent module: tenpy.algorithms.tebd

• type: class

17.3. tebd 199

TeNPy, Release 0.8.1

Inheritance Diagram

Algorithm

TimeEvolutionAlgorithm

Engine

TEBDEngine

Methods

Engine.__init__(psi, model, options) Initialize self.
Engine.calc_U (order, delta_t[, type_evo, . . .]) Calculate self.U_bond from self.

bond_eig_{vals,vecs}.
Engine.get_resume_data() Return necessary data to resume a run() interrupted at

a checkpoint.
Engine.resume_run() Resume a run that was interrupted.
Engine.run() Run TEBD real time evolution by N_steps`*`dt.
Engine.run_GS() TEBD algorithm in imaginary time to find the ground

state.
Engine.suzuki_trotter_decomposition(order,
. . .)

Returns list of necessary steps for the suzuki trotter de-
composition.

Engine.suzuki_trotter_time_steps(order) Return time steps of U for the Suzuki Trotter decompo-
sition of desired order.

Engine.update(N_steps) Evolve by N_steps * U_param['dt'].
Engine.update_bond(i, U_bond) Updates the B matrices on a given bond.
Engine.update_bond_imag(i, U_bond) Update a bond with a (possibly non-unitary) U_bond.
Engine.update_imag(N_steps) Perform an update suitable for imaginary time evolu-

tion.
Engine.update_step(U_idx_dt, odd) Updates either even or odd bonds in unit cell.

200 Chapter 17. algorithms

TeNPy, Release 0.8.1

Class Attributes and Properties

Engine.TEBD_params

Engine.trunc_err_bonds truncation error introduced on each non-trivial bond.
Engine.verbose

class tenpy.algorithms.tebd.Engine(psi, model, options)
Bases: tenpy.algorithms.tebd.TEBDEngine

Deprecated old name of TEBDEngine.

calc_U(order, delta_t, type_evo='real', E_offset=None)
Calculate self.U_bond from self.bond_eig_{vals,vecs}.

This function calculates

• U_bond = exp(-i dt (H_bond-E_offset_bond)) for type_evo='real', or

• U_bond = exp(- dt H_bond) for type_evo='imag'.

For first order (in delta_t), we need just one dt=delta_t. Higher order requires smaller dt steps, as
given by suzuki_trotter_time_steps().

Parameters

• order (int) – Trotter order calculated U_bond. See update for more information.

• delta_t (float) – Size of the time-step used in calculating U_bond

• type_evo ('imag' | 'real') – Determines whether we perform real or imaginary
time-evolution.

• E_offset (None | list of float) – Possible offset added to H_bond for real-
time evolution.

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

resume_run()
Resume a run that was interrupted.

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
Run TEBD real time evolution by N_steps`*`dt.

17.3. tebd 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

run_GS()
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonethe-
less be used quite well as a benchmark and for comparison.

option TEBDEngine.delta_tau_list: list
A list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces large
(Trotter) errors, but a too small time step requires a lot of steps to reach exp(-tau H) -->
|psi0><psi0|. Therefore, we start with fairly large time steps for a quick time evolution until
convergence, and the gradually decrease the time step.

option TEBDEngine.order: int
Order of the Suzuki-Trotter decomposition.

option TEBDEngine.N_steps: int
Number of steps before measurement can be performed

static suzuki_trotter_decomposition(order, N_steps)
Returns list of necessary steps for the suzuki trotter decomposition.

We split the Hamiltonian as 𝐻 = 𝐻𝑒𝑣𝑒𝑛 +𝐻𝑜𝑑𝑑 = 𝐻[0] +𝐻[1]. The Suzuki-Trotter decomposition is an
approximation exp(𝑡𝐻) ≈ 𝑝𝑟𝑜𝑑(𝑗,𝑘)∈𝑆𝑇 exp(𝑑[𝑗]𝑡𝐻[𝑘]) +𝑂(𝑡𝑜𝑟𝑑𝑒𝑟+1).

Parameters order (1, 2, 4, '4_opt') – The desired order of the Suzuki-Trotter de-
composition. Order 1 approximation is simply 𝑒𝐴𝑎𝐵 . Order 2 is the “leapfrog”
e^{A/2} e^B e^{A/2}. Order 4 is the fourth-order from [[suzuki1991]] (also referenced
in [[schollwoeck2011]]), and '4_opt' gives the optmized version of Equ. (30a) in
[[barthel2020]].

Returns ST_decomposition – Indices j, k of the time-steps d =
suzuki_trotter_time_step(order) and the decomposition of H. They are
chosen such that a subsequent application of exp(d[j] t H[k]) to a given state |psi>
yields (exp(N_steps t H[k]) + O(N_steps t^{order+1}))|psi>.

Return type list of (int, int)

static suzuki_trotter_time_steps(order)
Return time steps of U for the Suzuki Trotter decomposition of desired order.

See suzuki_trotter_decomposition() for details.

Parameters order (int) – The desired order of the Suzuki-Trotter decomposition.

Returns time_steps – We need U = exp(-i H_{even/odd} delta_t * dt) for the
dt returned in this list.

Return type list of float

property trunc_err_bonds
truncation error introduced on each non-trivial bond.

update(N_steps)
Evolve by N_steps * U_param['dt'].

Parameters N_steps (int) – The number of steps for which the whole lattice should be
updated.

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

202 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type TruncationError

update_bond(i, U_bond)
Updates the B matrices on a given bond.

Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i.
The correponding tensor networks look like this:

| --S--B1--B2-- --B1--B2--
| | | | |
| theta: U_bond C: U_bond
| | | | |

Parameters

• i (int) – Bond index; we update the matrices at sites i-1, i.

• U_bond (Array) – The bond operator which we apply to the wave function. We expect
labels 'p0', 'p1', 'p0*', 'p1*'.

Returns trunc_err – The error of the represented state which is introduced by the truncation
during this update step.

Return type TruncationError

update_bond_imag(i, U_bond)
Update a bond with a (possibly non-unitary) U_bond.

Similar as update_bond(); but after the SVD just keep the A, S, B canonical form. In that way, one can
sweep left or right without using old singular values, thus preserving the canonical form during imaginary
time evolution.

Parameters

• i (int) – Bond index; we update the matrices at sites i-1, i.

• U_bond (Array) – The bond operator which we apply to the wave function. We expect
labels 'p0', 'p1', 'p0*', 'p1*'.

Returns trunc_err – The error of the represented state which is introduced by the truncation
during this update step.

Return type TruncationError

update_imag(N_steps)
Perform an update suitable for imaginary time evolution.

Instead of the even/odd brick structure used for ordinary TEBD, we ‘sweep’ from left to right and right to
left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

Parameters N_steps (int) – The number of steps for which the whole lattice should be
updated.

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

Return type TruncationError

update_step(U_idx_dt, odd)
Updates either even or odd bonds in unit cell.

Depending on the choice of p, this function updates all even (E, odd=False,0) or odd (O) (odd=True,1)
bonds:

17.3. tebd 203

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

| - B0 - B1 - B2 - B3 - B4 - B5 - B6 -
		----		----		----
		E		E		E
		----		----		----
	----		----		----	
	O		O		O	
	----		----		----	

Note that finite boundary conditions are taken care of by having Us[0] = None.

Parameters

• U_idx_dt (int) – Time step index in self._U, evolve with Us[i] = self.
U[U_idx_dt][i] at bond (i-1,i).

• odd (bool/int) – Indication of whether to update even (odd=False,0) or even
(odd=True,1) sites

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

Return type TruncationError

Module description

Time evolving block decimation (TEBD).

The TEBD algorithm (proposed in [[vidal2004]]) uses a trotter decomposition of the Hamiltonian to per-
form a time evoltion of an MPS. It works only for nearest-neighbor hamiltonians (in tenpy given by a
NearestNeighborModel), which can be written as𝐻 = 𝐻𝑒𝑣𝑒𝑛+𝐻𝑜𝑑𝑑, such that𝐻𝑒𝑣𝑒𝑛 contains the the terms on
even bonds (and similar 𝐻𝑜𝑑𝑑 the terms on odd bonds). In the simplest case, we apply first 𝑈 = exp(−𝑖*𝑑𝑡*𝐻𝑒𝑣𝑒𝑛),
then 𝑈 = exp(−𝑖 * 𝑑𝑡 *𝐻𝑜𝑑𝑑) for each time step 𝑑𝑡. This is correct up to errors of 𝑂(𝑑𝑡2), but to evolve until a time
𝑇 , we need 𝑇/𝑑𝑡 steps, so in total it is only correct up to error of 𝑂(𝑇 *𝑑𝑡). Similarly, there are higher order schemata
(in dt) (for more details see TEBDEngine.update()).

Remember, that bond i is between sites (i-1, i), so for a finite MPS it looks like:

| - B0 - B1 - B2 - B3 - B4 - B5 - B6 -
	----		----		----	
	U1		U3		U5	
	----		----		----	
		----		----		----
		U2		U4		U6
		----		----		----
.						
.						
.						

After each application of a Ui, the MPS needs to be truncated - otherwise the bond dimension chi would grow indefi-
nitely. A bound for the error introduced by the truncation is returned.

If one chooses imaginary 𝑑𝑡, the exponential projects (for sufficiently long ‘time’ evolution) onto the ground state of
the Hamiltonian.

Note: The application of DMRG is typically much more efficient than imaginary TEBD! Yet, imaginary TEBD might

204 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

be usefull for cross-checks and testing.

17.4 mps_common

• full name: tenpy.algorithms.mps_common

• parent module: tenpy.algorithms

• type: module

Classes

Algorithm

Sweep EffectiveH

OneSiteH TwoSiteH

NpcLinearOperator

VariationalCompression

VariationalApplyMPO

EffectiveH(env, i0[, combine, move_right]) Prototype class for local effective Hamiltonians used in
sweep algorithms.

OneSiteH(env, i0[, combine, move_right]) Class defining the one-site effective Hamiltonian for
Lanczos.

Sweep(psi, model, options, *[, resume_data]) Prototype class for a ‘sweeping’ algorithm.
TwoSiteH(env, i0[, combine, move_right]) Class defining the two-site effective Hamiltonian for

Lanczos.
VariationalApplyMPO(psi, U_MPO, options[,
. . .])

Variational compression for applying an MPO to an
MPS (in place).

VariationalCompression(psi, options[, . . .]) Variational compression of an MPS (in place).

17.4. mps_common 205

TeNPy, Release 0.8.1

17.4.1 EffectiveH

• full name: tenpy.algorithms.mps_common.EffectiveH

• parent module: tenpy.algorithms.mps_common

• type: class

Inheritance Diagram

EffectiveH

NpcLinearOperator

Methods

EffectiveH.__init__(env, i0[, combine, . . .]) Initialize self.
EffectiveH.adjoint() Return the hermitian conjugate of self
EffectiveH.combine_theta(theta) Combine the legs of theta, such that it fits to how we

combined the legs of self.
EffectiveH.matvec(vec) Calculate the action of the operator on a vector vec.
EffectiveH.to_matrix() Contract self to a matrix.

Class Attributes and Properties

EffectiveH.acts_on

EffectiveH.length

class tenpy.algorithms.mps_common.EffectiveH(env, i0, combine=False, move_right=True)
Bases: tenpy.linalg.sparse.NpcLinearOperator

Prototype class for local effective Hamiltonians used in sweep algorithms.

As an example, the local effective Hamiltonian for a two-site (DMRG) algorithm looks like:

| .--- ---.
| | | | |
| LP----H0--H1---RP
| | | | |

(continues on next page)

206 Chapter 17. algorithms

TeNPy, Release 0.8.1

(continued from previous page)

| .--- ---.

where H0 and H1 are MPO tensors.

Parameters

• env (MPOEnvironment) – Environment for contraction <psi|H|psi>.

• i0 (int) – Index of the active site if length=1, or of the left-most active site if length>1.

• combine (bool, optional) – Whether to combine legs into pipes as far as possible.
This reduces the overhead of calculating charge combinations in the contractions.

• move_right (bool, optional) – Whether the sweeping algorithm that calls for an
EffectiveH is moving to the right.

length
Number of (MPS) sites the effective hamiltonian covers. NB: Class attribute.

Type int

dtype
The data type of the involved arrays.

Type np.dtype

N
Contracting self with as_matrix() will result in an N`x`N matrix .

Type int

acts_on
Labels of the state on which self acts. NB: class attribute. Overwritten by normal attribute, if combine.

Type list of str

combine
Whether to combine legs into pipes as far as possible. This reduces the overhead of calculating charge
combinations in the contractions.

Type bool

move_right
Whether the sweeping algorithm that calls for an EffectiveH is moving to the right.

Type bool

combine_theta(theta)
Combine the legs of theta, such that it fits to how we combined the legs of self.

Parameters theta (Array) – Wave function to apply the effective Hamiltonian to, with un-
combined legs.

Returns theta – Wave function with labels as given by self.acts_on.

Return type Array

adjoint()
Return the hermitian conjugate of self

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

matvec(vec)
Calculate the action of the operator on a vector vec.

17.4. mps_common 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Note that we don’t require vec to be one-dimensional. However, for square operators we require that the
result of matvec has the same legs (in the same order) as vec such that they can be added. Note that this
excludes a non-trivial qtotal for square operators.

to_matrix()
Contract self to a matrix.

If self represents an operator with very small shape, e.g. because the MPS bond dimension is very small,
an algorithm might choose to contract self to a single tensor.

Returns matrix – Contraction of the represented operator.

Return type Array

17.4.2 OneSiteH

• full name: tenpy.algorithms.mps_common.OneSiteH

• parent module: tenpy.algorithms.mps_common

• type: class

Inheritance Diagram

EffectiveH

OneSiteH

NpcLinearOperator

Methods

OneSiteH.__init__(env, i0[, combine,
move_right])

Initialize self.

OneSiteH.adjoint() Return the hermitian conjugate of self.
OneSiteH.combine_Heff() Combine LP and RP with W to form LHeff and RHeff,

depending on the direction.
OneSiteH.combine_theta(theta) Combine the legs of theta, such that it fits to how we

combined the legs of self.
OneSiteH.matvec(theta) Apply the effective Hamiltonian to theta.

continues on next page

208 Chapter 17. algorithms

TeNPy, Release 0.8.1

Table 13 – continued from previous page
OneSiteH.to_matrix() Contract self to a matrix.

Class Attributes and Properties

OneSiteH.acts_on

OneSiteH.length

class tenpy.algorithms.mps_common.OneSiteH(env, i0, combine=False, move_right=True)
Bases: tenpy.algorithms.mps_common.EffectiveH

Class defining the one-site effective Hamiltonian for Lanczos.

The effective one-site Hamiltonian looks like this:

| .--- ---.
| | | |
| LP----W0----RP
| | | |
| .--- ---.

If combine is True, we define either LHeff as contraction of LP with W (in the case move_right is True) or RHeff
as contraction of RP and W.

Parameters

• env (MPOEnvironment) – Environment for contraction <psi|H|psi>.

• i0 (int) – Index of the active site if length=1, or of the left-most active site if length>1.

• combine (bool) – Whether to combine legs into pipes. This combines the virtual and
physical leg for the left site (when moving right) or right side (when moving left) into
pipes. This reduces the overhead of calculating charge combinations in the contractions,
but one matvec() is formally more expensive, 𝑂(2𝑑3𝜒3𝐷). Is originally from the wo-
site method; unclear if it works well for 1 site.

• move_right (bool) – Whether the the sweep is moving right or left for the next update.

length
Number of (MPS) sites the effective hamiltonian covers.

Type int

acts_on
Labels of the state on which self acts. NB: class attribute. Overwritten by normal attribute, if combine.

Type list of str

combine, move_right
See above.

Type bool

LHeff, RHeff
Only set if combine, and only one of them depending on move_right. If move_right was True, LHeff
is set with labels '(vR*.p0)', 'wR', '(vR.p0*)' for bra, MPO, ket; otherwise RHeff is set with
labels '(p0*.vL)', 'wL', '(p0, vL*)'

17.4. mps_common 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Type Array

LP, W0, RP
Tensors making up the network of self.

Type Array

matvec(theta)
Apply the effective Hamiltonian to theta.

Parameters theta (Array) – Labels: vL, p0, vR if combine=False, (vL.p0), vR or
vL, (p0.vR) if True (depending on the direction of movement)

Returns Product of theta and the effective Hamiltonian.

Return type theta Array

combine_Heff()
Combine LP and RP with W to form LHeff and RHeff, depending on the direction.

In a move to the right, we need LHeff. In a move to the left, we need RHeff. Both contain the same W.

combine_theta(theta)
Combine the legs of theta, such that it fits to how we combined the legs of self.

Parameters theta (Array) – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Returns theta – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Return type Array

to_matrix()
Contract self to a matrix.

adjoint()
Return the hermitian conjugate of self.

17.4.3 TwoSiteH

• full name: tenpy.algorithms.mps_common.TwoSiteH

• parent module: tenpy.algorithms.mps_common

• type: class

210 Chapter 17. algorithms

TeNPy, Release 0.8.1

Inheritance Diagram

EffectiveH

TwoSiteH

NpcLinearOperator

Methods

TwoSiteH.__init__(env, i0[, combine,
move_right])

Initialize self.

TwoSiteH.adjoint() Return the hermitian conjugate of self.
TwoSiteH.combine_Heff() Combine LP and RP with W to form LHeff and RHeff.
TwoSiteH.combine_theta(theta) Combine the legs of theta, such that it fits to how we

combined the legs of self.
TwoSiteH.matvec(theta) Apply the effective Hamiltonian to theta.
TwoSiteH.to_matrix() Contract self to a matrix.

Class Attributes and Properties

TwoSiteH.acts_on

TwoSiteH.length

class tenpy.algorithms.mps_common.TwoSiteH(env, i0, combine=False, move_right=True)
Bases: tenpy.algorithms.mps_common.EffectiveH

Class defining the two-site effective Hamiltonian for Lanczos.

The effective two-site Hamiltonian looks like this:

| .--- ---.
| | | | |
| LP----W0--W1---RP
| | | | |
| .--- ---.

17.4. mps_common 211

TeNPy, Release 0.8.1

If combine is True, we define LHeff and RHeff, which are the contractions of LP with W0, and RP with W1,
respectively.

Parameters

• env (MPOEnvironment) – Environment for contraction <psi|H|psi>.

• i0 (int) – Index of the active site if length=1, or of the left-most active site if length>1.

• combine (bool) – Whether to combine legs into pipes. This combines the virtual and
physical leg for the left site (when moving right) or right side (when moving left) into pipes.
This reduces the overhead of calculating charge combinations in the contractions, but one
matvec() is formally more expensive, 𝑂(2𝑑3𝜒3𝐷).

• move_right (bool) – Whether the the sweep is moving right or left for the next update.

combine
Whether to combine legs into pipes. This combines the virtual and physical leg for the left site and right
site into pipes. This reduces the overhead of calculating charge combinations in the contractions, but one
matvec() is formally more expensive, 𝑂(2𝑑3𝜒3𝐷).

Type bool

length
Number of (MPS) sites the effective hamiltonian covers.

Type int

acts_on
Labels of the state on which self acts. NB: class attribute. Overwritten by normal attribute, if combine.

Type list of str

LHeff
Left part of the effective Hamiltonian. Labels '(vR*.p0)', 'wR', '(vR.p0*)' for bra, MPO,
ket.

Type Array

RHeff
Right part of the effective Hamiltonian. Labels '(p1*.vL)', 'wL', '(p1.vL*)' for ket, MPO,
bra.

Type Array

LP, W0, W1, RP
Tensors making up the network of self.

Type Array

matvec(theta)
Apply the effective Hamiltonian to theta.

Parameters theta (Array) – Labels: vL, p0, p1, vR if combine=False, (vL.p0),
(p1.vR) if True

Returns Product of theta and the effective Hamiltonian.

Return type theta Array

combine_Heff()
Combine LP and RP with W to form LHeff and RHeff.

Combine LP with W0 and RP with W1 to get the effective parts of the Hamiltonian with piped legs.

212 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

combine_theta(theta)
Combine the legs of theta, such that it fits to how we combined the legs of self.

Parameters theta (Array) – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Returns theta – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Return type Array

to_matrix()
Contract self to a matrix.

adjoint()
Return the hermitian conjugate of self.

Module description

‘Sweep’ algorithm and effective Hamiltonians.

Many MPS-based algorithms use a ‘sweep’ structure, wherein local updates are performed on the MPS tensors se-
quentially, first from left to right, then from right to left. This procedure is common to DMRG, TDVP, sequential time
evolution, etc.

Another common feature of these algorithms is the use of an effective local Hamiltonian to perform the local updates.
The most prominent example of this is probably DMRG, where the local MPS object is optimized with respect to the
rest of the MPS-MPO-MPS network, the latter forming the effective Hamiltonian.

The Sweep class attempts to generalize as many aspects of ‘sweeping’ algorithms as possible. EffectiveH and its
subclasses implement the effective Hamiltonians mentioned above. Currently, effective Hamiltonians for 1-site and
2-site optimization are implemented.

The VariationalCompression and VariationalApplyMPO implemented here also directly use the Sweep
class.

17.5 dmrg

• full name: tenpy.algorithms.dmrg

• parent module: tenpy.algorithms

• type: module

17.5. dmrg 213

TeNPy, Release 0.8.1

Classes

Algorithm

Sweep

DMRGEngine

TwoSiteDMRGEngine SingleSiteDMRGEngine

DensityMatrixMixer

Mixer

SingleSiteMixer

EngineCombine EngineFracture

TwoSiteMixer

DMRGEngine(psi, model, options, **kwargs) DMRG base class with common methods for the
TwoSiteDMRG and SingleSiteDMRG.

DensityMatrixMixer(options) Mixer based on density matrices.
EngineCombine(psi, model, DMRG_params) Engine which combines legs into pipes as far as possi-

ble.
EngineFracture(psi, model, DMRG_params) Engine which keeps the legs separate.
Mixer(options) Base class of a general Mixer.
SingleSiteDMRGEngine(psi, model, options, . . .) Engine for the single-site DMRG algorithm.
SingleSiteMixer(options) Mixer for single-site DMRG.
TwoSiteDMRGEngine(psi, model, options,
**kwargs)

Engine for the two-site DMRG algorithm.

TwoSiteMixer(options) Mixer for two-site DMRG.

214 Chapter 17. algorithms

TeNPy, Release 0.8.1

17.5.1 DensityMatrixMixer

• full name: tenpy.algorithms.dmrg.DensityMatrixMixer

• parent module: tenpy.algorithms.dmrg

• type: class

Inheritance Diagram

DensityMatrixMixer

Mixer

Methods

DensityMatrixMixer.__init__(options) Initialize self.
DensityMatrixMixer.get_xL(wL_leg, Id_L,
Id_R)

Generate the coupling of the MPO legs for the reduced
density matrix.

DensityMatrixMixer.get_xR(wR_leg, Id_L,
Id_R)

Generate the coupling of the MPO legs for the reduced
density matrix.

DensityMatrixMixer.mix_rho_L(engine,
theta, . . .)

Calculated mixed reduced density matrix for left site.

DensityMatrixMixer.mix_rho_R(engine,
theta, . . .)

Calculated mixed reduced density matrix for left site.

DensityMatrixMixer.perturb_svd(engine,
. . .)

Mix extra terms to theta and perform an SVD.

DensityMatrixMixer.
update_amplitude(sweeps)

Update the amplitude, possibly disable the mixer.

class tenpy.algorithms.dmrg.DensityMatrixMixer(options)
Bases: tenpy.algorithms.dmrg.Mixer

Mixer based on density matrices.

This mixer constructs density matrices as described in the original paper [[white2005]].

perturb_svd(engine, theta, i0, update_LP, update_RP)
Mix extra terms to theta and perform an SVD.

We calculate the left and right reduced density using the mixer (which might include applications of H).
These density matrices are diagonalized and truncated such that we effectively perform a svd for the case
mixer.amplitude=0.

Parameters

17.5. dmrg 215

TeNPy, Release 0.8.1

• engine (SingleSiteDMRGEngine | TwoSiteDMRGEngine) – The DMRG engine
calling the mixer.

• theta (Array) – The optimized wave function, prepared for svd.

• i0 (int) – Site index; theta lives on i0, i0+1.

• update_LP (bool) – Whether to calculate the next env.LP[i0+1].

• update_RP (bool) – Whether to calculate the next env.RP[i0].

Returns

• U (Array) – Left-canonical part of theta. Labels '(vL.p0)', 'vR'.

• S (1D ndarray | 2D Array) – Without mixer just the singluar values of the array; with
mixer it might be a general matrix; see comment above.

• VH (Array) – Right-canonical part of theta. Labels 'vL', '(p1.vR)'.

• err (TruncationError) – The truncation error introduced.

mix_rho_L(engine, theta, i0, mix_enabled)
Calculated mixed reduced density matrix for left site.

Pictorially:

| mix_enabled=False mix_enabled=True
|
| .---theta---. .---theta-------.
		LP---H0--H1--.						
.---theta*--.	xR							
LP*--H0*-H1*-.								
.---theta*------.								

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – Ground state of the effective Hamiltonian, prepared for svd.

• i0 (int) – Site index; theta lives on i0, i0+1.

• mix_enabled (bool) – Whether we should perturb the density matrix.

Returns rho_L – A (hermitian) square array with labels '(vL.p0)', '(vL*.p0*)',
Mainly the reduced density matrix of the left part, but with some additional mixing.

Return type Array

mix_rho_R(engine, theta, i0, mix_enabled)
Calculated mixed reduced density matrix for left site.

Pictorially:

| mix_enabled=False mix_enabled=True
|
| .---theta---. .------theta---.
| | | | | | | | |

(continues on next page)

216 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

(continued from previous page)

| | | | .--H0--H1--RP
.---theta*--.	wL							
	.--H0*-H1*-RP*							
.------theta*--.								

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – Ground state of the effective Hamiltonian, prepared for svd.

• i0 (int) – Site index; theta lives on i0, i0+1.

• mix_enabled (bool) – Whether we should perturb the density matrix.

Returns rho_R – A (hermitian) square array with labels '(p1.vR)', '(p1*.vR*)'.
Mainly the reduced density matrix of the right part, but with some additional mixing.

Return type Array

get_xR(wR_leg, Id_L, Id_R)
Generate the coupling of the MPO legs for the reduced density matrix.

Parameters

• wR_leg (LegCharge) – LegCharge to be connected to.

• IdL (int | None) – Index within the leg for which the MPO has only identities to the left.

• IdR (int | None) – Index within the leg for which the MPO has only identities to the right.

Returns

• mixed_xR (Array) – Connection of the MPOs on the right for the reduced density matrix
rhoL. Labels ('wL', 'wL*').

• add_separate_Id (bool) – If Id_L is None, we can’t include the identity into mixed_xR,
so it has to be added directly in mix_rho_L().

get_xL(wL_leg, Id_L, Id_R)
Generate the coupling of the MPO legs for the reduced density matrix.

Parameters

• wL_leg (LegCharge) – LegCharge to be connected to.

• Id_L (int | None) – Index within the leg for which the MPO has only identities to the left.

• Id_R (int | None) – Index within the leg for which the MPO has only identities to the
right.

Returns

• mixed_xL (Array) – Connection of the MPOs on the left for the reduced density matrix
rhoR. Labels ('wR', 'wR*').

• add_separate_Id (bool) – If Id_R is None, we can’t include the identity into mixed_xL,
so it has to be added directly in mix_rho_R().

update_amplitude(sweeps)
Update the amplitude, possibly disable the mixer.

17.5. dmrg 217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters sweeps (int) – The number of performed sweeps, to check if we need to disable
the mixer.

Returns mixer – Returns self if we should continue mixing, or None, if the mixer should be
disabled.

Return type Mixer | None

17.5.2 EngineCombine

• full name: tenpy.algorithms.dmrg.EngineCombine

• parent module: tenpy.algorithms.dmrg

• type: class

Inheritance Diagram

Algorithm

Sweep

DMRGEngine

TwoSiteDMRGEngine

EngineCombine

218 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Methods

EngineCombine.__init__(psi, model,
DMRG_params)

Initialize self.

EngineCombine.diag(theta_guess) Diagonalize the effective Hamiltonian represented by
self.

EngineCombine.environment_sweeps(N_sweeps)Perform N_sweeps sweeps without optimization to up-
date the environment.

EngineCombine.get_resume_data() Return necessary data to resume a run() interrupted at
a checkpoint.

EngineCombine.get_sweep_schedule() Define the schedule of the sweep.
EngineCombine.init_env([model, re-
sume_data])

(Re-)initialize the environment.

EngineCombine.make_eff_H() Create new instance of self.EffectiveH at self.i0 and set
it to self.eff_H.

EngineCombine.mixed_svd(theta) Get (truncated) B from the new theta (as returned by
diag).

EngineCombine.mixer_activate() Set self.mixer to the class specified by options[‘mixer’].
EngineCombine.mixer_cleanup() Cleanup the effects of a mixer.
EngineCombine.plot_sweep_stats([axes,
. . .])

Plot sweep_stats to display the convergence with
the sweeps.

EngineCombine.plot_update_stats(axes[,
. . .])

Plot update_stats to display the convergence dur-
ing the sweeps.

EngineCombine.post_update_local(update_data)Perform post-update actions.
EngineCombine.prepare_svd(theta) Transform theta into matrix for svd.
EngineCombine.prepare_update() Prepare self for calling update_local() on sites i0

: i0+n_optimize.
EngineCombine.reset_stats([resume_data]) Reset the statistics, useful if you want to start a new

sweep run.
EngineCombine.resume_run() Resume a run that was interrupted.
EngineCombine.run() Run the DMRG simulation to find the ground state.
EngineCombine.set_B(U, S, VH) Update the MPS with the U, S, VH returned by

self.mixed_svd.
EngineCombine.sweep([optimize,
meas_E_trunc])

One ‘sweep’ of a the algorithm.

EngineCombine.update_LP(U) Update left part of the environment.
EngineCombine.update_RP(VH) Update right part of the environment.
EngineCombine.update_local(theta[, opti-
mize])

Perform site-update on the site i0.

Class Attributes and Properties

EngineCombine.DMRG_params

EngineCombine.engine_params

EngineCombine.n_optimize the number of sites to be optimized over at once.
EngineCombine.verbose

17.5. dmrg 219

TeNPy, Release 0.8.1

class tenpy.algorithms.dmrg.EngineCombine(psi, model, DMRG_params)
Bases: tenpy.algorithms.dmrg.TwoSiteDMRGEngine

Engine which combines legs into pipes as far as possible.

This engine combines the virtual and physical leg for the left site and right site into pipes. This reduces the over-
head of calculating charge combinations in the contractions, but one matvec() is formally more expensive,
𝑂(2𝑑3𝜒3𝐷).

Deprecated since version 0.5.0: Directly use the TwoSiteDMRGEngine with the DMRG parameter
combine=True.

DefaultMixer
alias of tenpy.algorithms.dmrg.DensityMatrixMixer

EffectiveH
alias of tenpy.algorithms.mps_common.TwoSiteH

diag(theta_guess)
Diagonalize the effective Hamiltonian represented by self.

option DMRGEngine.max_N_for_ED: int
Maximum matrix dimension of the effective hamiltonian up to which the 'default' diag_method
uses ED instead of Lanczos.

option DMRGEngine.diag_method: str
One of the folloing strings:
‘default’ Same as 'lanczos' for large bond dimensions, but if the total dimension of the effective

Hamiltonian does not exceed the DMRG parameter 'max_N_for_ED' it uses 'ED_block'.
‘lanczos’ lanczos() Default, the Lanczos implementation in TeNPy.
‘arpack’ lanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than

‘lanczos’, since it needs to convert the npc arrays to numpy arrays during each matvec, and
possibly does many more iterations.

‘ED_block’ full_diag_effH() Contract the effective Hamiltonian to a (large!) matrix and di-
agonalize the block in the charge sector of the initial state. Preserves the charge sector of the
explicitly conserved charges. However, if you don’t preserve a charge explicitly, it can break it.
For example if you use a SpinChain({'conserve': 'parity'}), it could change the
total “Sz”, but not the parity of ‘Sz’.

‘ED_all’ full_diag_effH() Contract the effective Hamiltonian to a (large!) matrix and diago-
nalize it completely. Allows to change the charge sector even for explicitly conserved charges. For
example if you use a SpinChain({'conserve': 'Sz'}), it can change the total “Sz”.

Parameters theta_guess (Array) – Initial guess for the ground state of the effective
Hamiltonian.

Returns

• E0 (float) – Energy of the found ground state.

• theta (Array) – Ground state of the effective Hamiltonian.

• N (int) – Number of Lanczos iterations used. -1 if unknown.

• ov_change (float) – Change in the wave function 1. -
abs(<theta_guess|theta_diag>)

environment_sweeps(N_sweeps)
Perform N_sweeps sweeps without optimization to update the environment.

Parameters N_sweeps (int) – Number of sweeps to run without optimization

220 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

get_sweep_schedule()
Define the schedule of the sweep.

One ‘sweep’ is a full sequence from the leftmost site to the right and back. Only those LP and RP that can
be used later should be updated.

Returns schedule – Schedule for the sweep. Each entry is (i0, move_right,
(update_LP, update_RP)), where i0 is the leftmost of the self.EffectiveH.
length sites to be updated in update_local(), move_right indicates whether the next
i0 in the schedule is rigth (True) of the current one, and update_LP, update_RP indicate
whether it is necessary to update the LP and RP. The latter are chosen such that the environ-
ment is growing for infinite systems, but we only keep the minimal number of environment
tensors in memory.

Return type iterable of (int, bool, (bool, bool))

init_env(model=None, resume_data=None)
(Re-)initialize the environment.

This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats().

Parameters

• model (MPOModel) – The model representing the Hamiltonian for which we want to
find the ground state. If None, keep the model used before.

• resume_data (None | dict) – Given when resuming a simulation, as returned by
get_resume_data().

Options

Deprecated since version 0.6.0: Options LP, LP_age, RP and RP_age are now collected in a dictionary
init_env_data with different keys init_LP, init_RP, age_LP, age_RP

Deprecated since version 0.8.0: Instead of passing the init_env_data as a option, it should be passed as
dict entry of resume_data.

option Sweep.init_env_data: dict
Dictionary as returned by self.env.get_initialization_data() from
get_initialization_data().

option Sweep.orthogonal_to: list of MPS
List of other matrix product states to orthogonalize against. Works only for finite systems. This
parameter can be used to find (a few) excited states as follows. First, run DMRG to find the ground

17.5. dmrg 221

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

state and then run DMRG again while orthogonalizing against the ground state, which yields the first
excited state (in the same symmetry sector), and so on.

option Sweep.start_env: int
Number of sweeps to be performed without optimization to update the environment.

Raises ValueError – If the engine is re-initialized with a new model, which legs are incom-
patible with those of hte old model.

make_eff_H()
Create new instance of self.EffectiveH at self.i0 and set it to self.eff_H.

mixed_svd(theta)
Get (truncated) B from the new theta (as returned by diag).

The goal is to split theta and truncate it:

| -- theta -- ==> -- U -- S -- VH -
| | | | |

Without a mixer, this is done by a simple svd and truncation of Schmidt values.

With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the
Mixer class.

Note that the returned S is a general (not diagonal) matrix, with labels 'vL', 'vR'.

Parameters theta (Array) – The optimized wave function, prepared for svd.

Returns

• U (Array) – Left-canonical part of theta. Labels '(vL.p0)', 'vR'.

• S (1D ndarray | 2D Array) – Without mixer just the singluar values of the array; with
mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.

• VH (Array) – Right-canonical part of theta. Labels 'vL', '(p1.vR)'.

• err (TruncationError) – The truncation error introduced.

mixer_activate()
Set self.mixer to the class specified by options[‘mixer’].

option TwoSiteDMRGEngine.mixer: str | class | bool
Chooses the Mixer to be used. A string stands for one of the mixers defined in this module, a class is
used as custom mixer. Default (None) uses no mixer, True uses DensityMatrixMixer for the
2-site case and SingleSiteMixer for the 1-site case.

option TwoSiteDMRGEngine.mixer_params: dict
Mixer parameters as described in Mixer.

mixer_cleanup()
Cleanup the effects of a mixer.

A sweep() with an enabled Mixer leaves the MPS psi with 2D arrays in S. To recover the originial
form, this function simply performs one sweep with disabled mixer.

property n_optimize
the number of sites to be optimized over at once.

Indirectly set by the class attribute EffectiveH and it’s length. For example, TwoSiteDMRGEngine
uses the TwoSiteH and hence has n_optimize=2, while the SingleSiteDMRGEngine has
n_optimize=1.

222 Chapter 17. algorithms

https://docs.python.org/3/library/exceptions.html#ValueError

TeNPy, Release 0.8.1

plot_sweep_stats(axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

Parameters

• axes (matplotlib.axes.Axes) – The axes to plot into. Defaults to matplotlib.
pyplot.gca()

• xaxis (key of sweep_stats) – Key of sweep_stats to be used for the x-axis and
y-axis of the plots.

• yaxis (key of sweep_stats) – Key of sweep_stats to be used for the x-axis and
y-axis of the plots.

• y_exact (float) – Exact value for the quantity on the y-axis for comparison. If given,
plot abs((y-y_exact)/y_exact) on a log-scale yaxis.

• **kwargs – Further keyword arguments given to axes.plot(...).

plot_update_stats(axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

Parameters

• axes (matplotlib.axes.Axes) – The axes to plot into. Defaults to matplotlib.
pyplot.gca()

• xaxis ('N_updates' | 'sweep' | keys of update_stats) – Key of
update_stats to be used for the x-axis of the plots. 'N_updates' is just enu-
merating the number of bond updates, and 'sweep' corresponds to the sweep number
(including environment sweeps).

• yaxis ('E' | keys of update_stats) – Key of update_stats to be used for the
y-axisof the plots. For ‘E’, use the energy (per site for infinite systems).

• y_exact (float) – Exact value for the quantity on the y-axis for comparison. If given,
plot abs((y-y_exact)/y_exact) on a log-scale yaxis.

• **kwargs – Further keyword arguments given to axes.plot(...).

post_update_local(update_data)
Perform post-update actions.

Compute truncation energy, remove LP/RP that are no longer needed and collect statistics.

Parameters update_data (dict) – What was returned by update_local().

prepare_svd(theta)
Transform theta into matrix for svd.

prepare_update()
Prepare self for calling update_local() on sites i0 : i0+n_optimize.

Returns theta – Current best guess for the ground state, which is to be optimized. Labels are
'vL', 'p0', 'p1', 'vR', or combined versions of it (if self.combine). For single-site
DMRG, the 'p1' label is missing.

Return type Array

reset_stats(resume_data=None)
Reset the statistics, useful if you want to start a new sweep run.

option DMRGEngine.chi_list: dict | None
A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting
from which sweep chi_max is set to the value, e.g. {0: 50, 20: 100} uses chi_max=50 for

17.5. dmrg 223

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://docs.python.org/3/library/functions.html#float
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params[‘chi_list’]`. By default
(None) this feature is disabled.

option DMRGEngine.sweep_0: int
The number of sweeps already performed. (Useful for re-start).

resume_run()
Resume a run that was interrupted.

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
Run the DMRG simulation to find the ground state.

Returns

• E (float) – The energy of the resulting ground state MPS.

• psi (MPS) – The MPS representing the ground state after the simluation, i.e. just a refer-
ence to psi.

Options

option DMRGEngine.diag_method: str
Method to be used for diagonalzation, default 'default'. For possible arguments see
DMRGEngine.diag().

option DMRGEngine.E_tol_to_trunc: float
It’s reasonable to choose the Lanczos convergence criteria 'E_tol' not many magnitudes lower
than the current truncation error. Therefore, if E_tol_to_trunc is not None, we update E_tol
of lanczos_params to max_E_trunc*E_tol_to_trunc, restricted to the interval [E_tol_min,
E_tol_max], where max_E_trunc is the maximal energy difference due to truncation right after
each Lanczos optimization during the sweeps.

option DMRGEngine.E_tol_max: float
See E_tol_to_trunc

option DMRGEngine.E_tol_min: float
See E_tol_to_trunc

option DMRGEngine.max_E_err: float
Convergence if the change of the energy in each step satisfies -Delta E / max(|E|, 1) <
max_E_err. Note that this is also satisfied if Delta E > 0, i.e., if the energy increases (due to
truncation).

option DMRGEngine.max_hours: float
If the DMRG took longer (measured in wall-clock time), ‘shelve’ the simulation, i.e. stop and return
with the flag shelve=True.

option DMRGEngine.max_S_err: float
Convergence if the relative change of the entropy in each step satisfies |Delta S|/S <
max_S_err

option DMRGEngine.max_sweeps: int
Maximum number of sweeps to be performed.

option DMRGEngine.min_sweeps: int
Minimum number of sweeps to be performed. Defaults to 1.5*N_sweeps_check.

224 Chapter 17. algorithms

TeNPy, Release 0.8.1

option DMRGEngine.N_sweeps_check: int
Number of sweeps to perform between checking convergence criteria and giving a status update.

option DMRGEngine.norm_tol: float
After the DMRG run, update the environment with at most norm_tol_iter sweeps until np.linalg.
norm(psi.norm_err()) < norm_tol.

option DMRGEngine.norm_tol_iter: float
Perform at most norm_tol_iter`*`update_env sweeps to converge the norm error below norm_tol. If
the state is not converged after that, call canonical_form() instead.

option DMRGEngine.P_tol_to_trunc: float
It’s reasonable to choose the Lanczos convergence criteria 'P_tol' not many magnitudes lower
than the current truncation error. Therefore, if P_tol_to_trunc is not None, we update P_tol of
lanczos_params to max_trunc_err*P_tol_to_trunc, restricted to the interval [P_tol_min,
P_tol_max], where max_trunc_err is the maximal truncation error (discarded weight of the
Schmidt values) due to truncation right after each Lanczos optimization during the sweeps.

option DMRGEngine.P_tol_max: float
See P_tol_to_trunc

option DMRGEngine.P_tol_min: float
See P_tol_to_trunc

option DMRGEngine.update_env: int
Number of sweeps without bond optimizaiton to update the environment for infinite boundary condi-
tions, performed every N_sweeps_check sweeps.

set_B(U, S, VH)
Update the MPS with the U, S, VH returned by self.mixed_svd.

Parameters

• U (Array) – Left and Right-canonical matrices as returned by the SVD.

• VH (Array) – Left and Right-canonical matrices as returned by the SVD.

• S (1D array | 2D Array) – The middle part returned by the SVD, theta = U S VH.
Without a mixer just the singular values, with enabled mixer a 2D array.

sweep(optimize=True, meas_E_trunc=False)
One ‘sweep’ of a the algorithm.

Iteratate over the bond which is optimized, to the right and then back to the left to the starting point.

Parameters

• optimize (bool, optional) – Whether we actually optimize to find the ground
state of the effective Hamiltonian. (If False, just update the environments).

• meas_E_trunc (bool, optional) – Whether to measure truncation energies.

Returns

• max_trunc_err (float) – Maximal truncation error introduced.

• max_E_trunc (None | float) – None if meas_E_trunc is False, else the maximal change
of the energy due to the truncation.

update_LP(U)
Update left part of the environment.

We always update the environment at site i0 + 1: this environment then contains the site where we just
performed a local update (when sweeping right).

17.5. dmrg 225

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters U (Array) – The U as returned by the SVD, with combined legs, labels 'vL.
p0', 'vR'.

update_RP(VH)
Update right part of the environment.

We always update the environment at site i0: this environment then contains the site where we just per-
formed a local update (when sweeping left).

Parameters VH (Array) – The VH as returned by SVD, with combined legs, labels 'vL',
'(vR.p1)'.

update_local(theta, optimize=True)
Perform site-update on the site i0.

Parameters

• theta (Array) – Initial guess for the ground state of the effective Hamiltonian.

• optimize (bool) – Wheter we actually optimize to find the ground state of the effective
Hamiltonian. (If False, just update the environments).

Returns

update_data – Data computed during the local update, as described in the following:

E0 [float] Total energy, obtained before truncation (if optimize=True), or after trunca-
tion (if optimize=False) (but never None).

N [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if
optimize=False.

age [int] Current size of the DMRG simulation: number of physical sites involved into the
contraction.

U, VH: Array U and VH returned by mixed_svd().

ov_change: float Change in the wave function 1. - abs(<theta_guess|theta>)
induced by diag(), not including the truncation!

Return type dict

17.5.3 EngineFracture

• full name: tenpy.algorithms.dmrg.EngineFracture

• parent module: tenpy.algorithms.dmrg

• type: class

226 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Inheritance Diagram

Algorithm

Sweep

DMRGEngine

TwoSiteDMRGEngine

EngineFracture

Methods

EngineFracture.__init__(psi, model,
DMRG_params)

Initialize self.

EngineFracture.diag(theta_guess) Diagonalize the effective Hamiltonian represented by
self.

EngineFracture.environment_sweeps(N_sweeps)Perform N_sweeps sweeps without optimization to up-
date the environment.

EngineFracture.get_resume_data() Return necessary data to resume a run() interrupted at
a checkpoint.

EngineFracture.get_sweep_schedule() Define the schedule of the sweep.
EngineFracture.init_env([model, re-
sume_data])

(Re-)initialize the environment.

EngineFracture.make_eff_H() Create new instance of self.EffectiveH at self.i0 and set
it to self.eff_H.

EngineFracture.mixed_svd(theta) Get (truncated) B from the new theta (as returned by
diag).

EngineFracture.mixer_activate() Set self.mixer to the class specified by options[‘mixer’].
EngineFracture.mixer_cleanup() Cleanup the effects of a mixer.
EngineFracture.plot_sweep_stats([axes,
. . .])

Plot sweep_stats to display the convergence with
the sweeps.

continues on next page

17.5. dmrg 227

TeNPy, Release 0.8.1

Table 21 – continued from previous page
EngineFracture.plot_update_stats(axes[,
. . .])

Plot update_stats to display the convergence dur-
ing the sweeps.

EngineFracture.post_update_local(update_data)Perform post-update actions.
EngineFracture.prepare_svd(theta) Transform theta into matrix for svd.
EngineFracture.prepare_update() Prepare self for calling update_local() on sites i0

: i0+n_optimize.
EngineFracture.reset_stats([resume_data]) Reset the statistics, useful if you want to start a new

sweep run.
EngineFracture.resume_run() Resume a run that was interrupted.
EngineFracture.run() Run the DMRG simulation to find the ground state.
EngineFracture.set_B(U, S, VH) Update the MPS with the U, S, VH returned by

self.mixed_svd.
EngineFracture.sweep([optimize,
meas_E_trunc])

One ‘sweep’ of a the algorithm.

EngineFracture.update_LP(U) Update left part of the environment.
EngineFracture.update_RP(VH) Update right part of the environment.
EngineFracture.update_local(theta[, opti-
mize])

Perform site-update on the site i0.

Class Attributes and Properties

EngineFracture.DMRG_params

EngineFracture.engine_params

EngineFracture.n_optimize the number of sites to be optimized over at once.
EngineFracture.verbose

class tenpy.algorithms.dmrg.EngineFracture(psi, model, DMRG_params)
Bases: tenpy.algorithms.dmrg.TwoSiteDMRGEngine

Engine which keeps the legs separate.

Due to a different contraction order in matvec(), this engine might be faster than EngineCombine, at least
for large physical dimensions and if the MPO is sparse. One matvec() is 𝑂(2𝜒3𝑑2𝑊 + 2𝜒2𝑑3𝑊 2).

Deprecated since version 0.5.0: Directly use the TwoSiteDMRGEngine with the DMRG parameter
combine=False.

DefaultMixer
alias of tenpy.algorithms.dmrg.DensityMatrixMixer

EffectiveH
alias of tenpy.algorithms.mps_common.TwoSiteH

diag(theta_guess)
Diagonalize the effective Hamiltonian represented by self.

option DMRGEngine.max_N_for_ED: int
Maximum matrix dimension of the effective hamiltonian up to which the 'default' diag_method
uses ED instead of Lanczos.

option DMRGEngine.diag_method: str

228 Chapter 17. algorithms

TeNPy, Release 0.8.1

One of the folloing strings:
‘default’ Same as 'lanczos' for large bond dimensions, but if the total dimension of the effective

Hamiltonian does not exceed the DMRG parameter 'max_N_for_ED' it uses 'ED_block'.
‘lanczos’ lanczos() Default, the Lanczos implementation in TeNPy.
‘arpack’ lanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than

‘lanczos’, since it needs to convert the npc arrays to numpy arrays during each matvec, and
possibly does many more iterations.

‘ED_block’ full_diag_effH() Contract the effective Hamiltonian to a (large!) matrix and di-
agonalize the block in the charge sector of the initial state. Preserves the charge sector of the
explicitly conserved charges. However, if you don’t preserve a charge explicitly, it can break it.
For example if you use a SpinChain({'conserve': 'parity'}), it could change the
total “Sz”, but not the parity of ‘Sz’.

‘ED_all’ full_diag_effH() Contract the effective Hamiltonian to a (large!) matrix and diago-
nalize it completely. Allows to change the charge sector even for explicitly conserved charges. For
example if you use a SpinChain({'conserve': 'Sz'}), it can change the total “Sz”.

Parameters theta_guess (Array) – Initial guess for the ground state of the effective
Hamiltonian.

Returns

• E0 (float) – Energy of the found ground state.

• theta (Array) – Ground state of the effective Hamiltonian.

• N (int) – Number of Lanczos iterations used. -1 if unknown.

• ov_change (float) – Change in the wave function 1. -
abs(<theta_guess|theta_diag>)

environment_sweeps(N_sweeps)
Perform N_sweeps sweeps without optimization to update the environment.

Parameters N_sweeps (int) – Number of sweeps to run without optimization

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

get_sweep_schedule()
Define the schedule of the sweep.

One ‘sweep’ is a full sequence from the leftmost site to the right and back. Only those LP and RP that can
be used later should be updated.

Returns schedule – Schedule for the sweep. Each entry is (i0, move_right,
(update_LP, update_RP)), where i0 is the leftmost of the self.EffectiveH.
length sites to be updated in update_local(), move_right indicates whether the next
i0 in the schedule is rigth (True) of the current one, and update_LP, update_RP indicate

17.5. dmrg 229

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

whether it is necessary to update the LP and RP. The latter are chosen such that the environ-
ment is growing for infinite systems, but we only keep the minimal number of environment
tensors in memory.

Return type iterable of (int, bool, (bool, bool))

init_env(model=None, resume_data=None)
(Re-)initialize the environment.

This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats().

Parameters

• model (MPOModel) – The model representing the Hamiltonian for which we want to
find the ground state. If None, keep the model used before.

• resume_data (None | dict) – Given when resuming a simulation, as returned by
get_resume_data().

Options

Deprecated since version 0.6.0: Options LP, LP_age, RP and RP_age are now collected in a dictionary
init_env_data with different keys init_LP, init_RP, age_LP, age_RP

Deprecated since version 0.8.0: Instead of passing the init_env_data as a option, it should be passed as
dict entry of resume_data.

option Sweep.init_env_data: dict
Dictionary as returned by self.env.get_initialization_data() from
get_initialization_data().

option Sweep.orthogonal_to: list of MPS
List of other matrix product states to orthogonalize against. Works only for finite systems. This
parameter can be used to find (a few) excited states as follows. First, run DMRG to find the ground
state and then run DMRG again while orthogonalizing against the ground state, which yields the first
excited state (in the same symmetry sector), and so on.

option Sweep.start_env: int
Number of sweeps to be performed without optimization to update the environment.

Raises ValueError – If the engine is re-initialized with a new model, which legs are incom-
patible with those of hte old model.

make_eff_H()
Create new instance of self.EffectiveH at self.i0 and set it to self.eff_H.

mixed_svd(theta)
Get (truncated) B from the new theta (as returned by diag).

The goal is to split theta and truncate it:

| -- theta -- ==> -- U -- S -- VH -
| | | | |

Without a mixer, this is done by a simple svd and truncation of Schmidt values.

With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the
Mixer class.

Note that the returned S is a general (not diagonal) matrix, with labels 'vL', 'vR'.

230 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

TeNPy, Release 0.8.1

Parameters theta (Array) – The optimized wave function, prepared for svd.

Returns

• U (Array) – Left-canonical part of theta. Labels '(vL.p0)', 'vR'.

• S (1D ndarray | 2D Array) – Without mixer just the singluar values of the array; with
mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.

• VH (Array) – Right-canonical part of theta. Labels 'vL', '(p1.vR)'.

• err (TruncationError) – The truncation error introduced.

mixer_activate()
Set self.mixer to the class specified by options[‘mixer’].

option TwoSiteDMRGEngine.mixer: str | class | bool
Chooses the Mixer to be used. A string stands for one of the mixers defined in this module, a class is
used as custom mixer. Default (None) uses no mixer, True uses DensityMatrixMixer for the
2-site case and SingleSiteMixer for the 1-site case.

option TwoSiteDMRGEngine.mixer_params: dict
Mixer parameters as described in Mixer.

mixer_cleanup()
Cleanup the effects of a mixer.

A sweep() with an enabled Mixer leaves the MPS psi with 2D arrays in S. To recover the originial
form, this function simply performs one sweep with disabled mixer.

property n_optimize
the number of sites to be optimized over at once.

Indirectly set by the class attribute EffectiveH and it’s length. For example, TwoSiteDMRGEngine
uses the TwoSiteH and hence has n_optimize=2, while the SingleSiteDMRGEngine has
n_optimize=1.

plot_sweep_stats(axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

Parameters

• axes (matplotlib.axes.Axes) – The axes to plot into. Defaults to matplotlib.
pyplot.gca()

• xaxis (key of sweep_stats) – Key of sweep_stats to be used for the x-axis and
y-axis of the plots.

• yaxis (key of sweep_stats) – Key of sweep_stats to be used for the x-axis and
y-axis of the plots.

• y_exact (float) – Exact value for the quantity on the y-axis for comparison. If given,
plot abs((y-y_exact)/y_exact) on a log-scale yaxis.

• **kwargs – Further keyword arguments given to axes.plot(...).

plot_update_stats(axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

Parameters

• axes (matplotlib.axes.Axes) – The axes to plot into. Defaults to matplotlib.
pyplot.gca()

17.5. dmrg 231

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://docs.python.org/3/library/functions.html#float
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca

TeNPy, Release 0.8.1

• xaxis ('N_updates' | 'sweep' | keys of update_stats) – Key of
update_stats to be used for the x-axis of the plots. 'N_updates' is just enu-
merating the number of bond updates, and 'sweep' corresponds to the sweep number
(including environment sweeps).

• yaxis ('E' | keys of update_stats) – Key of update_stats to be used for the
y-axisof the plots. For ‘E’, use the energy (per site for infinite systems).

• y_exact (float) – Exact value for the quantity on the y-axis for comparison. If given,
plot abs((y-y_exact)/y_exact) on a log-scale yaxis.

• **kwargs – Further keyword arguments given to axes.plot(...).

post_update_local(update_data)
Perform post-update actions.

Compute truncation energy, remove LP/RP that are no longer needed and collect statistics.

Parameters update_data (dict) – What was returned by update_local().

prepare_svd(theta)
Transform theta into matrix for svd.

prepare_update()
Prepare self for calling update_local() on sites i0 : i0+n_optimize.

Returns theta – Current best guess for the ground state, which is to be optimized. Labels are
'vL', 'p0', 'p1', 'vR', or combined versions of it (if self.combine). For single-site
DMRG, the 'p1' label is missing.

Return type Array

reset_stats(resume_data=None)
Reset the statistics, useful if you want to start a new sweep run.

option DMRGEngine.chi_list: dict | None
A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting
from which sweep chi_max is set to the value, e.g. {0: 50, 20: 100} uses chi_max=50 for
the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params[‘chi_list’]`. By default
(None) this feature is disabled.

option DMRGEngine.sweep_0: int
The number of sweeps already performed. (Useful for re-start).

resume_run()
Resume a run that was interrupted.

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
Run the DMRG simulation to find the ground state.

Returns

• E (float) – The energy of the resulting ground state MPS.

• psi (MPS) – The MPS representing the ground state after the simluation, i.e. just a refer-
ence to psi.

232 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Options

option DMRGEngine.diag_method: str
Method to be used for diagonalzation, default 'default'. For possible arguments see
DMRGEngine.diag().

option DMRGEngine.E_tol_to_trunc: float
It’s reasonable to choose the Lanczos convergence criteria 'E_tol' not many magnitudes lower
than the current truncation error. Therefore, if E_tol_to_trunc is not None, we update E_tol
of lanczos_params to max_E_trunc*E_tol_to_trunc, restricted to the interval [E_tol_min,
E_tol_max], where max_E_trunc is the maximal energy difference due to truncation right after
each Lanczos optimization during the sweeps.

option DMRGEngine.E_tol_max: float
See E_tol_to_trunc

option DMRGEngine.E_tol_min: float
See E_tol_to_trunc

option DMRGEngine.max_E_err: float
Convergence if the change of the energy in each step satisfies -Delta E / max(|E|, 1) <
max_E_err. Note that this is also satisfied if Delta E > 0, i.e., if the energy increases (due to
truncation).

option DMRGEngine.max_hours: float
If the DMRG took longer (measured in wall-clock time), ‘shelve’ the simulation, i.e. stop and return
with the flag shelve=True.

option DMRGEngine.max_S_err: float
Convergence if the relative change of the entropy in each step satisfies |Delta S|/S <
max_S_err

option DMRGEngine.max_sweeps: int
Maximum number of sweeps to be performed.

option DMRGEngine.min_sweeps: int
Minimum number of sweeps to be performed. Defaults to 1.5*N_sweeps_check.

option DMRGEngine.N_sweeps_check: int
Number of sweeps to perform between checking convergence criteria and giving a status update.

option DMRGEngine.norm_tol: float
After the DMRG run, update the environment with at most norm_tol_iter sweeps until np.linalg.
norm(psi.norm_err()) < norm_tol.

option DMRGEngine.norm_tol_iter: float
Perform at most norm_tol_iter`*`update_env sweeps to converge the norm error below norm_tol. If
the state is not converged after that, call canonical_form() instead.

option DMRGEngine.P_tol_to_trunc: float
It’s reasonable to choose the Lanczos convergence criteria 'P_tol' not many magnitudes lower
than the current truncation error. Therefore, if P_tol_to_trunc is not None, we update P_tol of
lanczos_params to max_trunc_err*P_tol_to_trunc, restricted to the interval [P_tol_min,
P_tol_max], where max_trunc_err is the maximal truncation error (discarded weight of the
Schmidt values) due to truncation right after each Lanczos optimization during the sweeps.

option DMRGEngine.P_tol_max: float
See P_tol_to_trunc

option DMRGEngine.P_tol_min: float
See P_tol_to_trunc

17.5. dmrg 233

TeNPy, Release 0.8.1

option DMRGEngine.update_env: int
Number of sweeps without bond optimizaiton to update the environment for infinite boundary condi-
tions, performed every N_sweeps_check sweeps.

set_B(U, S, VH)
Update the MPS with the U, S, VH returned by self.mixed_svd.

Parameters

• U (Array) – Left and Right-canonical matrices as returned by the SVD.

• VH (Array) – Left and Right-canonical matrices as returned by the SVD.

• S (1D array | 2D Array) – The middle part returned by the SVD, theta = U S VH.
Without a mixer just the singular values, with enabled mixer a 2D array.

sweep(optimize=True, meas_E_trunc=False)
One ‘sweep’ of a the algorithm.

Iteratate over the bond which is optimized, to the right and then back to the left to the starting point.

Parameters

• optimize (bool, optional) – Whether we actually optimize to find the ground
state of the effective Hamiltonian. (If False, just update the environments).

• meas_E_trunc (bool, optional) – Whether to measure truncation energies.

Returns

• max_trunc_err (float) – Maximal truncation error introduced.

• max_E_trunc (None | float) – None if meas_E_trunc is False, else the maximal change
of the energy due to the truncation.

update_LP(U)
Update left part of the environment.

We always update the environment at site i0 + 1: this environment then contains the site where we just
performed a local update (when sweeping right).

Parameters U (Array) – The U as returned by the SVD, with combined legs, labels 'vL.
p0', 'vR'.

update_RP(VH)
Update right part of the environment.

We always update the environment at site i0: this environment then contains the site where we just per-
formed a local update (when sweeping left).

Parameters VH (Array) – The VH as returned by SVD, with combined legs, labels 'vL',
'(vR.p1)'.

update_local(theta, optimize=True)
Perform site-update on the site i0.

Parameters

• theta (Array) – Initial guess for the ground state of the effective Hamiltonian.

• optimize (bool) – Wheter we actually optimize to find the ground state of the effective
Hamiltonian. (If False, just update the environments).

Returns

update_data – Data computed during the local update, as described in the following:

234 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

E0 [float] Total energy, obtained before truncation (if optimize=True), or after trunca-
tion (if optimize=False) (but never None).

N [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if
optimize=False.

age [int] Current size of the DMRG simulation: number of physical sites involved into the
contraction.

U, VH: Array U and VH returned by mixed_svd().

ov_change: float Change in the wave function 1. - abs(<theta_guess|theta>)
induced by diag(), not including the truncation!

Return type dict

17.5.4 SingleSiteMixer

• full name: tenpy.algorithms.dmrg.SingleSiteMixer

• parent module: tenpy.algorithms.dmrg

• type: class

Inheritance Diagram

Mixer

SingleSiteMixer

Methods

SingleSiteMixer.__init__(options) Initialize self.
SingleSiteMixer.perturb_svd(engine, theta,
. . .)

Mix extra terms to theta and perform an SVD.

SingleSiteMixer.subspace_expand(engine,
. . .)

Expand the MPS subspace, to allow the bond dimension
to increase.

SingleSiteMixer.
update_amplitude(sweeps)

Update the amplitude, possibly disable the mixer.

class tenpy.algorithms.dmrg.SingleSiteMixer(options)
Bases: tenpy.algorithms.dmrg.Mixer

Mixer for single-site DMRG.

17.5. dmrg 235

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Performs a subspace expansion following [[hubig2015]].

perturb_svd(engine, theta, i0, move_right, next_B)
Mix extra terms to theta and perform an SVD.

We calculate the left and right reduced density matrix using the mixer (which might include applications
of H). These density matrices are diagonalized and truncated such that we effectively perform a svd for
the case mixer.amplitude=0.

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – The optimized wave function, prepared for svd.

• i0 (int) – The site index where theta lives.

• move_right (bool) – Whether we move to the right (True) or left (False).

• next_B (Array) – The subspace expansion requires to change the tensor on the next
site as well. If move_right, it should correspond to engine.psi.get_B(i0+1,
form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1,
form='A').

Returns

• U (Array) – Left-canonical part of tensordot(theta, next_B). Labels '(vL.p0)',
'vR'.

• S (1D ndarray) – (Perturbed) singular values on the new bond (between theta and next_B).

• VH (Array) – Right-canonical part of tensordot(theta, next_B). Labels 'vL', '(p1.
vR)'.

• err (TruncationError) – The truncation error introduced.

subspace_expand(engine, theta, i0, move_right, next_B)
Expand the MPS subspace, to allow the bond dimension to increase.

This is the subspace expansion following [[hubig2015]].

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – Optimized guess for the ground state of the effective local Hamilto-
nian.

• i0 (int) – Site index at which the local update has taken place.

• move_right (bool) – Whether the next i0 of the sweep will be right or left of the
current one.

• next_B (Array) – The subspace expansion requires to change the tensor on the next
site as well. If move_right, it should correspond to engine.psi.get_B(i0+1,
form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1,
form='A').

Returns

• theta – Local MPS tensor at site i0 after subspace expansion.

• next_B – MPS tensor at site i0+1 or i0-1 (depending on sweep direction) after subspace
expansion.

236 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

update_amplitude(sweeps)
Update the amplitude, possibly disable the mixer.

Parameters sweeps (int) – The number of performed sweeps, to check if we need to disable
the mixer.

Returns mixer – Returns self if we should continue mixing, or None, if the mixer should be
disabled.

Return type Mixer | None

17.5.5 TwoSiteMixer

• full name: tenpy.algorithms.dmrg.TwoSiteMixer

• parent module: tenpy.algorithms.dmrg

• type: class

Inheritance Diagram

Mixer

SingleSiteMixer

TwoSiteMixer

Methods

TwoSiteMixer.__init__(options) Initialize self.
TwoSiteMixer.perturb_svd(engine, theta, i0,
. . .)

Mix extra terms to theta and perform an SVD.

TwoSiteMixer.subspace_expand(engine,
theta, . . .)

Expand the MPS subspace, to allow the bond dimension
to increase.

TwoSiteMixer.update_amplitude(sweeps) Update the amplitude, possibly disable the mixer.

class tenpy.algorithms.dmrg.TwoSiteMixer(options)
Bases: tenpy.algorithms.dmrg.SingleSiteMixer

Mixer for two-site DMRG.

17.5. dmrg 237

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

This is the two-site version of the mixer described in [[hubig2015]]. Equivalent to the
DensityMatrixMixer, but never construct the full density matrix.

perturb_svd(engine, theta, i0, move_right)
Mix extra terms to theta and perform an SVD.

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – The optimized wave function, prepared for svd.

• i0 (int) – Site index; theta lives on i0, i0+1.

• update_LP (bool) – Whether to calculate the next env.LP[i0+1].

• update_RP (bool) – Whether to calculate the next env.RP[i0].

Returns

• U (Array) – Left-canonical part of theta. Labels '(vL.p0)', 'vR'.

• S (1D ndarray | 2D Array) – Without mixer just the singluar values of the array; with
mixer it might be a general matrix; see comment above.

• VH (Array) – Right-canonical part of theta. Labels 'vL', '(vR.p1)'.

• err (TruncationError) – The truncation error introduced.

subspace_expand(engine, theta, i0, move_right, next_B)
Expand the MPS subspace, to allow the bond dimension to increase.

This is the subspace expansion following [[hubig2015]].

Parameters

• engine (DMRGEngine) – The DMRG engine calling the mixer.

• theta (Array) – Optimized guess for the ground state of the effective local Hamilto-
nian.

• i0 (int) – Site index at which the local update has taken place.

• move_right (bool) – Whether the next i0 of the sweep will be right or left of the
current one.

• next_B (Array) – The subspace expansion requires to change the tensor on the next
site as well. If move_right, it should correspond to engine.psi.get_B(i0+1,
form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1,
form='A').

Returns

• theta – Local MPS tensor at site i0 after subspace expansion.

• next_B – MPS tensor at site i0+1 or i0-1 (depending on sweep direction) after subspace
expansion.

update_amplitude(sweeps)
Update the amplitude, possibly disable the mixer.

Parameters sweeps (int) – The number of performed sweeps, to check if we need to disable
the mixer.

Returns mixer – Returns self if we should continue mixing, or None, if the mixer should be
disabled.

238 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type Mixer | None

Functions

chi_list(chi_max[, dchi, nsweeps]) Compute a ‘ramping-up’ chi_list.
full_diag_effH(effH, theta_guess[, keep_sector]) Perform an exact diagonalization of effH.
run(psi, model, options) Run the DMRG algorithm to find the ground state of the

given model.

17.5.6 chi_list

• full name: tenpy.algorithms.dmrg.chi_list

• parent module: tenpy.algorithms.dmrg

• type: function

tenpy.algorithms.dmrg.chi_list(chi_max, dchi=20, nsweeps=20)
Compute a ‘ramping-up’ chi_list.

The resulting chi_list allows to increases chi by dchi every nsweeps sweeps up to a given maximal chi_max.

Parameters

• chi_max (int) – Final value for the bond dimension.

• dchi (int) – Step size how to increase chi

• nsweeps (int) – Step size for sweeps

Returns chi_list – To be used as chi_list parameter for DMRG, see run(). Keys increase by
nsweeps, values by dchi, until a maximum of chi_max is reached.

Return type dict

17.5.7 full_diag_effH

• full name: tenpy.algorithms.dmrg.full_diag_effH

• parent module: tenpy.algorithms.dmrg

• type: function

tenpy.algorithms.dmrg.full_diag_effH(effH, theta_guess, keep_sector=True)
Perform an exact diagonalization of effH.

This function offers an alternative to lanczos().

Parameters

• effH (EffectiveH) – The effective Hamiltonian.

• theta_guess (Array) – Current guess to select the charge sector. Labels as specified
by effH.acts_on.

17.5. dmrg 239

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Module description

Density Matrix Renormalization Group (DMRG).

Although it was originally not formulated with tensor networks, the DMRG algorithm (invented by Steven White in
1992 [[white1992]]) opened the whole field with its enormous success in finding ground states in 1D.

We implement DMRG in the modern formulation of matrix product states [[schollwoeck2011]], both for finite systems
('finite' or 'segment' boundary conditions) and in the thermodynamic limit ('infinite' b.c.).

The function run() - well - runs one DMRG simulation. Internally, it generates an instance of an Sweep. This class
implements the common functionality like defining a sweep, but leaves the details of the contractions to be performed
to the derived classes.

Currently, there are two derived classes implementing the contractions: SingleSiteDMRGEngine and
TwoSiteDMRGEngine. They differ (as their name implies) in the number of sites which are optimized simulta-
neously. They should both give the same results (up to rounding errors). However, if started from a product state,
SingleSiteDMRGEngine depends critically on the use of a Mixer, while TwoSiteDMRGEngine is in princi-
ple more computationally expensive to run and has occasionally displayed some convergence issues.. Which one is
preffered in the end is not obvious a priori and might depend on the used model. Just try both of them.

A Mixer should be used initially to avoid that the algorithm gets stuck in local energy minima, and then slowly turned
off in the end. For SingleSiteDMRGEngine, using a mixer is crucial, as the one-site algorithm cannot increase
the MPS bond dimension by itself.

A generic protocol for approaching a physics question using DMRG is given in /intro/protocol.

17.6 tdvp

• full name: tenpy.algorithms.tdvp

• parent module: tenpy.algorithms

• type: module

240 Chapter 17. algorithms

TeNPy, Release 0.8.1

Classes

Algorithm

TimeEvolutionAlgorithm

Engine

TDVPEngine

H0_mixed H1_mixed H2_mixed

Engine(psi, model, options) Deprecated old name of TDVPEngine.
H0_mixed(Lp, Rp) Class defining the zero site Hamiltonian for Lanczos.
H1_mixed(Lp, Rp, W) Class defining the one site Hamiltonian for Lanczos.
H2_mixed(Lp, Rp, W0, W1) Class defining the two sites Hamiltonian for Lanczos.
TDVPEngine(psi, model, options[, environment]) Time dependent variational principle algorithm for

MPS.

17.6.1 Engine

• full name: tenpy.algorithms.tdvp.Engine

• parent module: tenpy.algorithms.tdvp

• type: class

17.6. tdvp 241

TeNPy, Release 0.8.1

Inheritance Diagram

Algorithm

TimeEvolutionAlgorithm

Engine

TDVPEngine

Methods

Engine.__init__(psi, model, options) Initialize self.
Engine.get_resume_data() Return necessary data to resume a run() interrupted at

a checkpoint.
Engine.resume_run() Resume a run that was interrupted.
Engine.run() (Real-)time evolution with TDVP.
Engine.run_one_site([N_steps]) Run the TDVP algorithm with the one site algorithm.
Engine.run_two_sites([N_steps]) Run the TDVP algorithm with two sites update.
Engine.set_anonymous_svd(U, new_label) Relabel the svd.
Engine.sweep_left_right() Performs the sweep left->right of the second order

TDVP scheme with one site update.
Engine.sweep_left_right_two() Performs the sweep left->right of the second order

TDVP scheme with two sites update.
Engine.sweep_right_left() Performs the sweep right->left of the second order

TDVP scheme with one site update.
Engine.sweep_right_left_two() Performs the sweep left->right of the second order

TDVP scheme with two sites update.
Engine.theta_svd_left_right(theta) Performs the SVD from left to right.
Engine.theta_svd_right_left(theta) Performs the SVD from right to left.
Engine.update_s_h0(s, H, dt) Update with the zero site Hamiltonian (update of the

singular value)
Engine.update_theta_h1(Lp, Rp, theta, W, dt) Update with the one site Hamiltonian.
Engine.update_theta_h2(Lp, Rp, theta, W0,
W1, dt)

Update with the two sites Hamiltonian.

242 Chapter 17. algorithms

TeNPy, Release 0.8.1

Class Attributes and Properties

Engine.TDVP_params

Engine.verbose

class tenpy.algorithms.tdvp.Engine(psi, model, options)
Bases: tenpy.algorithms.tdvp.TDVPEngine

Deprecated old name of TDVPEngine.

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

resume_run()
Resume a run that was interrupted.

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
(Real-)time evolution with TDVP.

run_one_site(N_steps=None)
Run the TDVP algorithm with the one site algorithm.

Warning: Be aware that the bond dimension will not increase!

Parameters N_steps (integer. Number of steps) –

run_two_sites(N_steps=None)
Run the TDVP algorithm with two sites update.

The bond dimension will increase. Truncation happens at every step of the sweep, according to the param-
eters set in trunc_params.

Parameters N_steps (integer. Number of steps) –

set_anonymous_svd(U, new_label)
Relabel the svd.

Parameters U (tenpy.linalg.np_conserved.Array) – the tensor which lacks a
leg_label

17.6. tdvp 243

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

sweep_left_right()
Performs the sweep left->right of the second order TDVP scheme with one site update.

Evolve from 0.5*dt.

sweep_left_right_two()
Performs the sweep left->right of the second order TDVP scheme with two sites update.

Evolve from 0.5*dt

sweep_right_left()
Performs the sweep right->left of the second order TDVP scheme with one site update.

Evolve from 0.5*dt

sweep_right_left_two()
Performs the sweep left->right of the second order TDVP scheme with two sites update.

Evolve from 0.5*dt

theta_svd_left_right(theta)
Performs the SVD from left to right.

Parameters theta (tenpy.linalg.np_conserved.Array) – the theta tensor on
which the SVD is applied

theta_svd_right_left(theta)
Performs the SVD from right to left.

Parameters theta (tenpy.linalg.np_conserved.Array ,) – The theta tensor on
which the SVD is applied

update_s_h0(s, H, dt)
Update with the zero site Hamiltonian (update of the singular value)

Parameters

• s (tenpy.linalg.np_conserved.Array) – representing the singular value ma-
trix which is updated

• H (H0_mixed) – zero site Hamiltonian that we need to apply on the singular value matrix

• dt (complex number) – time step of the evolution

update_theta_h1(Lp, Rp, theta, W, dt)
Update with the one site Hamiltonian.

Parameters

• Lp (Array) – tensor representing the left environment

• Rp (Array) – tensor representing the right environment

• theta (Array) – the theta tensor which needs to be updated

• W (Array) – MPO which is applied to the ‘p’ leg of theta

update_theta_h2(Lp, Rp, theta, W0, W1, dt)
Update with the two sites Hamiltonian.

Parameters

• Lp (tenpy.linalg.np_conserved.Array) – tensor representing the left environ-
ment

• Rp (tenpy.linalg.np_conserved.Array) – tensor representing the right envi-
ronment

244 Chapter 17. algorithms

TeNPy, Release 0.8.1

• theta (tenpy.linalg.np_conserved.Array) – the theta tensor which needs to
be updated

• W (tenpy.linalg.np_conserved.Array) – MPO which is applied to the ‘p0’ leg
of theta

• W1 (tenpy.linalg.np_conserved.Array) – MPO which is applied to the ‘p1’
leg of theta

17.6.2 H0_mixed

• full name: tenpy.algorithms.tdvp.H0_mixed

• parent module: tenpy.algorithms.tdvp

• type: class

Inheritance Diagram

H0_mixed

Methods

H0_mixed.__init__(Lp, Rp) Initialize self.
H0_mixed.matvec(x)

class tenpy.algorithms.tdvp.H0_mixed(Lp, Rp)
Bases: object

Class defining the zero site Hamiltonian for Lanczos.

Parameters

• Lp (tenpy.linalg.np_conserved.Array) – left part of the environment

• Rp (tenpy.linalg.np_conserved.Array) – right part of the environment

Lp
left part of the environment

Type tenpy.linalg.np_conserved.Array

Rp
right part of the environment

Type tenpy.linalg.np_conserved.Array

17.6. tdvp 245

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

17.6.3 H1_mixed

• full name: tenpy.algorithms.tdvp.H1_mixed

• parent module: tenpy.algorithms.tdvp

• type: class

Inheritance Diagram

H1_mixed

Methods

H1_mixed.__init__(Lp, Rp, W) Initialize self.
H1_mixed.matvec(theta)

class tenpy.algorithms.tdvp.H1_mixed(Lp, Rp, W)
Bases: object

Class defining the one site Hamiltonian for Lanczos.

Parameters

• Lp (tenpy.linalg.np_conserved.Array) – left part of the environment

• Rp (tenpy.linalg.np_conserved.Array) – right part of the environment

• M (tenpy.linalg.np_conserved.Array) – MPO which is applied to the ‘p’ leg of
theta

Lp
left part of the environment

Type tenpy.linalg.np_conserved.Array

Rp
right part of the environment

Type tenpy.linalg.np_conserved.Array

W
MPO which is applied to the ‘p0’ leg of theta

Type tenpy.linalg.np_conserved.Array

246 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

17.6.4 H2_mixed

• full name: tenpy.algorithms.tdvp.H2_mixed

• parent module: tenpy.algorithms.tdvp

• type: class

Inheritance Diagram

H2_mixed

Methods

H2_mixed.__init__(Lp, Rp, W0, W1) Initialize self.
H2_mixed.matvec(theta)

class tenpy.algorithms.tdvp.H2_mixed(Lp, Rp, W0, W1)
Bases: object

Class defining the two sites Hamiltonian for Lanczos.

Parameters

• Lp (tenpy.linalg.np_conserved.Array) – left part of the environment

• Rp (tenpy.linalg.np_conserved.Array) – right part of the environment

• W (tenpy.linalg.np_conserved.Array) – MPO which is applied to the ‘p0’ leg
of theta

Lp
left part of the environment

Type tenpy.linalg.np_conserved.Array

Rp
right part of the environment

Type tenpy.linalg.np_conserved.Array

W0
MPO which is applied to the ‘p0’ leg of theta

Type tenpy.linalg.np_conserved.Array

W1
MPO which is applied to the ‘p1’ leg of theta

Type tenpy.linalg.np_conserved.Array

17.6. tdvp 247

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

Module description

Time Dependant Variational Principle (TDVP) with MPS (finite version only).

The TDVP MPS algorithm was first proposed by [[haegeman2011]]. However the stability of the algorithm was later
improved in [[haegeman2016]], that we are following in this implementation. The general idea of the algorithm is to
project the quantum time evolution in the manyfold of MPS with a given bond dimension. Compared to e.g. TEBD,
the algorithm has several advantages: e.g. it conserves the unitarity of the time evolution and the energy (for the single-
site version), and it is suitable for time evolution of Hamiltonian with arbitrary long range in the form of MPOs. We
have implemented the one-site formulation which does not allow for growth of the bond dimension, and the two-site
algorithm which does allow the bond dimension to grow - but requires truncation as in the TEBD case.

Todo: This is still a beta version, use with care. The interface might still change.

Todo: long-term: Much of the code is similar as in DMRG. To avoid too much duplicated code, we should have a
general way to sweep through an MPS and updated one or two sites, used in both cases.

17.7 purification

• full name: tenpy.algorithms.purification

• parent module: tenpy.algorithms

• type: module

248 Chapter 17. algorithms

TeNPy, Release 0.8.1

Classes

Algorithm

Sweep TimeEvolutionAlgorithm EffectiveH

TwoSiteH

NpcLinearOperator

PurificationApplyMPO

VariationalApplyMPO PurificationTEBD

PurificationTEBD2

TEBDEngine

PurificationTwoSiteU

VariationalCompression

PurificationApplyMPO(psi, U_MPO, options[,
. . .])

Variant of VariationalApplyMPO suitable for purifica-
tion.

PurificationTEBD(psi, model, options) Time evolving block decimation (TEBD) for purifica-
tion MPS.

PurificationTEBD2(psi, model, options) Similar as PurificationTEBD, but perform sweeps in-
stead of brickwall.

PurificationTwoSiteU (env, i0[, combine, . . .]) Variant of TwoSiteH suitable for purification.

17.7.1 PurificationApplyMPO

• full name: tenpy.algorithms.purification.PurificationApplyMPO

• parent module: tenpy.algorithms.purification

• type: class

17.7. purification 249

TeNPy, Release 0.8.1

Inheritance Diagram

Algorithm

Sweep

PurificationApplyMPO

VariationalApplyMPO

VariationalCompression

Methods

PurificationApplyMPO.__init__(psi,
U_MPO, . . .)

Initialize self.

PurificationApplyMPO.
environment_sweeps(N_sweeps)

Perform N_sweeps sweeps without optimization to up-
date the environment.

PurificationApplyMPO.
get_resume_data()

Return necessary data to resume a run() interrupted at
a checkpoint.

PurificationApplyMPO.
get_sweep_schedule()

Define the schedule of the sweep.

PurificationApplyMPO.init_env(U_MPO[,
. . .])

Initialize the environment.

PurificationApplyMPO.make_eff_H() Create new instance of self.EffectiveH at self.i0 and set
it to self.eff_H.

PurificationApplyMPO.
post_update_local(. . .)

Algorithm-specific actions to be taken after local up-
date.

PurificationApplyMPO.prepare_update() Prepare everything algorithm-specific to perform a local
update.

PurificationApplyMPO.
reset_stats([resume_data])

Reset the statistics.

PurificationApplyMPO.resume_run() Resume a run that was interrupted.
continues on next page

250 Chapter 17. algorithms

TeNPy, Release 0.8.1

Table 33 – continued from previous page
PurificationApplyMPO.run() Run the compression.
PurificationApplyMPO.sweep([optimize]) One ‘sweep’ of a sweeper algorithm.
PurificationApplyMPO.update_LP(_)

PurificationApplyMPO.update_RP(_)

PurificationApplyMPO.update_local(_[,
optimize])

Perform local update.

PurificationApplyMPO.
update_new_psi(theta)

Given a new two-site wave function theta, split it and
save it in psi.

Class Attributes and Properties

PurificationApplyMPO.engine_params

PurificationApplyMPO.n_optimize the number of sites to be optimized over at once.
PurificationApplyMPO.verbose

class tenpy.algorithms.purification.PurificationApplyMPO(psi, U_MPO, options, re-
sume_data=None)

Bases: tenpy.algorithms.mps_common.VariationalApplyMPO

Variant of VariationalApplyMPO suitable for purification.

EffectiveH
alias of tenpy.algorithms.purification.PurificationTwoSiteU

update_local(_, optimize=True)
Perform local update.

This simply contracts the environments and theta from the ket to get an updated theta for the bra self.psi
(to be changed in place).

update_new_psi(theta)
Given a new two-site wave function theta, split it and save it in psi.

environment_sweeps(N_sweeps)
Perform N_sweeps sweeps without optimization to update the environment.

Parameters N_sweeps (int) – Number of sweeps to run without optimization

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

17.7. purification 251

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

get_sweep_schedule()
Define the schedule of the sweep.

One ‘sweep’ is a full sequence from the leftmost site to the right and back. Only those LP and RP that can
be used later should be updated.

Returns schedule – Schedule for the sweep. Each entry is (i0, move_right,
(update_LP, update_RP)), where i0 is the leftmost of the self.EffectiveH.
length sites to be updated in update_local(), move_right indicates whether the next
i0 in the schedule is rigth (True) of the current one, and update_LP, update_RP indicate
whether it is necessary to update the LP and RP. The latter are chosen such that the environ-
ment is growing for infinite systems, but we only keep the minimal number of environment
tensors in memory.

Return type iterable of (int, bool, (bool, bool))

init_env(U_MPO, resume_data=None)
Initialize the environment.

Parameters

• U_MPO (MPO) – The MPO to be applied to the sate.

• resume_data (dict) – May contain in

make_eff_H()
Create new instance of self.EffectiveH at self.i0 and set it to self.eff_H.

property n_optimize
the number of sites to be optimized over at once.

Indirectly set by the class attribute EffectiveH and it’s length. For example, TwoSiteDMRGEngine
uses the TwoSiteH and hence has n_optimize=2, while the SingleSiteDMRGEngine has
n_optimize=1.

post_update_local(update_data)
Algorithm-specific actions to be taken after local update.

An example would be to collect statistics.

prepare_update()
Prepare everything algorithm-specific to perform a local update.

reset_stats(resume_data=None)
Reset the statistics. Useful if you want to start a new Sweep run.

This method is expected to be overwritten by subclass, and should then define self.update_stats and
self.sweep_stats dicts consistent with the statistics generated by the algorithm particular to that subclass.

option Sweep.sweep_0: int
Number of sweeps that have already been performed.

option Sweep.chi_list: None | dict(int -> int)
By default (None) this feature is disabled. A dict allows to gradually increase the chi_max.
An entry at_sweep: chi states that starting from sweep at_sweep, the value chi is to be used
for trunc_params['chi_max']. For example chi_list={0: 50, 20: 100} uses
chi_max=50 for the first 20 sweeps and chi_max=100 afterwards.

resume_run()
Resume a run that was interrupted.

252 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
Run the compression.

The state psi is compressed in place.

Returns max_trunc_err – The maximal truncation error of a two-site wave function.

Return type TruncationError

sweep(optimize=True)
One ‘sweep’ of a sweeper algorithm.

Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If
optimize=False, don’t actually diagonalize the effective hamiltonian, but only update the environment.

Parameters optimize (bool, optional) – Whether we actually optimize to find the
ground state of the effective Hamiltonian. (If False, just update the environments).

Returns max_trunc_err – Maximal truncation error introduced.

Return type float

17.7.2 PurificationTEBD2

• full name: tenpy.algorithms.purification.PurificationTEBD2

• parent module: tenpy.algorithms.purification

• type: class

17.7. purification 253

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Inheritance Diagram

Algorithm

TimeEvolutionAlgorithm

PurificationTEBD

PurificationTEBD2

TEBDEngine

Methods

PurificationTEBD2.__init__(psi, model, op-
tions)

Initialize self.

PurificationTEBD2.calc_U (order, delta_t[,
. . .])

see calc_U()

PurificationTEBD2.disentangle(theta) Disentangle theta before splitting with svd.
PurificationTEBD2.
disentangle_global([pair])

Try global disentangling by determining the maximally
entangled pairs of sites.

PurificationTEBD2.
disentangle_global_nsite([n])

Perform a sweep through the system and disentangle
with disentangle_n_site().

PurificationTEBD2.
disentangle_n_site(i, n, theta)

Generalization of disentangle() to n sites.

PurificationTEBD2.get_resume_data() Return necessary data to resume a run() interrupted at
a checkpoint.

PurificationTEBD2.resume_run() Resume a run that was interrupted.
PurificationTEBD2.run() Run TEBD real time evolution by N_steps`*`dt.
PurificationTEBD2.run_GS() TEBD algorithm in imaginary time to find the ground

state.
PurificationTEBD2.run_imaginary(beta) Run imaginary time evolution to cool down to the given

beta.
continues on next page

254 Chapter 17. algorithms

TeNPy, Release 0.8.1

Table 35 – continued from previous page
PurificationTEBD2.
suzuki_trotter_decomposition(. . .)

Returns list of necessary steps for the suzuki trotter de-
composition.

PurificationTEBD2.
suzuki_trotter_time_steps(order)

Return time steps of U for the Suzuki Trotter decompo-
sition of desired order.

PurificationTEBD2.update(N_steps) Evolve by N_steps * U_param['dt'].
PurificationTEBD2.update_bond(i, U_bond) Updates the B matrices on a given bond.
PurificationTEBD2.update_bond_imag(i,
U_bond)

Update a bond with a (possibly non-unitary) U_bond.

PurificationTEBD2.update_imag(N_steps) Perform an update suitable for imaginary time evolu-
tion.

PurificationTEBD2.update_step(U_idx_dt,
odd)

Updates bonds in unit cell.

Class Attributes and Properties

PurificationTEBD2.TEBD_params

PurificationTEBD2.disent_iterations For each bond the total number of iterations performed
in any Disentangler.

PurificationTEBD2.trunc_err_bonds truncation error introduced on each non-trivial bond.
PurificationTEBD2.verbose

class tenpy.algorithms.purification.PurificationTEBD2(psi, model, options)
Bases: tenpy.algorithms.purification.PurificationTEBD

Similar as PurificationTEBD, but perform sweeps instead of brickwall.

Instead of the A-B pattern of even/odd bonds used in TEBD, perform sweeps similar as in DMRG for real-time
evolution (similar as update_imag() does for imaginary time evolution).

update(N_steps)
Evolve by N_steps * U_param['dt'].

Parameters N_steps (int) – The number of steps for which the whole lattice should be
updated.

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

Return type TruncationError

update_step(U_idx_dt, odd)
Updates bonds in unit cell.

Depending on the choice of odd, perform a sweep to the left or right, updating once per site with a time
step given by U_idx_dt.

Parameters

• U_idx_dt (int) – Time step index in self._U, evolve with Us[i] = self.
U[U_idx_dt][i] at bond (i-1,i).

• odd (bool/int) – Indication of whether to update even (odd=False,0) or even
(odd=True,1) sites

17.7. purification 255

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

Return type TruncationError

calc_U(order, delta_t, type_evo='real', E_offset=None)
see calc_U()

property disent_iterations
For each bond the total number of iterations performed in any Disentangler.

disentangle(theta)
Disentangle theta before splitting with svd.

For the purification we write 𝜌𝑃 = 𝑇𝑟𝑄|𝜓𝑃,𝑄 >< 𝜓𝑃,𝑄|. Thus, we can actually apply any unitary to the
auxiliar Q space of |𝜓 > without changing the result.

Note: We have to apply the same unitary to the ‘bra’ and ‘ket’ used for expectation values / correlation
functions!

The behaviour of this function is set by used_disentangler, which in turn is obtained from
get_disentangler(options['disentangle']), see get_disentangler() for details on
the syntax.

Parameters theta (Array) – Wave function to disentangle, with legs 'vL', 'vR',
'p0', 'p1', 'q0', 'q1'.

Returns

• theta_disentangled (Array) – Disentangled theta; npc.tensordot(U, theta,
axes=[['q0*', 'q1*'], ['q0', 'q1']]).

• U (Array) – The unitary used to disentangle theta, with labels 'q0', 'q1', 'q0*',
'q1*'. If no unitary was found/applied, it might also be None.

disentangle_global(pair=None)
Try global disentangling by determining the maximally entangled pairs of sites.

Caclulate the mutual information (in the auxiliar space) between two sites and determine where it is max-
imal. Disentangle these two sites with disentangle()

disentangle_global_nsite(n=2)
Perform a sweep through the system and disentangle with disentangle_n_site().

Parameters n (int) – maximal number of sites to disentangle at once.

disentangle_n_site(i, n, theta)
Generalization of disentangle() to n sites.

Simply group left and right n/2 physical legs, adjust labels, and apply disentangle() to disentangle
the central bond. Recursively proceed to disentangle left and right parts afterwards. Scales (for even n) as
𝑂(𝜒3𝑑𝑛𝑑𝑛/2).

get_resume_data()
Return necessary data to resume a run() interrupted at a checkpoint.

At a checkpoint, you can save psi, model and options along with the data returned by this func-
tion. When the simulation aborts, you can resume it using this saved data with:

eng = AlgorithmClass(psi, model, options, resume_data=resume_data)
eng.resume_run(resume_data)

256 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

An algorithm which doesn’t support this should override resume_run to raise an Error.

Returns resume_data – Dictionary with necessary data (apart from copies of psi, model, op-
tions) that allows to continue the simulation from where we are now.

Return type dict

resume_run()
Resume a run that was interrupted.

In case we saved an intermediate result at a checkpoint, this function allows to resume the run() of
the algorithm (after re-initialization with the resume_data). Since most algorithms just have a while loop
with break conditions, the default behaviour implemented here is to just call run().

run()
Run TEBD real time evolution by N_steps`*`dt.

run_GS()
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonethe-
less be used quite well as a benchmark and for comparison.

option TEBDEngine.delta_tau_list: list
A list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces large
(Trotter) errors, but a too small time step requires a lot of steps to reach exp(-tau H) -->
|psi0><psi0|. Therefore, we start with fairly large time steps for a quick time evolution until
convergence, and the gradually decrease the time step.

option TEBDEngine.order: int
Order of the Suzuki-Trotter decomposition.

option TEBDEngine.N_steps: int
Number of steps before measurement can be performed

run_imaginary(beta)
Run imaginary time evolution to cool down to the given beta.

Note that we don’t change the norm attribute of the MPS, i.e. normalization is preserved.

Parameters beta (float) – The inverse temperature beta = 1/T, by which we should cool
down. We evolve to the closest multiple of options['dt'], see also evolved_time.

static suzuki_trotter_decomposition(order, N_steps)
Returns list of necessary steps for the suzuki trotter decomposition.

We split the Hamiltonian as 𝐻 = 𝐻𝑒𝑣𝑒𝑛 +𝐻𝑜𝑑𝑑 = 𝐻[0] +𝐻[1]. The Suzuki-Trotter decomposition is an
approximation exp(𝑡𝐻) ≈ 𝑝𝑟𝑜𝑑(𝑗,𝑘)∈𝑆𝑇 exp(𝑑[𝑗]𝑡𝐻[𝑘]) +𝑂(𝑡𝑜𝑟𝑑𝑒𝑟+1).

Parameters order (1, 2, 4, '4_opt') – The desired order of the Suzuki-Trotter de-
composition. Order 1 approximation is simply 𝑒𝐴𝑎𝐵 . Order 2 is the “leapfrog”
e^{A/2} e^B e^{A/2}. Order 4 is the fourth-order from [[suzuki1991]] (also referenced
in [[schollwoeck2011]]), and '4_opt' gives the optmized version of Equ. (30a) in
[[barthel2020]].

Returns ST_decomposition – Indices j, k of the time-steps d =
suzuki_trotter_time_step(order) and the decomposition of H. They are
chosen such that a subsequent application of exp(d[j] t H[k]) to a given state |psi>
yields (exp(N_steps t H[k]) + O(N_steps t^{order+1}))|psi>.

Return type list of (int, int)

17.7. purification 257

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

static suzuki_trotter_time_steps(order)
Return time steps of U for the Suzuki Trotter decomposition of desired order.

See suzuki_trotter_decomposition() for details.

Parameters order (int) – The desired order of the Suzuki-Trotter decomposition.

Returns time_steps – We need U = exp(-i H_{even/odd} delta_t * dt) for the
dt returned in this list.

Return type list of float

property trunc_err_bonds
truncation error introduced on each non-trivial bond.

update_bond(i, U_bond)
Updates the B matrices on a given bond.

Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i.
This would look something like:

| | |
| ... - B1 - s - B2 - ...

	U

Parameters

• i (int) – Bond index; we update the matrices at sites i-1, i.

• U_bond (Array) – The bond operator which we apply to the wave function. We expect
labels 'p0', 'p1', 'p0*', 'p1*' for U_bond.

Returns trunc_err – The error of the represented state which is introduced by the truncation
during this update step.

Return type TruncationError

update_bond_imag(i, U_bond)
Update a bond with a (possibly non-unitary) U_bond.

Similar as update_bond(); but after the SVD just keep the A, S, B canonical form. In that way, one can
sweep left or right without using old singular values, thus preserving the canonical form during imaginary
time evolution.

Parameters

• i (int) – Bond index; we update the matrices at sites i-1, i.

• U_bond (Array) – The bond operator which we apply to the wave function. We expect
labels 'p0', 'p1', 'p0*', 'p1*'.

Returns trunc_err – The error of the represented state which is introduced by the truncation
during this update step.

Return type TruncationError

update_imag(N_steps)
Perform an update suitable for imaginary time evolution.

258 Chapter 17. algorithms

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Instead of the even/odd brick structure used for ordinary TEBD, we ‘sweep’ from left to right and right to
left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

Parameters N_steps (int) – The number of steps for which the whole lattice should be
updated.

Returns trunc_err – The error of the represented state which is introduced due to the truncation
during this sequence of update steps.

Return type TruncationError

17.7.3 PurificationTwoSiteU

• full name: tenpy.algorithms.purification.PurificationTwoSiteU

• parent module: tenpy.algorithms.purification

• type: class

Inheritance Diagram

EffectiveH

TwoSiteH

NpcLinearOperator

PurificationTwoSiteU

Methods

PurificationTwoSiteU.__init__(env, i0[,
. . .])

Initialize self.

PurificationTwoSiteU.adjoint() Return the hermitian conjugate of self.
PurificationTwoSiteU.combine_Heff() Combine LP and RP with W to form LHeff and RHeff.
PurificationTwoSiteU.
combine_theta(theta)

Combine the legs of theta, such that it fits to how we
combined the legs of self.

continues on next page

17.7. purification 259

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Table 37 – continued from previous page
PurificationTwoSiteU.matvec(theta) Apply the effective Hamiltonian to theta.
PurificationTwoSiteU.to_matrix() Contract self to a matrix.

Class Attributes and Properties

PurificationTwoSiteU.acts_on

PurificationTwoSiteU.length

class tenpy.algorithms.purification.PurificationTwoSiteU(env, i0, combine=False,
move_right=True)

Bases: tenpy.algorithms.mps_common.TwoSiteH

Variant of TwoSiteH suitable for purification.

The MPO gets only applied to the physical legs p0, p1, the ancialla legs q0, q1 of theta are ignored.

combine_Heff()
Combine LP and RP with W to form LHeff and RHeff.

Combine LP with W0 and RP with W1 to get the effective parts of the Hamiltonian with piped legs.

adjoint()
Return the hermitian conjugate of self.

combine_theta(theta)
Combine the legs of theta, such that it fits to how we combined the legs of self.

Parameters theta (Array) – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Returns theta – Wave function with labels 'vL', 'p0', 'p1', 'vR'

Return type Array

matvec(theta)
Apply the effective Hamiltonian to theta.

Parameters theta (Array) – Labels: vL, p0, p1, vR if combine=False, (vL.p0),
(p1.vR) if True

Returns Product of theta and the effective Hamiltonian.

Return type theta Array

to_matrix()
Contract self to a matrix.

260 Chapter 17. algorithms

TeNPy, Release 0.8.1

Module description

Algorithms for using Purification.

17.8 mpo_evolution

• full name: tenpy.algorithms.mpo_evolution

• parent module: tenpy.algorithms

• type: module

Classes

Algorithm

TimeEvolutionAlgorithm

ExpMPOEvolution

ExpMPOEvolution(psi, model, options) Time evolution of an MPS using the W_I or W_II ap-
proximation for exp(H dt).

Module description

Time evolution using the WI or WII approximation of the time evolution operator.

17.9 network_contractor

• full name: tenpy.algorithms.network_contractor

• parent module: tenpy.algorithms

• type: module

17.9. network_contractor 261

TeNPy, Release 0.8.1

Functions

contract(tensor_list[, tensor_names, . . .]) Contract a network of tensors.
ncon(tensor_list, leg_links, sequence) Implementation of ncon.m for TeNPy Arrays.

17.9.1 contract

• full name: tenpy.algorithms.network_contractor.contract

• parent module: tenpy.algorithms.network_contractor

• type: function

tenpy.algorithms.network_contractor.contract(tensor_list, tensor_names=None,
leg_contractions=None, open_legs=None,
sequence=None)

Contract a network of tensors.

Based on the MatLab function ncon.m as described in arXiv:1402.0939.

Parameters

• tensor_list (list of Array) – The tensors to be contracted.

• leg_contractions (list of [n1, l1, n2, l2]) – A list of contraction instructions.
An entry of leg_contractions has the form [n1, l1, n2, l2], where n1, n2 are en-
tries of tensor_names and each identify an Array in tensor_list. l1, l2 are leg labels of
the corresponding Array . The instruction implies to contract leg l1 of tensor n1 with leg
l2 of tensor n2.

• open_legs (list of [n1, l1, l]) – A list of instructions for “open” (uncontracted)
legs. [n1, l1, l] implies that leg l1 of tensor n1 is not contracted and is labelled l in
the result.

• tensor_names (list of str) – A list of names for each tensor, to be used in
leg_contractions and open_legs. The default value is list(range(len(tensor_list))), so that
the tensor “names” are 0, 1, 2,

• sequence (list of int) – The order in which the leg_contractions are to be per-
formed. An entry of network_contractor.outer_product indicates performing an outer prod-
uct. This corresponds to the zero-in-sequence convention of arXiv:1304.6112

Returns result – The number or tensor resulting from the contraction.

Return type Array | complex

17.9.2 ncon

• full name: tenpy.algorithms.network_contractor.ncon

• parent module: tenpy.algorithms.network_contractor

• type: function

tenpy.algorithms.network_contractor.ncon(tensor_list, leg_links, sequence)
Implementation of ncon.m for TeNPy Arrays.

This function is a python implementation of ncon.m (arXiv:1304.6112) for tenpy Array . contract() is a
wrapper that translates from a more python/tenpy input style

262 Chapter 17. algorithms

https://arxiv.org/abs/1402.0939
https://arxiv.org/abs/1304.6112
https://arxiv.org/abs/1304.6112

TeNPy, Release 0.8.1

Parameters

• tensor_list (list of :class:'Array') – Tensors to be contracted.

• leg_links (list of list of int) – Each entry of leg_links describes the con-
nectivity of the corresponding tensor in tensor_list. Each entry is a list that has an entry
for each leg of the corresponding tensor. Values 0,1,2,... are labels of contracted legs
and should appear exactly twice in leg_links. Values -1,-2,-3,... are labels of uncon-
tracted legs and indicate the final ordering (-1 is first axis).

• sequence (list of int) – The order in which the contractions are to be performed.
An entry of network_contractor.outer_product indicates performing an outer product. This
corresponds to the zero-in-sequence convention of arXiv:1304.6112

Returns result – The number or tensor resulting from the contraction.

Return type Array | complex

Module description

Network Contractor.

A tool to contract a network of multiple tensors.

This is an implementation of ‘NCON: A tensor network contractor for MATLAB’ by Robert N. C. Pfeifer, Glen
Evenbly, Sukhwinder Singh, Guifre Vidal, see arXiv:1402.0939

tenpy.algorithms.network_contractor.outer_product = -66666666
a constant that represents an outer product in the sequence of ncon

Todo:

• implement or wrap netcon.m, a function to find optimal contractionn sequences (arXiv:1304.6112)

• improve helpfulness of Warnings

• _do_trace: trace over all pairs of legs at once. need the corresponding npc function first.

17.10 exact_diag

• full name: tenpy.algorithms.exact_diag

• parent module: tenpy.algorithms

• type: module

17.10. exact_diag 263

https://arxiv.org/abs/1304.6112
https://arxiv.org/abs/1402.0939
https://arxiv.org/abs/1304.6112

TeNPy, Release 0.8.1

Classes

ExactDiag

ExactDiag(model[, charge_sector, sparse, . . .]) (Full) exact diagonalization of the Hamiltonian.

17.10.1 ExactDiag

• full name: tenpy.algorithms.exact_diag.ExactDiag

• parent module: tenpy.algorithms.exact_diag

• type: class

Inheritance Diagram

ExactDiag

Methods

ExactDiag.__init__(model[, charge_sector,
. . .])

Initialize self.

ExactDiag.build_full_H_from_bonds() Calculate self.full_H from self.mpo.
ExactDiag.build_full_H_from_mpo() Calculate self.full_H from self.mpo.
ExactDiag.exp_H(dt) Return U(dt) := exp(-i H dt).
ExactDiag.from_H_mpo(H_MPO, *args,
**kwargs)

Wrapper taking directly an MPO instead of a Model.

ExactDiag.full_diagonalization(*args,
**kwargs)

Full diagonalization to obtain all eigenvalues and eigen-
vectors.

ExactDiag.full_to_mps(psi[, canonical_form]) Convert a full state (with a single leg) to an MPS.
ExactDiag.groundstate([charge_sector]) Pick the ground state energy and ground state from

self.V.
ExactDiag.matvec(psi) Allow to use self as LinearOperator for lanczos.
ExactDiag.mps_to_full(mps) Contract an MPS along the virtual bonds and combine

its legs.
continues on next page

264 Chapter 17. algorithms

TeNPy, Release 0.8.1

Table 42 – continued from previous page
ExactDiag.sparse_diag(k, *args, **kwargs) Call speigs().

class tenpy.algorithms.exact_diag.ExactDiag(model, charge_sector=None, sparse=False,
max_size=2000000.0)

Bases: object

(Full) exact diagonalization of the Hamiltonian.

Parameters

• model (MPOmodel | CouplingModel) – The model which is to be diagonalized.

• charge_sector (None | charges) – If not None, project onto the given charge sector.

• sparse (bool) – If True, don’t sort/bunch the LegPipe used to combine the physical
legs. This results in array blocks with just one entry, requires much more charge data, and is
not what np_conserved was designed for, so it’s not recommended.

• max_size (int) – The build_H_* functions will do nothing (but emit a warning) if the
total size of the Hamiltonian would be larger than this.

model
The model which is to be diagonalized.

Type MPOmodel | CouplingModel

chinfo
The nature of the charge (which is the same for all sites).

Type ChargeInfo

charge_sector
If not None, we project onto the given charge sector.

Type None | charges

max_size
The build_H_* functions will do nothing (but emit a warning) if the total size of the Hamiltonian would
be larger than this.

Type int

full_H
The full Hamiltonian to be diagonalized with legs '(p0.p1....)', '(p0*,p1*...)' (in that or-
der). None if the build_H_* functions haven’t been called yet, or if max_size would have been ex-
ceeded.

Type Array | None

E
1D array of eigenvalues.

Type ndarray | None

V
Eigenvectors. First leg ‘ps’ are physical legs, the second leg 'ps*' corresponds to the eigenvalues.

Type Array | None

_sites
The sites in the given order.

Type list of Site

17.10. exact_diag 265

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

_labels_p
The labels use for the physical legs; just ['p0', 'p1',, 'p{L-1}'].

Type list or str

_labels_pconj
Just each of _labels_p with an *.

Type list or str

_pipe
The pipe from the single physical legs to the full combined leg.

Type LegPipe

_pipe_conj
Just _pipe.conj().

Type LegPipe

_mask
Bool mask, which of the indices of the pipe are in the desired charge_sector.

Type 1D bool ndarray | None

classmethod from_H_mpo(H_MPO, *args, **kwargs)
Wrapper taking directly an MPO instead of a Model.

Parameters

• H_MPO (MPO) – The MPO representing the Hamiltonian.

• *args – Further keyword arguments as for the __init__ of the class.

• **kwargs – Further keyword arguments as for the __init__ of the class.

build_full_H_from_mpo()
Calculate self.full_H from self.mpo.

build_full_H_from_bonds()
Calculate self.full_H from self.mpo.

full_diagonalization(*args, **kwargs)
Full diagonalization to obtain all eigenvalues and eigenvectors.

Arguments are given to eigh.

groundstate(charge_sector=None)
Pick the ground state energy and ground state from self.V.

Parameters charge_sector (None | 1D ndarray) – By default (None), consider all
charge sectors. Alternatively, give the qtotal which the returned state should have.

Returns

• E0 (float) – Ground state energy (possibly in the given sector).

• psi0 (Array) – Ground state (possibly in the given sector).

exp_H(dt)
Return U(dt) := exp(-i H dt).

mps_to_full(mps)
Contract an MPS along the virtual bonds and combine its legs.

Parameters mps (MPS) – The MPS to be contracted.

266 Chapter 17. algorithms

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Returns psi – The MPS contracted along the virtual bonds.

Return type Array

full_to_mps(psi, canonical_form='B')
Convert a full state (with a single leg) to an MPS.

Parameters

• psi (Array) – The state (with a single leg) which should be splitted into an MPS.

• canonical_from (Array) – The form in which the MPS will be afterwards.

Returns mps – An normalized MPS representation in canonical form.

Return type MPS

matvec(psi)
Allow to use self as LinearOperator for lanczos.

Just applies full_H to (the first axis of) the given psi.

sparse_diag(k, *args, **kwargs)
Call speigs().

Module description

Full diagonalization (ED) of the Hamiltonian.

The full diagonalization of a small system is a simple approach to test other algorithms. In case you need the full
spectrum, a full diagonalization is often the only way. This module provides functionality to quickly diagonalize the
Hamiltonian of a given model. This might be used to obtain the spectrum, the ground state or highly excited states.

Note: Good use of symmetries is crucial to increase the treatable system size. While we can simply use the defined
LegCharge of a model, we don’t make use of any other symmetries like translation symmetry, SU(2) symmetry or
inversion symmetries. In other words, this code does not aim to provide state-of-the-art exact diagonalization, but just
the ability to diagonalize the defined models for small system sizes without addional extra work.

17.10. exact_diag 267

TeNPy, Release 0.8.1

268 Chapter 17. algorithms

CHAPTER

EIGHTEEN

LINALG

• full name: tenpy.linalg

• parent module: tenpy

• type: module

Module description

Linear-algebra tools for tensor networks.

Most notably is the module np_conserved, which contains everything needed to make use of charge conserverva-
tion in the context of tensor networks.

Relevant contents of charges are imported to np_conserved, so you propably won’t need to import charges
directly.

Submodules

np_conserved A module to handle charge conservation in tensor net-
works.

charges Basic definitions of a charge.
svd_robust (More) robust version of singular value decomposition.
random_matrix Provide some random matrix ensembles for numpy.
sparse Providing support for sparse algorithms (using matrix-

vector products only).
lanczos Lanczos algorithm for np_conserved arrays.

18.1 np_conserved

• full name: tenpy.linalg.np_conserved

• parent module: tenpy.linalg

• type: module

269

TeNPy, Release 0.8.1

Classes

Array

Array(legcharges[, dtype, qtotal, labels]) A multidimensional array (=tensor) for using charge
conservation.

18.1.1 Array

• full name: tenpy.linalg.np_conserved.Array

• parent module: tenpy.linalg.np_conserved

• type: class

Inheritance Diagram

Array

Methods

Array.__init__(legcharges[, dtype, qtotal, . . .]) see help(self)
Array.add_charge(add_legs[, chinfo, qtotal]) Add charges.
Array.add_leg(leg, i[, axis, label]) Add a leg to self, setting the current array as slice for a

given index.
Array.add_trivial_leg([axis, label, qconj]) Add a trivial leg (with just one entry) to self.
Array.as_completely_blocked() Gives a version of self which is completely blocked by

charges.
Array.astype(dtype[, copy]) Return copy with new dtype, upcasting all blocks in

_data.
Array.binary_blockwise(func, other, *args,
. . .)

Roughly return func(self, other), block-
wise.

Array.change_charge(charge, new_qmod[, . . .]) Change the qmod of one charge in chinfo.
Array.combine_legs(combine_legs[, new_axes,
. . .])

Reshape: combine multiple legs into multiple pipes.

continues on next page

270 Chapter 18. linalg

TeNPy, Release 0.8.1

Table 3 – continued from previous page
Array.complex_conj() Return copy which is complex conjugated without con-

jugating the charge data.
Array.conj([complex_conj, inplace]) Conjugate: complex conjugate data, conjugate charge

data.
Array.copy([deep]) Return a (deep or shallow) copy of self.
Array.drop_charge([charge, chinfo]) Drop (one of) the charges.
Array.extend(axis, extra) Increase the dimension of a given axis, filling the values

with zeros.
Array.from_func(func, legcharges[, dtype, . . .]) Create an Array from a numpy func.
Array.from_func_square(func, leg[, dtype,
. . .])

Create an Array from a (numpy) function.

Array.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Array.from_ndarray(data_flat, legcharges[, . . .]) convert a flat (numpy) ndarray to an Array.
Array.from_ndarray_trivial(data_flat[, . . .]) convert a flat numpy ndarray to an Array with trivial

charge conservation.
Array.gauge_total_charge(axis[, newqtotal,
. . .])

Changes the total charge by adjusting the charge on a
certain leg.

Array.get_block(qindices[, insert]) Return the ndarray in _data representing the block
corresponding to qindices.

Array.get_leg(label) Return self.legs[self.
get_leg_index(label)].

Array.get_leg_index(label) translate a leg-index or leg-label to a leg-index.
Array.get_leg_indices(labels) Translate a list of leg-indices or leg-labels to leg indices.
Array.get_leg_labels() Return list of the leg labels, with None for anonymous

legs.
Array.has_label(label) Check whether a given label exists.
Array.iadd_prefactor_other(prefactor,
other)

self += prefactor * other for scalar prefac-
tor and Array other.

Array.ibinary_blockwise(func, other, *args,
. . .)

Roughly self = func(self, other), block-
wise; in place.

Array.iconj([complex_conj]) Wraper around self.conj() with
inplace=True.

Array.idrop_labels([old_labels]) Remove leg labels from self; in place.
Array.iproject(mask, axes) Applying masks to one or multiple axes; in place.
Array.ipurge_zeros([cutoff, norm_order]) Removes self._data blocks with norm less than

cutoff; in place.
Array.ireplace_label(old_label, new_label) Replace the leg label old_label with new_label; in place.
Array.ireplace_labels(old_labels,
new_labels)

Replace leg label old_labels[i] with
new_labels[i]; in place.

Array.is_completely_blocked() Return bool whether all legs are blocked by charge.
Array.iscale_axis(s[, axis]) Scale with varying values along an axis; in place.
Array.iscale_prefactor(prefactor) self *= prefactor for scalar prefactor.
Array.iset_leg_labels(labels) Set labels for the different axes/legs; in place.
Array.isort_qdata() (Lexiographically) sort self._qdata; in place.
Array.iswapaxes(axis1, axis2) Similar as np.swapaxes; in place.
Array.itranspose([axes]) Transpose axes like np.transpose; in place.
Array.iunary_blockwise(func, *args,
**kwargs)

Roughly self = f(self), block-wise; in place.

Array.make_pipe(axes, **kwargs) Generates a LegPipe for specified axes.
Array.matvec(other) This function is used by the Lanczos algorithm needed

for DMRG.
continues on next page

18.1. np_conserved 271

TeNPy, Release 0.8.1

Table 3 – continued from previous page
Array.norm([ord, convert_to_float]) Norm of flattened data.
Array.permute(perm, axis) Apply a permutation in the indices of an axis.
Array.replace_label(old_label, new_label) Return a shallow copy with the leg label old_label re-

placed by new_label.
Array.replace_labels(old_labels, new_labels) Return a shallow copy with old_labels[i] re-

placed by new_labels[i].
Array.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Array.scale_axis(s[, axis]) Same as iscale_axis(), but return a (deep) copy.
Array.sort_legcharge([sort, bunch]) Return a copy with one or all legs sorted by charges.
Array.sparse_stats() Returns a string detailing the sparse statistics.
Array.split_legs([axes, cutoff]) Reshape: opposite of combine_legs: split (some) legs

which are LegPipes.
Array.squeeze([axes]) Remove single-dimenisional legs, like np.

squeeze().
Array.take_slice(indices, axes) Return a copy of self fixing indices along one or multi-

ple axes.
Array.test_sanity() Sanity check.
Array.to_ndarray() Convert self to a dense numpy ndarray.
Array.transpose([axes]) Like itranspose(), but on a deep copy.
Array.unary_blockwise(func, *args, **kwargs) Roughly return func(self), block-wise.
Array.zeros_like() Return a copy of self with only zeros as entries, contain-

ing no _data.

Class Attributes and Properties

Array.labels

Array.ndim Alias for rank or len(self.shape).
Array.size The number of dtype-objects stored.
Array.stored_blocks The number of (non-zero) blocks stored in _data.

class tenpy.linalg.np_conserved.Array(legcharges, dtype=<class 'numpy.float64'>, qto-
tal=None, labels=None)

Bases: object

A multidimensional array (=tensor) for using charge conservation.

An Array represents a multi-dimensional tensor, together with the charge structure of its legs (for abelian
charges). Further information can be found in Charge conservation with np_conserved.

The default __init__() (i.e. Array(...)) does not insert any data, and thus yields an Array ‘full’ of
zeros, equivalent to zeros(). Further, new arrays can be created with one of from_ndarray_trivial(),
from_ndarray(), or from_func(), and of course by copying/tensordot/svd etc.

In-place methods are indicated by a name starting with i. (But is_completely_blocked is not inplace. . .)

Parameters

• legcharges (list of LegCharge) – The leg charges for each of the legs. The
ChargeInfo is read out from it.

• dtype (type or string) – The data type of the array entries. Defaults to np.float64.

• qtotal (1D array of QTYPE) – The total charge of the array. Defaults to 0.

272 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type

TeNPy, Release 0.8.1

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

rank
The rank or “number of dimensions”, equivalent to len(shape).

Type int

shape
The number of indices for each of the legs.

Type tuple(int)

dtype
The data type of the entries.

Type np.dtype

chinfo
The nature of the charge.

Type ChargeInfo

qtotal
The total charge of the tensor.

Type 1D array

legs
The leg charges for each of the legs.

Type list of LegCharge

_labels
Labels for the different legs, None for non-labeled legs.

Type list of { str | None }

_data
The actual entries of the tensor.

Type list of arrays

_qdata
For each of the _data entries the qindices of the different legs.

Type 2D array (len(_data), rank), dtype np.intp

_qdata_sorted
Whether self._qdata is lexsorted. Defaults to True, but must be set to False by algorithms changing _qdata.

Type Bool

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

copy(deep=True)
Return a (deep or shallow) copy of self.

Both deep and shallow copies will share chinfo and the LegCharges in legs.

In contrast to a deep copy, the shallow copy will also share the tensor entries, namely the same instances
of _qdata and _data and labels (and other ‘immutable’ properties like the shape or dtype).

18.1. np_conserved 273

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Note: Shallow copies are not recommended unless you know the consequences! See the following
examples illustrating some of the pitfalls.

Examples

Be very careful when making non-deep copies: In the following example, the original a is changed if and
only if the corresponding block existed in a before.

>>> a = npc.Array.from_ndarray_trivial(np.arange(6.).reshape(2, 3))
>>> print(a.to_ndarray())
[[0. 1. 2.]
[3. 4. 5.]]

>>> b = a.copy(deep=False) # shallow copy
>>> b[1, 2] = 8.
>>> a[1, 2] # changed!
8.0

Other inplace operations might* have no effect at all (although we don’t guarantee that):

>>> a *= 2 # has no effect on `b`
>>> b.iconj() # nor does this change `a`

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves chinfo, legs, dtype under these names, qtotal as "total_charge",
_data as "blocks", _qdata as :block_inds", the labels in the list-form (as returned by
get_leg_labels()). Moreover, it saves rank, shape and _qdata_sorted (under the name
"block_inds_sorted") as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

classmethod from_ndarray_trivial(data_flat, dtype=None, labels=None)
convert a flat numpy ndarray to an Array with trivial charge conservation.

274 Chapter 18. linalg

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters

• data_flat (array_like) – The data to be converted to a Array.

• dtype (np.dtype) – The data type of the array entries. Defaults to dtype of data_flat.

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

Returns res – An Array with data of data_flat.

Return type Array

classmethod from_ndarray(data_flat, legcharges, dtype=None, qtotal=None, cutoff=None, la-
bels=None, raise_wrong_sector=True)

convert a flat (numpy) ndarray to an Array.

Parameters

• data_flat (array_like) – The flat ndarray which should be converted to a npc
Array. The shape has to be compatible with legcharges.

• legcharges (list of LegCharge) – The leg charges for each of the legs. The
ChargeInfo is read out from it.

• dtype (np.dtype) – The data type of the array entries. Defaults to dtype of data_flat.

• qtotal (None | charges) – The total charge of the new array.

• cutoff (float) – Blocks with np.max(np.abs(block)) > cutoff are con-
sidered as zero. Defaults to QCUTOFF.

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

• raise_wrong_sector (bool) – If True, raise a ValueError in case of non-zero entries
(larger than cutoff) in the wrong blocks of data_flat. If False, just raise a warning.

Returns res – An Array with data of data_flat.

Return type Array

See also:

detect_qtotal used to detect qtotal if not given.

classmethod from_func(func, legcharges, dtype=None, qtotal=None, func_args=(),
func_kwargs={}, shape_kw=None, labels=None)

Create an Array from a numpy func.

This function creates an array and fills the blocks compatible with the charges using func, where func
is a function returning a array_like when given a shape, e.g. one of np.ones or np.random.
standard_normal.

Parameters

• func (callable) – A function-like object which is called to generate the data
blocks. We expect that func returns a flat array of the given shape convertible to
dtype. If no shape_kw is given, it is called as func(shape, *func_args,

**func_kwargs), otherwise as func(*func_args, `shape_kw`=shape,

**func_kwargs). shape is a tuple of int.

• legcharges (list of LegCharge) – The leg charges for each of the legs. The
ChargeInfo is read out from it.

18.1. np_conserved 275

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• dtype (None | type | string) – The data type of the output entries. Defaults to
np.float64. Defaults to None: obtain it from the return value of the function. Note that this
argument is not given to func, but rather a type conversion is performed afterwards. You
might want to set a dtype in func_kwargs as well.

• qtotal (None | charges) – The total charge of the new array. Defaults to charge 0.

• func_args (iterable) – Additional arguments given to func.

• func_kwargs (dict) – Additional keyword arguments given to func.

• shape_kw (None | str) – If given, the keyword with which shape is given to func.

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

Returns res – An Array with blocks filled using func.

Return type Array

classmethod from_func_square(func, leg, dtype=None, func_args=(), func_kwargs={},
shape_kw=None, labels=None)

Create an Array from a (numpy) function.

This function creates an array and fills the blocks compatible with the charges using func, where func
is a function returning a array_like when given a shape, e.g. one of np.ones or np.random.
standard_normal or the functions defined in random_matrix.

Parameters

• func (callable) – A function-like object which is called to generate the data blocks.
We expect that func returns a flat array of the given shape convertible to dtype. If no
shape_kw is given, it is called like func(shape, *fargs, **fkwargs), otherwise
as func(*fargs, `shape_kw`=shape, **fkwargs). shape is a tuple of int.

• leg (LegCharge) – The leg charges for the first leg; the second leg is set to leg.
conj(). The ChargeInfo is read out from it.

• dtype (None | type | string) – The data type of the output entries. Defaults to
None: obtain it from the return value of the function. Note that this argument is not given
to func, but rather a type conversion is performed afterwards. You might want to set a
dtype in func_kwargs as well.

• func_args (iterable) – Additional arguments given to func.

• func_kwargs (dict) – Additional keyword arguments given to func.

• shape_kw (None | str) – If given, the keyword with which shape is given to func.

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

Returns res – An Array with blocks filled using func.

Return type Array

zeros_like()
Return a copy of self with only zeros as entries, containing no _data.

property size
The number of dtype-objects stored.

property stored_blocks
The number of (non-zero) blocks stored in _data.

276 Chapter 18. linalg

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

property ndim
Alias for rank or len(self.shape).

get_leg_index(label)
translate a leg-index or leg-label to a leg-index.

Parameters label (int | string) – The leg-index directly or a label (string) set before.

Returns leg_index – The index of the label.

Return type int

See also:

get_leg_indices calls get_leg_index for a list of labels.

iset_leg_labels set the labels of different legs.

get_leg_indices(labels)
Translate a list of leg-indices or leg-labels to leg indices.

Parameters labels (iterable of string/int) – The leg-labels (or directly indices)
to be translated in leg-indices.

Returns leg_indices – The translated labels.

Return type list of int

See also:

get_leg_index used to translate each of the single entries.

iset_leg_labels set the labels of different legs.

iset_leg_labels(labels)
Set labels for the different axes/legs; in place.

Introduction to leg labeling can be found in Charge conservation with np_conserved.

Parameters labels (iterable (strings | None), len=self.rank) – One la-
bel for each of the legs. An entry can be None for an anonymous leg.

See also:

get_leg translate the labels to indices.

get_leg_labels()
Return list of the leg labels, with None for anonymous legs.

has_label(label)
Check whether a given label exists.

get_leg(label)
Return self.legs[self.get_leg_index(label)].

Convenient function returning the leg corresponding to a leg label/index.

ireplace_label(old_label, new_label)
Replace the leg label old_label with new_label; in place.

replace_label(old_label, new_label)
Return a shallow copy with the leg label old_label replaced by new_label.

18.1. np_conserved 277

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

ireplace_labels(old_labels, new_labels)
Replace leg label old_labels[i] with new_labels[i]; in place.

replace_labels(old_labels, new_labels)
Return a shallow copy with old_labels[i] replaced by new_labels[i].

idrop_labels(old_labels=None)
Remove leg labels from self; in place.

Parameters old_labels (list of str|int) – The leg labels/indices for which the label
should be removed. By default (None), remove all labels.

sparse_stats()
Returns a string detailing the sparse statistics.

to_ndarray()
Convert self to a dense numpy ndarray.

get_block(qindices, insert=False)
Return the ndarray in _data representing the block corresponding to qindices.

Parameters

• qindices (1D array of np.intp) – The qindices, for which we need to look in
_qdata.

• insert (bool) – If True, insert a new (zero) block, if qindices is not existent in self.
_data. Otherwise just return None.

Returns block – The block in _data corresponding to qindices. If insert`=False and there is
not block with qindices, return ``None`.

Return type ndarray | None

Raises IndexError – If qindices are incompatible with charge and raise_incomp_q.

take_slice(indices, axes)
Return a copy of self fixing indices along one or multiple axes.

For a rank-4 Array A.take_slice([i, j], [1,2]) is equivalent to A[:, i, j, :].

Parameters

• indices ((iterable of) int) – The (flat) index for each of the legs specified by
axes.

• axes ((iterable of) str/int) – Leg labels or indices to specify the legs for
which the indices are given.

Returns sliced_self – A copy of self, equivalent to taking slices with indices inserted in axes.

Return type Array

See also:

add_leg opposite action of inserting a new leg.

add_trivial_leg(axis=0, label=None, qconj=1)
Add a trivial leg (with just one entry) to self.

Parameters

• axis (int) – The new leg is inserted before index axis.

• label (str | None) – If not None, use it as label for the new leg.

278 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• qconj (+1 | -1) – The direction of the new leg.

Returns extended – A (possibly) shallow copy of self with an additional leg of ind_len 1 and
charge 0.

Return type Array

add_leg(leg, i, axis=0, label=None)
Add a leg to self, setting the current array as slice for a given index.

Parameters

• leg (LegCharge) – The charge data of the leg to be added.

• i (int) – Index within the leg for which the data of self should be set.

• axis (axis) – The new leg is inserted before this current axis.

• label (str | None) – If not None, use it as label for the new leg.

Returns extended – A copy of self with the new leg at axis axis , such that extended.
take_slice(i, axis) returns a copy of self.

Return type Array

See also:

take_slice opposite action reducing the number of legs.

extend(axis, extra)
Increase the dimension of a given axis, filling the values with zeros.

Parameters

• axis (int | str) – The axis (or axis-label) to be extended.

• extra (LegCharge | int) – By what to extend, i.e. the charges to be appended to the leg
of axis. An int stands for extending the length of the array by a single new block of that
size with zero charges.

Returns extended – A copy of self with the specified axis increased.

Return type Array

gauge_total_charge(axis, newqtotal=None, new_qconj=None)
Changes the total charge by adjusting the charge on a certain leg.

The total charge is given by finding a nonzero entry [i1, i2, . . .] and calculating:

qtotal = self.chinfo.make_valid(
np.sum([l.get_charge(l.get_qindex(qi)[0])

for i, l in zip([i1,i2,...], self.legs)], axis=0))

Thus, the total charge can be changed by redefining (= shifting) the LegCharge of a single given leg. This
is exaclty what this function does.

Parameters

• axis (int or string) – The new leg (index or label), for which the charge is
changed.

• newqtotal (charge values, defaults to 0) – The new total charge.

18.1. np_conserved 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• new_qconj ({+1, -1, None}) – Whether the new LegCharge points inward (+1)
or outward (-1) afterwards. By default (None) use the previous self.legs[leg].
qconj.

Returns copy – A shallow copy of self with copy.qtotal == newqtotal and new
copy.legs[leg]. The new leg will be a :class`LegCharge`, even if the old leg was a
LegPipe.

Return type Array

add_charge(add_legs, chinfo=None, qtotal=None)
Add charges.

Parameters

• add_legs (iterable of LegCharge) – One LegCharge for each axis of self, to be added
to the one in legs.

• chargeinfo (ChargeInfo) – The ChargeInfo for all charges; create new if None.

• qtotal (None | charges) – The total charge with respect to add_legs. If None,
derive it from non-zero entries of self.

Returns charges_added – A copy of self, where the LegCharges add_legs where added to
self.legs. Note that the LegCharges are neither bunched or sorted; you might want to use
sort_legcharge().

Return type Array

drop_charge(charge=None, chinfo=None)
Drop (one of) the charges.

Parameters

• charge (int | str) – Number or name of the charge (within chinfo) which is to be
dropped. None means dropping all charges.

• chinfo (ChargeInfo) – The ChargeInfo with charge dropped; create a new one if
None.

Returns dropped – A copy of self, where the specified charge has been removed. Note that the
LegCharges are neither bunched or sorted; you might want to use sort_legcharge().

Return type Array

change_charge(charge, new_qmod, new_name='', chinfo=None)
Change the qmod of one charge in chinfo.

Parameters

• charge (int | str) – Number or name of the charge (within chinfo) which is to be
changed. None means dropping all charges.

• new_qmod (int) – The new qmod to be set.

• new_name (str) – The new name of the charge.

• chinfo (ChargeInfo) – The ChargeInfo with qmod of charge changed; create a
new one if None.

Returns changed – A copy of self, where the qmod of the specified charge has been
changed. Note that the LegCharges are neither bunched or sorted; you might want to use
sort_legcharge().

Return type Array

280 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

is_completely_blocked()
Return bool whether all legs are blocked by charge.

sort_legcharge(sort=True, bunch=True)
Return a copy with one or all legs sorted by charges.

Sort/bunch one or multiple of the LegCharges. Legs which are sorted and bunched are guaranteed to be
blocked by charge.

Parameters

• sort (True | False | list of {True, False, perm}) – A single bool
holds for all legs, default=True. Else, sort should contain one entry for each leg, with
a bool for sort/don’t sort, or a 1D array perm for a given permuation to apply to a leg.

• bunch (True | False | list of {True, False}) – A single bool holds for
all legs, default=True. Whether or not to bunch at each leg, i.e. combine contiguous blocks
with equal charges.

Returns

• perm (tuple of 1D arrays) – The permutation applied to each of the legs, such that cp.
to_ndarray() = self.to_ndarray()[np.ix_(*perm)].

• result (Array) – A shallow copy of self, with legs sorted/bunched.

isort_qdata()
(Lexiographically) sort self._qdata; in place.

Lexsort self._qdata and self._data and set self._qdata_sorted = True.

make_pipe(axes, **kwargs)
Generates a LegPipe for specified axes.

Parameters

• axes (iterable of str|int) – The leg labels for the axes which should be com-
bined. Order matters!

• **kwargs – Additional keyword arguments given to LegPipe.

Returns pipe – A pipe of the legs specified by axes.

Return type LegPipe

combine_legs(combine_legs, new_axes=None, pipes=None, qconj=None)
Reshape: combine multiple legs into multiple pipes. If necessary, transpose before.

Parameters

• combine_legs ((iterable of) iterable of {str|int}) – Bundles of leg
indices or labels, which should be combined into a new output pipes. If multiple pipes
should be created, use a list fore each new pipe.

• new_axes (None | (iterable of) int) – The leg-indices, at which the com-
bined legs should appear in the resulting array. Default: for each pipe the position of
its first pipe in the original array, (taking into account that some axes are ‘removed’ by
combining). Thus no transposition is perfomed if combine_legs contains only contiguous
ranges.

• pipes (None | (iterable of) {LegPipes | None}) – Optional: provide one or multiple
of the resulting LegPipes to avoid overhead of computing new leg pipes for the same legs
multiple times. The LegPipes are conjugated, if that is necessary for compatibility with
the legs.

18.1. np_conserved 281

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• qconj ((iterable of) {+1, -1}) – Specify whether new created pipes point in-
ward or outward. Defaults to +1. Ignored for given pipes, which are not newly calculated.

Returns reshaped – A copy of self, whith some legs combined into pipes as specified by the
arguments.

Return type Array

See also:

split_legs inverse reshaping splitting LegPipes.

Notes

Labels are inherited from self. New pipe labels are generated as '(' + '.'.join(*leglabels) +
')'. For these new labels, previously unlabeled legs are replaced by '?#', where # is the leg-index in
the original tensor self.

Examples

>>> orig_array = npc.Array.from_ndarray_trivial(np.arange(60).reshape([2, 3,
→˓2, 1, 5]),
... labels=['a', 'b', 'c', 'd', 'e
→˓'])
>>> c1 = orig_array.combine_legs([1, 2], qconj=-1) # only single output pipe
>>> c1.get_leg_labels()
['a', '(b.c)', 'd', 'e']
>>> c1.shape
(2, 6, 1, 5)

Indices of combine_legs refer to the original array. If transposing is necessary, it is performed automati-
cally:

>>> c2 = orig_array.combine_legs([[0, 3], [4, 1]], qconj=[+1, -1]) # two
→˓output pipes
>>> c2.get_leg_labels()
['(a.d)', 'c', '(e.b)']
>>> c2.shape
(2, 2, 15)
>>> c3 = orig_array.combine_legs([['a', 'd'], ['e', 'b']], new_axes=[2, 1],
... pipes=[c2.legs[0], c2.legs[2]])
>>> c3.get_leg_labels()
['c', '(e.b)', '(a.d)']

split_legs(axes=None, cutoff=0.0)
Reshape: opposite of combine_legs: split (some) legs which are LegPipes.

Reverts combine_legs() (except a possibly performed transpose). The splited legs are replacing
the LegPipes at their position, see the examples below. Labels are split reverting what was done in
combine_legs(). ‘?#’ labels are replaced with None.

Parameters

• axes ((iterable of) int|str) – Leg labels or indices determining the axes to
split. The corresponding entries in self.legs must be LegPipe instances. Defaults to all
legs, which are LegPipe instances.

282 Chapter 18. linalg

TeNPy, Release 0.8.1

• cutoff (float) – Splitted data blocks with np.max(np.abs(block)) >
cutoff are considered as zero. Defaults to 0.

Returns reshaped – A copy of self where the specified legs are splitted.

Return type Array

See also:

combine_legs this is reversed by split_legs.

Examples

Given a rank-5 Array orig_array, you can combine it and split it again:

>>> orig_array = npc.Array.from_ndarray_trivial(np.arange(60).reshape([2, 3,
→˓2, 1, 5]),
... labels=['a', 'b', 'c', 'd', 'e
→˓'])
>>> orig_array.shape
(2, 3, 2, 1, 5)
>>> comb_array = orig_array.combine_legs([['a', 'd'], ['c', 'e']])
>>> comb_array.get_leg_labels()
['(a.d)', 'b', '(c.e)']
>>> comb_array.shape
(2, 3, 10)
>>> split_array = comb_array.split_legs()
>>> split_array.get_leg_labels()
['a', 'd', 'b', 'c', 'e']
>>> npc.norm(split_array.transpose(orig_array.get_leg_labels()) - orig_array)
0.0

as_completely_blocked()
Gives a version of self which is completely blocked by charges.

Functions like svd() or eigh() require a complete blocking by charges. This can be achieved by
encapsulating each leg which is not completely blocked into a LegPipe (containing only that single leg).
The LegPipe will then contain all necessary information to revert the blocking.

Returns

• encapsulated_axes (list of int) – The leg indices which have been encapsulated into Pipes.

• blocked_self (Array) – Self (if len(encapsulated_axes) = 0) or a copy of self,
which is completely blocked.

squeeze(axes=None)
Remove single-dimenisional legs, like np.squeeze().

If a squeezed leg has non-zero charge, this charge is added to qtotal.

Parameters axes (None | (iterable of) {int|str}) – Labels or indices of the
legs which should be ‘squeezed’, i.e. the legs removed. The corresponding legs must be
trivial, i.e., have ind_len 1.

Returns squeezed – A scalar of self.dtype, if all axes were squeezed. Else a copy of self
with reduced rank as specified by axes.

Return type :class:Array | scalar

18.1. np_conserved 283

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

astype(dtype, copy=True)
Return copy with new dtype, upcasting all blocks in _data.

Parameters

• dtype (convertible to a np.dtype) – The new data type. If None, deduce the
new dtype as common type of self._data.

• copy (bool) – Whether to make a copy of the blocks even if the type didn’t change.

Returns copy – Deep copy of self with new dtype.

Return type Array

ipurge_zeros(cutoff=2.220446049250313e-15, norm_order=None)
Removes self._data blocks with norm less than cutoff; in place.

Parameters

• cutoff (float) – Blocks with norm <= cutoff are removed. defaults to QCUTOFF.

• norm_order – A valid ord argument for np.linalg.norm. Default None gives the Frobe-
nius norm/2-norm for matrices/everything else. Note that this differs from other methods,
e.g. from_ndarray(), which use the maximum norm.

iproject(mask, axes)
Applying masks to one or multiple axes; in place.

This function is similar as np.compress with boolean arrays For each specified axis, a boolean 1D array
mask can be given, which chooses the indices to keep.

Warning: Although it is possible to use an 1D int array as a mask, the order is ignored! If you need
to permute an axis, use permute() or sort_legcharge().

Parameters

• mask ((list of) 1D array(bool|int)) – For each axis specified by axes a
mask, which indices of the axes should be kept. If mask is a bool array, keep the in-
dices where mask is True. If mask is an int array, keep the indices listed in the mask,
ignoring the order or multiplicity.

• axes ((list of) int | string) – The i`th entry in this list specifies the axis for
the `i`th entry of `mask, either as an int, or with a leg label. If axes is just a single int/string,
specify just a single mask.

Returns

• map_qind (list of 1D arrays) – The mapping of qindices for each of the specified axes.

• block_masks (list of lists of 1D bool arrays) – block_masks[a][qind] is a boolen
mask which indices to keep in block qindex of axes[a].

permute(perm, axis)
Apply a permutation in the indices of an axis.

Similar as np.take with a 1D array. Roughly equivalent to res[:, ...] = self[perm, ...] for
the corresponding axis. Note: This function is quite slow, and usually not needed!

Parameters

• perm (array_like 1D int) – The permutation which should be applied to the leg
given by axis.

284 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• axis (str | int) – A leg label or index specifying on which leg to take the permuta-
tion.

Returns res – A copy of self with leg axis permuted, such that res[i, ...] =
self[perm[i], ...] for i along axis.

Return type Array

See also:

sort_legcharge can also be used to perform a general permutation. Preferable, since it is faster for
permutations which don’t mix charge blocks.

itranspose(axes=None)
Transpose axes like np.transpose; in place.

Parameters axes (iterable (int|string), len rank | None) – The new order of the axes. By
default (None), reverse axes.

transpose(axes=None)
Like itranspose(), but on a deep copy.

iswapaxes(axis1, axis2)
Similar as np.swapaxes; in place.

iscale_axis(s, axis=- 1)
Scale with varying values along an axis; in place.

Rescale to new_self[i1, ..., i_axis, ...] = s[i_axis] * self[i1, ...,
i_axis, ...].

Parameters

• s (1D array, len=self.shape[axis]) – The vector with which the axis should
be scaled.

• axis (str|int) – The leg label or index for the axis which should be scaled.

See also:

iproject can be used to discard indices for which s is zero.

scale_axis(s, axis=- 1)
Same as iscale_axis(), but return a (deep) copy.

iunary_blockwise(func, *args, **kwargs)
Roughly self = f(self), block-wise; in place.

Applies an unary function func to the non-zero blocks in self._data.

Note: Assumes implicitly that func(np.zeros(...), *args, **kwargs) gives 0, since we
don’t let func act on zero blocks!

Parameters

• func (function) – A function acting on flat arrays, returning flat arrays. It is called
like new_block = func(block, *args, **kwargs).

• *args – Additional arguments given to function after the block.

• **kwargs – Keyword arguments given to the function.

18.1. np_conserved 285

TeNPy, Release 0.8.1

Examples

>>> a = npc.Array.from_ndarray_trivial([1., 2.j])
>>> a.iunary_blockwise(np.conj).to_ndarray() # same data as a.iconj(), but
→˓doesn't charge conjugate.
array([1.-0.j, 0.-2.j])
>>> a.iunary_blockwise(np.real).to_ndarray() # get real part
array([1., 0.])

unary_blockwise(func, *args, **kwargs)
Roughly return func(self), block-wise. Copies.

Same as iunary_blockwise(), but makes a shallow copy first.

iconj(complex_conj=True)
Wraper around self.conj() with inplace=True.

conj(complex_conj=True, inplace=False)
Conjugate: complex conjugate data, conjugate charge data.

Conjugate all legs, set negative qtotal.

Labeling: takes ‘a’ -> ‘a*’, ‘a*’-> ‘a’ and ‘(a,(b*,c))’ -> ‘(a*, (b, c*))’

Parameters

• complex_conj (bool) – Whether the data should be complex conjugated.

• inplace (bool) – Whether to apply changes to self, or to return a deep copy.

complex_conj()
Return copy which is complex conjugated without conjugating the charge data.

norm(ord=None, convert_to_float=True)
Norm of flattened data.

See norm() for details.

ibinary_blockwise(func, other, *args, **kwargs)
Roughly self = func(self, other), block-wise; in place.

Applies a binary function ‘block-wise’ to the non-zero blocks of self._data and other._data,
storing result in place. Assumes that other is an Array as well, with the same shape and compatible legs.
If leg labels of other and self are same up to permutations, other gets transposed accordingly before the
action.

Note: Assumes implicitly that func(np.zeros(...), np.zeros(...), *args,

**kwargs) gives 0, since we don’t let func act on zero blocks!

Parameters

• func (function) – Binary function, called as new_block =
func(block_self, block_other, *args, **kwargs) for blocks (=Numpy
arrays) of equal shape.

• other (Array) – Other Array from which to take blocks. Should have the same leg
structure as self.

• *args – Extra arguments given to func.

286 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• **kwargs – Extra keyword arguments given to func.

Examples

>>> a = npc.Array.from_ndarray_trivial([1., 3.])
>>> b = npc.Array.from_ndarray_trivial([4., 2.])
>>> a.ibinary_blockwise(np.maximum, b).to_ndarray() # a = max(a, b)
array([4., 3.])
>>> a.ibinary_blockwise(np.add, b).to_ndarray() # roughly ``a += b``
array([8., 5.])

binary_blockwise(func, other, *args, **kwargs)
Roughly return func(self, other), block-wise. Copies.

Same as ibinary_blockwise(), but makes a shallow copy first.

matvec(other)
This function is used by the Lanczos algorithm needed for DMRG.

It is supposed to calculate the matrix - vector - product for a rank-2 matrix self and a rank-1 vector other.

iadd_prefactor_other(prefactor, other)
self += prefactor * other for scalar prefactor and Array other.

Note that we allow the type of self to change if necessary. Moreover, if self and other have the same labels
in different order, other gets transposed before the action.

iscale_prefactor(prefactor)
self *= prefactor for scalar prefactor.

Note that we allow the type of self to change if necessary.

Functions

concatenate(arrays[, axis, copy]) Stack arrays along a given axis, similar as
np.concatenate.

detect_grid_outer_legcharge(grid,
grid_legs)

Derive a LegCharge for a grid used for
grid_outer().

detect_legcharge(flat_array, chargeinfo, . . .) Calculate a missing LegCharge by looking for nonzero
entries of a flat array.

detect_qtotal(flat_array, legcharges[, cutoff]) Returns the total charge (w.r.t legs) of first non-zero sec-
tor found in flat_array.

diag(s, leg[, dtype, labels]) Returns a square, diagonal matrix of entries s.
eig(a[, sort]) Calculate eigenvalues and eigenvectors for a non-

hermitian matrix.
eigh(a[, UPLO, sort]) Calculate eigenvalues and eigenvectors for a hermitian

matrix.
eigvals(a[, sort]) Calculate eigenvalues for a hermitian matrix.
eigvalsh(a[, UPLO, sort]) Calculate eigenvalues for a hermitian matrix.
expm(a) Use scipy.linalg.expm to calculate the matrix exponen-

tial of a square matrix.
eye_like(a[, axis, labels]) Return an identity matrix contractible with the leg axis

of the Array a.
continues on next page

18.1. np_conserved 287

TeNPy, Release 0.8.1

Table 5 – continued from previous page
grid_concat(grid, axes[, copy]) Given an np.array of npc.Arrays, performs a multi-

dimensional concatentation along ‘axes’.
grid_outer(grid, grid_legs[, qtotal, . . .]) Given an np.array of npc.Arrays, return the correspond-

ing higher-dimensional Array.
inner(a, b[, axes, do_conj]) Contract all legs in a and b, return scalar.
norm(a[, ord, convert_to_float]) Norm of flattened data.
ones(legcharges[, dtype, qtotal, labels]) Short-hand for Array.from_func() with function

numpy.ones().
outer(a, b) Forms the outer tensor product, equivalent to

tensordot(a, b, axes=0).
pinv(a[, cutoff]) Compute the (Moore-Penrose) pseudo-inverse of a ma-

trix.
qr(a[, mode, inner_labels, cutoff]) Q-R decomposition of a matrix.
speigs(a, charge_sector, k, *args, **kwargs) Sparse eigenvalue decomposition w, v of square a in a

given charge sector.
svd(a[, full_matrices, compute_uv, cutoff, . . .]) Singualar value decomposition of an Array a.
tensordot(a, b[, axes]) Similar as np.tensordot but for Array .
to_iterable_arrays(array_list) Similar as to_iterable(), but also enclose npc Ar-

rays in a list.
trace(a[, leg1, leg2]) Trace of a, summing over leg1 and leg2.
zeros(legcharges[, dtype, qtotal, labels]) Create a npc array full of zeros (with no _data).

18.1.2 concatenate

• full name: tenpy.linalg.np_conserved.concatenate

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.concatenate(arrays, axis=0, copy=True)
Stack arrays along a given axis, similar as np.concatenate.

Stacks the qind of the array, without sorting/blocking. Labels are inherited from the first array only.

Parameters

• arrays (iterable of Array) – The arrays to be stacked. They must have the same shape
and charge data except on the specified axis.

• axis (int | str) – Leg index or label of the first array. Defines the axis along which
the arrays are stacked.

• copy (bool) – Whether to copy the data blocks.

Returns stacked – Concatenation of the given arrays along the specified axis.

Return type Array

See also:

Array.sort_legcharge can be used to block by charges along the axis.

288 Chapter 18. linalg

https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

18.1.3 detect_grid_outer_legcharge

• full name: tenpy.linalg.np_conserved.detect_grid_outer_legcharge

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.detect_grid_outer_legcharge(grid, grid_legs, qtotal=None,
qconj=1, bunch=False)

Derive a LegCharge for a grid used for grid_outer().

Note: The resulting LegCharge is not bunched.

Parameters

• grid (array_like of {Array | None}) – The grid as it will be given to grid_outer().

• grid_legs (list of {LegCharge | None}) – One LegCharge for each dimension of the
grid, except for one entry which is None. This missing entry is to be calculated.

• qtotal (charge) – The desired total charge of the array. Defaults to 0.

Returns new_grid_legs – A copy of the given grid_legs with the None replaced by a compatible
LegCharge. The new LegCharge is neither bunched nor sorted!

Return type list of LegCharge

See also:

detect_legcharge similar functionality for a flat numpy array instead of a grid.

18.1.4 detect_legcharge

• full name: tenpy.linalg.np_conserved.detect_legcharge

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.detect_legcharge(flat_array, chargeinfo, legcharges, qto-
tal=None, qconj=1, cutoff=None)

Calculate a missing LegCharge by looking for nonzero entries of a flat array.

Parameters

• flat_array (ndarray) – A flat array, in which we look for non-zero entries.

• chargeinfo (ChargeInfo) – The nature of the charge.

• legcharges (list of LegCharge) – One LegCharge for each dimension of flat_array,
except for one entry which is None. This missing entry is to be calculated.

• qconj ({+1, -1}) – qconj for the new calculated LegCharge.

• qtotal (charges) – Desired total charge of the array. Defaults to zeros.

• cutoff (float) – Blocks with np.max(np.abs(block)) > cutoff are consid-
ered as zero. Defaults to QCUTOFF.

Returns new_legcharges – A copy of the given legcharges with the None replaced by a compatible
LegCharge. The new legcharge is ‘bunched’, but not sorted!

Return type list of LegCharge

18.1. np_conserved 289

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

See also:

detect_grid_outer_legcharge similar functionality if the flat array is given by a ‘grid’.

detect_qtotal detects the total charge, if all legs are known.

18.1.5 detect_qtotal

• full name: tenpy.linalg.np_conserved.detect_qtotal

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.detect_qtotal(flat_array, legcharges, cutoff=None)
Returns the total charge (w.r.t legs) of first non-zero sector found in flat_array.

Parameters

• flat_array (array) – The flat numpy array from which you want to detect the charges.

• legcharges (list of LegCharge) – For each leg the LegCharge.

• cutoff (float) – Blocks with np.max(np.abs(block)) > cutoff are consid-
ered as zero. Defaults to QCUTOFF.

Returns qtotal – The total charge fo the first non-zero (i.e. > cutoff) charge block.

Return type charge

See also:

detect_legcharge detects the charges of one missing LegCharge if qtotal is known.

detect_grid_outer_legcharge similar functionality if the flat array is given by a ‘grid’.

18.1.6 diag

• full name: tenpy.linalg.np_conserved.diag

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.diag(s, leg, dtype=None, labels=None)
Returns a square, diagonal matrix of entries s.

The resulting matrix has legs (leg, leg.conj()) and charge 0.

Parameters

• s (scalar | 1D array) – The entries to put on the diagonal. If scalar, all diagonal
entries are the same.

• leg (LegCharge) – The first leg of the resulting matrix.

• dtype (None | type) – The data type to be used for the result. By default, use dtype of
s.

• labels (list of {str | None}) – Labels associated to each leg, None for non-
named labels.

Returns diagonal – A square matrix with diagonal entries s.

290 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Return type Array

See also:

Array.scale_axis similar as tensordot(diag(s), ...), but faster.

18.1.7 eig

• full name: tenpy.linalg.np_conserved.eig

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.eig(a, sort=None)
Calculate eigenvalues and eigenvectors for a non-hermitian matrix.

W, V = eig(a) yields 𝑎𝑉 = 𝑉 𝑑𝑖𝑎𝑔(𝑤).

Parameters

• a (Array) – The hermitian square matrix to be diagonalized.

• sort ({‘m>’, ‘m<’, ‘>’, ‘<’, None}) – How the eigenvalues should are sorted within each
charge block. Defaults to None, which is same as ‘<’. See argsort() for details.

Returns

• W (1D ndarray) – The eigenvalues, sorted within the same charge blocks according to sort.

• V (Array) – Unitary matrix; V[:, i] is normalized eigenvector with eigenvalue W[i].
The first label is inherited from A, the second label is 'eig'.

Notes

Requires the legs to be contractible. If a is not blocked by charge, a blocked copy is made via a permutation P,
𝑎′ = 𝑃𝑎𝑃−1 = 𝑉 ′𝑊 ′(𝑉 ′)†. The eigenvectors V are then obtained by the reverse permutation, 𝑉 = 𝑃−1𝑉 ′

such that 𝑎 = 𝑉𝑊𝑉 †.

18.1.8 eigh

• full name: tenpy.linalg.np_conserved.eigh

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.eigh(a, UPLO='L', sort=None)
Calculate eigenvalues and eigenvectors for a hermitian matrix.

W, V = eigh(a) yields 𝑎 = 𝑉 𝑑𝑖𝑎𝑔(𝑤)𝑉 †. Assumes that a is hermitian, a.conj().transpose() ==
a.

Parameters

• a (Array) – The hermitian square matrix to be diagonalized.

• UPLO ({'L', 'U'}) – Whether to take the lower (‘L’, default) or upper (‘U’) triangular
part of a.

18.1. np_conserved 291

TeNPy, Release 0.8.1

• sort ({‘m>’, ‘m<’, ‘>’, ‘<’, None}) – How the eigenvalues should are sorted within each
charge block. Defaults to None, which is same as ‘<’. See argsort() for details.

Returns

• W (1D ndarray) – The eigenvalues, sorted within the same charge blocks according to sort.

• V (Array) – Unitary matrix; V[:, i] is normalized eigenvector with eigenvalue W[i].
The first label is inherited from A, the second label is 'eig'.

Notes

Requires the legs to be contractible. If a is not blocked by charge, a blocked copy is made via a permutation P,
𝑎′ = 𝑃𝑎𝑃−1 = 𝑉 ′𝑊 ′(𝑉 ′)†. The eigenvectors V are then obtained by the reverse permutation, 𝑉 = 𝑃−1𝑉 ′

such that 𝑎 = 𝑉𝑊𝑉 †.

18.1.9 eigvals

• full name: tenpy.linalg.np_conserved.eigvals

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.eigvals(a, sort=None)
Calculate eigenvalues for a hermitian matrix.

Parameters

• a (Array) – The hermitian square matrix to be diagonalized.

• sort ({‘m>’, ‘m<’, ‘>’, ‘<’, None}) – How the eigenvalues should are sorted within each
charge block. Defaults to None, which is same as ‘<’. See argsort() for details.

Returns W – The eigenvalues, sorted within the same charge blocks according to sort.

Return type 1D ndarray

Notes

The eigenvalues are sorted within blocks of the completely blocked legs.

18.1.10 eigvalsh

• full name: tenpy.linalg.np_conserved.eigvalsh

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.eigvalsh(a, UPLO='L', sort=None)
Calculate eigenvalues for a hermitian matrix.

Assumes that a is hermitian, a.conj().transpose() == a.

Parameters

• a (Array) – The hermitian square matrix to be diagonalized.

292 Chapter 18. linalg

TeNPy, Release 0.8.1

• UPLO ({'L', 'U'}) – Whether to take the lower (‘L’, default) or upper (‘U’) triangular
part of a.

• sort ({‘m>’, ‘m<’, ‘>’, ‘<’, None}) – How the eigenvalues should are sorted within each
charge block. Defaults to None, which is same as ‘<’. See argsort() for details.

Returns W – The eigenvalues, sorted within the same charge blocks according to sort.

Return type 1D ndarray

Notes

The eigenvalues are sorted within blocks of the completely blocked legs.

18.1.11 expm

• full name: tenpy.linalg.np_conserved.expm

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.expm(a)
Use scipy.linalg.expm to calculate the matrix exponential of a square matrix.

Parameters a (Array) – A square matrix to be exponentiated.

Returns exp_a – The matrix exponential expm(a), calculated using scipy.linalg.expm. Same
legs/labels as a.

Return type Array

18.1.12 eye_like

• full name: tenpy.linalg.np_conserved.eye_like

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.eye_like(a, axis=0, labels=None)
Return an identity matrix contractible with the leg axis of the Array a.

18.1.13 grid_concat

• full name: tenpy.linalg.np_conserved.grid_concat

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.grid_concat(grid, axes, copy=True)
Given an np.array of npc.Arrays, performs a multi-dimensional concatentation along ‘axes’.

Similar to numpy.block(), but only for uniform blocking.

Stacks the qind of the array, without sorting/blocking.

Parameters

18.1. np_conserved 293

https://numpy.org/doc/stable/reference/generated/numpy.block.html#numpy.block

TeNPy, Release 0.8.1

• grid (array_like of Array) – The grid of arrays.

• axes (list of int) – The axes along which to concatenate the arrays, same len as the
dimension of the grid. Concatenate arrays of the i`th axis of the grid along the axis ``axes[i]`

• copy (bool) – Whether the _data blocks are copied.

Examples

Assume we have prepared rank 2 Arrays A, B, C, D sharing the legs of equal sizes and looking like this:

>>> print(A.to_ndarray())
[[0 1]]
>>> print(B.to_ndarray())
[[10 11 12 13]]
>>> print(C.to_ndarray())
[[20 21]
[22 23]
[24 25]]
>>> print(D.to_ndarray())
[[30 31 32 33]
[34 35 36 37]
[38 39 40 41]]

Then the following grid will result in a (1+3, 2+4) shaped array:

>>> g = npc.grid_concat([[A, B],
... [C, D]], axes=[0, 1])
>>> g.shape
(4, 6)
>>> print(g.to_ndarray())
[[0 1 10 11 12 13]
[20 21 30 31 32 33]
[22 23 34 35 36 37]
[24 25 38 39 40 41]]

If A, B, C, D were rank 4 arrays, with the first and last leg as before, and sharing common legs 1 and 2 of
dimensions 1, 2, then you would get a rank-4 array:

>>> g = grid_concat([[A, B], [C, D]], axes=[0, 3])
>>> g.shape
(4, 1, 2, 6)

See also:

Array.sort_legcharge can be used to block by charges.

294 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

18.1.14 grid_outer

• full name: tenpy.linalg.np_conserved.grid_outer

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.grid_outer(grid, grid_legs, qtotal=None, grid_labels=None)
Given an np.array of npc.Arrays, return the corresponding higher-dimensional Array.

Parameters

• grid (array_like of {Array | None}) – The grid gives the first part of the axes of the re-
sulting array. Entries have to have all the same shape and charge-data, giving the remaining
axes. None entries in the grid are interpreted as zeros.

• grid_legs (list of LegCharge) – One LegCharge for each dimension of the grid along
the grid.

• qtotal (charge) – The total charge of the Array. By default (None), derive it out from
a non-trivial entry of the grid.

• grid_labels (list of {str | None}) – One label associated to each of the grid
axes. None for non-named labels.

Returns res – An Array with shape grid.shape + nontrivial_grid_entry.shape.
Constructed such that res[idx] == grid[idx] for any index idx of the grid the grid
entry is not trivial (None).

Return type Array

See also:

detect_grid_outer_legcharge can calculate one missing LegCharge of the grid.

Examples

A typical use-case for this function is the generation of an MPO. Say you have npc.Arrays Splus, Sminus,
Sz, Id, each with legs [phys.conj(), phys]. Further, you have to define appropriate LegCharges l_left
and l_right. Then one ‘matrix’ of the MPO for a nearest neighbour Heisenberg Hamiltonian could look like:

>>> s = tenpy.networks.site.SpinHalfSite(conserve='Sz')
>>> Id, Splus, Sminus, Sz = s.Id, s.Sp, s.Sm, s.Sz
>>> J = 1.
>>> leg_wR = npc.LegCharge.from_qflat(s.leg.chinfo,
... [op.qtotal for op in [Id, Splus, Sminus, Sz,
→˓ Id]],
... qconj=-1)
>>> W_mpo = npc.grid_outer([[Id, Splus, Sminus, Sz, None],
... [None, None, None, None, J*0.5*Sminus],
... [None, None, None, None, J*0.5*Splus],
... [None, None, None, None, J*Sz],
... [None, None, None, None, Id]],
... grid_legs=[leg_wR.conj(), leg_wR],
... grid_labels=['wL', 'wR'])
>>> W_mpo.shape
(5, 5, 2, 2)
>>> W_mpo.get_leg_labels()
['wL', 'wR', 'p', 'p*']

18.1. np_conserved 295

TeNPy, Release 0.8.1

18.1.15 inner

• full name: tenpy.linalg.np_conserved.inner

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.inner(a, b, axes=None, do_conj=False)
Contract all legs in a and b, return scalar.

Parameters

• a (class:Array) – The arrays for which to calculate the product. Must have same rank, and
compatible LegCharges.

• b (class:Array) – The arrays for which to calculate the product. Must have same rank, and
compatible LegCharges.

• axes ((axes_a, axes_b) | 'range', 'labels') – axes_a and axes_b speci-
fiy the legs of a and b, respectively, which should be contracted. Legs can be
specified with leg labels or indices. We contract leg axes_a[i] of a with leg
axes_b[i] of b. The default axes='range' is equivalent to (range(rank),
range(rank)). axes='labels' is equivalent to either (a.get_leg_labels(),
a.get_leg_labels()) for do_conj=True, or to (a.get_leg_labels(),
conj_labels(a.get_leg_labels())) for do_conj=False. In other words,
axes='labels' requires a and b to have the same/conjugated labels up to a possible
transposition, which is then reverted.

• do_conj (bool) – If False (Default), ignore it. If True, conjugate a before, i.e., return
inner(a.conj(), b, axes).

Returns inner_product – A scalar (of common dtype of a and b) giving the full contraction of a
and b.

Return type dtype

18.1.16 norm

• full name: tenpy.linalg.np_conserved.norm

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.norm(a, ord=None, convert_to_float=True)
Norm of flattened data.

Equivalent to np.linalg.norm(a.to_ndarray().flatten(), ord).

In contrast to numpy, we don’t distinguish between matrices and vectors, but simply calculate the norm for the
flat (block) data. The usual ord-norm is defined as (

∑︀
𝑖 |𝑎𝑖|𝑜𝑟𝑑)1/𝑜𝑟𝑑.

296 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

ord norm
None/’fro’ Frobenius norm (same as 2-norm)
np.inf max(abs(x))
-np.inf min(abs(x))
0 sum(a != 0) == np.count_nonzero(x)
other ususal ord-norm

Parameters

• a (Array | np.ndarray) – The array of which the norm should be calculated.

• ord – The order of the norm. See table above.

• convert_to_float – Convert integer to float before calculating the norm, avoiding int
overflow.

Returns norm – The norm over the flat data of the array.

Return type float

18.1.17 ones

• full name: tenpy.linalg.np_conserved.ones

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.ones(legcharges, dtype=<class 'numpy.float64'>, qtotal=None, la-
bels=None)

Short-hand for Array.from_func() with function numpy.ones().

Warning: For non-trivial charges, only blocks with compatible charges are filled with ones!

18.1.18 outer

• full name: tenpy.linalg.np_conserved.outer

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.outer(a, b)
Forms the outer tensor product, equivalent to tensordot(a, b, axes=0).

Labels are inherited from a and b. In case of a collision (same label in both a and b), they are both dropped.

Parameters

• a (Array) – The arrays for which to form the product.

• b (Array) – The arrays for which to form the product.

Returns

c –

Array of rank a.rank + b.rank such that (for Ra = a.rank; Rb = b.rank):

18.1. np_conserved 297

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones

TeNPy, Release 0.8.1

c[i_1, ..., i_Ra, j_1, ... j_R] = a[i_1, ..., i_Ra] * b[j_1, ..., j_
→˓rank_b]

Return type Array

18.1.19 pinv

• full name: tenpy.linalg.np_conserved.pinv

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.pinv(a, cutoff=1e-15)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Equivalent to the following procedure: Perform a SVD, U, S, VH = svd(a, cutoff=cutoff) with
a cutoff > 0, calculate P = U * diag(1/S) * VH (with * denoting tensordot) and return P.conj.
transpose().

Parameters

• a ((M, N) Array) – Matrix to be pseudo-inverted.

• cuttof (float) – Cutoff for small singular values, as given to svd(). (Note: different
convetion than numpy.)

Returns B – The pseudo-inverse of a.

Return type (N, M) Array

18.1.20 qr

• full name: tenpy.linalg.np_conserved.qr

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.qr(a, mode='reduced', inner_labels=[None, None], cutoff=None)
Q-R decomposition of a matrix.

Decomposition such that A == npc.tensordot(q, r, axes=1) up to numerical rounding errors.

Parameters

• a (Array) – A square matrix to be exponentiated, shape (M,N).

• mode ('reduced', 'complete') – ‘reduced’: return q and r with shapes (M,K) and
(K,N), where K=min(M,N) ‘complete’: return q with shape (M,M).

• inner_labels ([{str|None}, {str|None}]) – The first label is used for Q.
legs[1], the second for R.legs[0].

• cutoff (None or float) – If not None, discard linearly dependent vectors to given preci-
sion, which might reduce K of the ‘reduced’ mode even further.

Returns

• q (Array) – If mode is ‘complete’, a unitary matrix. For mode ‘reduced’ such thatOther-
wise such that 𝑞*𝑗,𝑖𝑞𝑗,𝑘 = 𝛿𝑖,𝑘

298 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• r (Array) – Upper triangular matrix if both legs of A are sorted by charges; Otherwise a
simple transposition (performed when sorting by charges) brings it to upper triangular form.

18.1.21 speigs

• full name: tenpy.linalg.np_conserved.speigs

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.speigs(a, charge_sector, k, *args, **kwargs)
Sparse eigenvalue decomposition w, v of square a in a given charge sector.

Finds k right eigenvectors (chosen by kwargs['which']) in a given charge sector, tensordot(A,
V[i], axes=1) = W[i] * V[i].

Parameters

• a (Array) – A square array with contractible legs and vanishing total charge.

• charge_sector (charges) – ndim charges to select the block.

• k (int) – How many eigenvalues/vectors should be calculated. If the block of
charge_sector is smaller than k, k may be reduced accordingly.

• *args – Additional arguments given to scipy.sparse.linalg.eigs.

• **kwargs – Additional keyword arguments given to scipy.sparse.linalg.eigs.

Returns

• W (ndarray) – k (or less) eigenvalues

• V (list of Array) – k (or less) right eigenvectors of A with total charge charge_sector. Note
that when interpreted as a matrix, this is the transpose of what np.eigs normally gives.

18.1.22 svd

• full name: tenpy.linalg.np_conserved.svd

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.svd(a, full_matrices=False, compute_uv=True, cutoff=None,
qtotal_LR=[None, None], inner_labels=[None, None], in-
ner_qconj=1)

Singualar value decomposition of an Array a.

Factorizes U, S, VH = svd(a), such that a = U*diag(S)*VH (where * stands for a tensordot()
and diag creates an correctly shaped Array with S on the diagonal). For a non-zero cutoff this holds only
approximately.

There is a gauge freedom regarding the charges, see also Array.gauge_total_charge(). We ensure
contractibility by setting U.legs[1] = VH.legs[0].conj(). Further, we gauge the LegCharge such
that U and V have the desired qtotal_LR.

Parameters

• a (Array , shape (M, N)) – The matrix to be decomposed.

18.1. np_conserved 299

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• full_matrices (bool) – If False (default), U and V have shapes (M, K) and (K,
N), where K=len(S). If True, U and V are full square unitary matrices with shapes (M,
M) and (N, N). Note that the arrays are not directly contractible in that case; diag(S)
would need to be a rectangluar (M, N) matrix.

• compute_uv (bool) – Whether to compute and return U and V.

• cutoff (None | float) – Keep only singular values which are (strictly) greater than cutoff.
(Then the factorization holds only approximately). If None (default), ignored.

• qtotal_LR ([{charges|None}, {charges|None}]) – The desired qtotal for U
and VH, respectively. [None, None] (Default) is equivalent to [None, a.qtotal].
A single None entry is replaced the unique charge satisfying the requirement U.qtotal
+ VH.qtotal = a.qtotal (modulo qmod).

• inner_labels_LR ([{str|None}, {str|None}]) – The first label corresponds
to U.legs[1], the second to VH.legs[0].

• inner_qconj ({+1, -1}) – Direction of the charges for the new leg. Default +1. The
new LegCharge is constructed such that VH.legs[0].qconj = qconj.

Returns

• U (Array) – Matrix with left singular vectors as columns. Shape (M, M) or (M, K)
depending on full_matrices.

• S (1D ndarray) – The singluar values of the array. If no cutoff is given, it has lenght min(M,
N).

• VH (Array) – Matrix with right singular vectors as rows. Shape (N, N) or (K, N)
depending on full_matrices.

18.1.23 tensordot

• full name: tenpy.linalg.np_conserved.tensordot

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.tensordot(a, b, axes=2)
Similar as np.tensordot but for Array .

Builds the tensor product of a and b and sums over the specified axes. Does not require complete blocking of
the charges.

Labels are inherited from a and b. In case of a collision (= the same label would be inherited from a and b after
the contraction), both labels are dropped.

Detailed implementation notes are available in the doc-string of _tensordot_worker().

Parameters

• a (Array) – The first and second npc Array for which axes are to be contracted.

• b (Array) – The first and second npc Array for which axes are to be contracted.

• axes ((axes_a, axes_b) | int) – A single integer is equivalent to (range(-axes,
0), range(axes)). Alternatively, axes_a and axes_b specifiy the legs of a and b,
respectively, which should be contracted. Legs can be specified with leg labels or indices.
Contract leg axes_a[i] of a with leg axes_b[i] of b.

300 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Returns a_dot_b – The tensorproduct of a and b, summed over the specified axes. Returns a scalar
in case of a full contraction.

Return type Array

18.1.24 to_iterable_arrays

• full name: tenpy.linalg.np_conserved.to_iterable_arrays

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.to_iterable_arrays(array_list)
Similar as to_iterable(), but also enclose npc Arrays in a list.

18.1.25 trace

• full name: tenpy.linalg.np_conserved.trace

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.trace(a, leg1=0, leg2=1)
Trace of a, summing over leg1 and leg2.

Requires that the contracted legs are contractible (i.e. have opposite charges). Labels are inherited from a.

Parameters

• leg1 (str|int) – The leg label or index for the two legs which should be contracted (i.e.
summed over).

• leg2 (str|int) – The leg label or index for the two legs which should be contracted (i.e.
summed over).

Returns traced – A scalar if a.rank == 2, else an Array of rank a.rank - 2. Equiv-
alent to sum([a.take_slice([i, i], [leg1, leg2]) for i in range(a.
shape[leg1])]).

Return type Array | a.dtype

18.1.26 zeros

• full name: tenpy.linalg.np_conserved.zeros

• parent module: tenpy.linalg.np_conserved

• type: function

tenpy.linalg.np_conserved.zeros(legcharges, dtype=<class 'numpy.float64'>, qtotal=None, la-
bels=None)

Create a npc array full of zeros (with no _data).

This is just a wrapper around Array(...), detailed documentation can be found in the class doc-string of
Array .

18.1. np_conserved 301

TeNPy, Release 0.8.1

Module description

A module to handle charge conservation in tensor networks.

A detailed introduction to this module (including notations) can be found in Charge conservation with np_conserved.

This module np_conserved implements a class Array designed to make use of charge conservation in tensor net-
works. The idea is that the Array class is used in a fashion very similar to the numpy.ndarray, e.g you can call the
functions tensordot() or svd() (of this module) on them. The structure of the algorithms (as DMRG) is thus the
same as with basic numpy ndarrays.

Internally, an Array saves charge meta data to keep track of blocks which are nonzero. All possible operations (e.g.
tensordot, svd, . . .) on such arrays preserve the total charge structure. In addition, these operations make use of the
charges to figure out which of the blocks it has to use/combine - this is the basis for the speed-up.

tenpy.linalg.np_conserved.QCUTOFF = 2.220446049250313e-15
A cutoff to ignore machine precision rounding errors when determining charges

tenpy.linalg.np_conserved.QTYPE = <class 'numpy.int64'>
the type used for charges

18.1.27 Overview

Classes

Array(legcharges[, dtype, qtotal, labels]) A multidimensional array (=tensor) for using charge
conservation.

ChargeInfo([mod, names]) Meta-data about the charge of a tensor.
LegCharge(chargeinfo, slices, charges[, qconj]) Save the charge data associated to a leg of a tensor.
LegPipe(legs[, qconj, sort, bunch]) A LegPipe combines multiple legs of a tensor to one.

Array creation

Array.from_ndarray_trivial(data_flat[, . . .]) convert a flat numpy ndarray to an Array with trivial
charge conservation.

Array.from_ndarray(data_flat, legcharges[, . . .]) convert a flat (numpy) ndarray to an Array.
Array.from_func(func, legcharges[, dtype, . . .]) Create an Array from a numpy func.
Array.from_func_square(func, leg[, dtype,
. . .])

Create an Array from a (numpy) function.

zeros(legcharges[, dtype, qtotal, labels]) Create a npc array full of zeros (with no _data).
eye_like(a[, axis, labels]) Return an identity matrix contractible with the leg axis

of the Array a.
diag(s, leg[, dtype, labels]) Returns a square, diagonal matrix of entries s.

302 Chapter 18. linalg

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

TeNPy, Release 0.8.1

Concatenation

concatenate(arrays[, axis, copy]) Stack arrays along a given axis, similar as
np.concatenate.

grid_concat(grid, axes[, copy]) Given an np.array of npc.Arrays, performs a multi-
dimensional concatentation along ‘axes’.

grid_outer(grid, grid_legs[, qtotal, . . .]) Given an np.array of npc.Arrays, return the correspond-
ing higher-dimensional Array.

Detecting charges of flat arrays

detect_qtotal(flat_array, legcharges[, cutoff]) Returns the total charge (w.r.t legs) of first non-zero sec-
tor found in flat_array.

detect_legcharge(flat_array, chargeinfo, . . .) Calculate a missing LegCharge by looking for nonzero
entries of a flat array.

detect_grid_outer_legcharge(grid,
grid_legs)

Derive a LegCharge for a grid used for
grid_outer().

Contraction of some legs

tensordot(a, b[, axes]) Similar as np.tensordot but for Array .
outer(a, b) Forms the outer tensor product, equivalent to

tensordot(a, b, axes=0).
inner(a, b[, axes, do_conj]) Contract all legs in a and b, return scalar.
trace(a[, leg1, leg2]) Trace of a, summing over leg1 and leg2.

Linear algebra

svd(a[, full_matrices, compute_uv, cutoff, . . .]) Singualar value decomposition of an Array a.
pinv(a[, cutoff]) Compute the (Moore-Penrose) pseudo-inverse of a ma-

trix.
norm(a[, ord, convert_to_float]) Norm of flattened data.
qr(a[, mode, inner_labels, cutoff]) Q-R decomposition of a matrix.
expm(a) Use scipy.linalg.expm to calculate the matrix exponen-

tial of a square matrix.

Eigen systems

eigh(a[, UPLO, sort]) Calculate eigenvalues and eigenvectors for a hermitian
matrix.

eig(a[, sort]) Calculate eigenvalues and eigenvectors for a non-
hermitian matrix.

eigvalsh(a[, UPLO, sort]) Calculate eigenvalues for a hermitian matrix.
eigvals(a[, sort]) Calculate eigenvalues for a hermitian matrix.

continues on next page

18.1. np_conserved 303

TeNPy, Release 0.8.1

Table 12 – continued from previous page
speigs(a, charge_sector, k, *args, **kwargs) Sparse eigenvalue decomposition w, v of square a in a

given charge sector.

18.2 charges

• full name: tenpy.linalg.charges

• parent module: tenpy.linalg

• type: module

Classes

ChargeInfo LegCharge

LegPipe

ChargeInfo([mod, names]) Meta-data about the charge of a tensor.
LegCharge(chargeinfo, slices, charges[, qconj]) Save the charge data associated to a leg of a tensor.
LegPipe(legs[, qconj, sort, bunch]) A LegPipe combines multiple legs of a tensor to one.

18.2.1 ChargeInfo

• full name: tenpy.linalg.charges.ChargeInfo

• parent module: tenpy.linalg.charges

• type: class

Inheritance Diagram

ChargeInfo

304 Chapter 18. linalg

TeNPy, Release 0.8.1

Methods

ChargeInfo.__init__([mod, names]) Initialize self.
ChargeInfo.add(chinfos) Create a ChargeInfo combining multiple charges.
ChargeInfo.change(chinfo, charge, new_qmod) Change the qmod of a given charge.
ChargeInfo.check_valid(charges) Check, if charges has all entries as expected from

self.mod.
ChargeInfo.drop(chinfo[, charge]) Remove a charge from a ChargeInfo.
ChargeInfo.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

ChargeInfo.make_valid([charges]) Take charges modulo self.mod.
ChargeInfo.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

ChargeInfo.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

Class Attributes and Properties

ChargeInfo.mod Modulo how much each of the charges is taken.
ChargeInfo.qnumber The number of charges.

class tenpy.linalg.charges.ChargeInfo(mod=[], names=None)
Bases: object

Meta-data about the charge of a tensor.

Saves info about the nature of the charge of a tensor. Provides make_valid() for taking modulo m.

(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg.
np_conserved for convenience.)

Parameters

• mod (iterable of QTYPE) – The len gives the number of charges, qnumber. Each
entry is a positive integer, where 1 implies a 𝑈(1) charge and N>1 implies a 𝑍𝑁 symmetry.
Defaults to “trivial”, i.e., no charge.

• names (list of str) – Descriptive names for the charges. Defaults to
['']*qnumber.

names
A descriptive name for each of the charges. May have ‘’ entries.

Type list of strings

_mask
mask (mod == 1), to speed up make_valid in pure python.

Type 1D array bool

_mod_masked
Equivalent to self.mod[self._maks_mod1]

Type 1D array QTYPE

_qnumber, _mod
Storage of qnumber and mod.

18.2. charges 305

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

Notes

Instances of this class can (should) be shared between different LegCharge and Array’s.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

It stores the names under the path "names", and mod as dataset "U1_ZN".

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

The "U1_ZN" dataset is mandatory, 'names' are optional.

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

classmethod add(chinfos)
Create a ChargeInfo combining multiple charges.

Parameters chinfos (iterable of ChargeInfo) – ChargeInfo instances to be combined into
a single one (in the given order).

Returns chinfo – ChargeInfo combining all the given charges.

Return type ChargeInfo

classmethod drop(chinfo, charge=None)
Remove a charge from a ChargeInfo.

Parameters

• chinfo (ChargeInfo) – The ChargeInfo from where to drop/remove a charge.

• charge (int | str) – Number or name of the charge (within chinfo) which is to be
dropped. None means dropping all charges.

Returns chinfo – ChargeInfo where the specified charge is dropped.

Return type ChargeInfo

classmethod change(chinfo, charge, new_qmod, new_name='')
Change the qmod of a given charge.

Parameters

• chinfo (ChargeInfo) – The ChargeInfo for which qmod of charge should be changed.

306 Chapter 18. linalg

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• new_qmod (int) – The new qmod to be set.

• new_name (str) – The new name of the charge.

Returns chinfo – ChargeInfo where qmod of the specified charge was changed.

Return type ChargeInfo

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

property qnumber
The number of charges.

property mod
Modulo how much each of the charges is taken.

Entries are 1 for a 𝑈(1) charge, and N for a 𝑍𝑁 symmetry.

make_valid(charges=None)
Take charges modulo self.mod.

Parameters charges (array_like or None) – 1D or 2D array of charges, last
dimension self.qnumber None defaults to trivial charges np.zeros(qnumber,
dtype=QTYPE).

Returns A copy of charges taken modulo mod, but with x % 1 := x

Return type charges

check_valid(charges)
Check, if charges has all entries as expected from self.mod.

Parameters charges (2D ndarray QTYPE_t) – Charge values to be checked.

Returns res – True, if all 0 <= charges <= self.mod (wherever self.mod != 1)

Return type bool

18.2.2 LegCharge

• full name: tenpy.linalg.charges.LegCharge

• parent module: tenpy.linalg.charges

• type: class

Inheritance Diagram

LegCharge

18.2. charges 307

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Methods

LegCharge.__init__(chargeinfo, slices, charges) Initialize self.
LegCharge.bunch() Return a copy with bunched self.charges: form blocks

for contiguous equal charges.
LegCharge.charge_sectors() Return unique rows of self.charges.
LegCharge.conj() Return a (shallow) copy with opposite self.qconj.
LegCharge.copy() Return a (shallow) copy of self.
LegCharge.extend(extra) Return a new LegCharge, which extends self with

futher charges.
LegCharge.flip_charges_qconj() Return a copy with both negative qconj and charges.
LegCharge.from_add_charge(legs[, charge-
info])

Add the (independent) charges of two or more legs to
get larger qnumber.

LegCharge.from_change_charge(leg, charge,
. . .)

Remove a charge from a LegCharge.

LegCharge.from_drop_charge(leg[, charge,
. . .])

Remove a charge from a LegCharge.

LegCharge.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

LegCharge.from_qdict(chargeinfo, qdict[,
qconj])

Create a LegCharge from qdict form.

LegCharge.from_qflat(chargeinfo, qflat[,
qconj])

Create a LegCharge from qflat form.

LegCharge.from_qind(chargeinfo, slices,
charges)

Just a wrapper around self.__init__(), see class doc-
string for parameters.

LegCharge.from_trivial(ind_len[, . . .]) Create trivial (qnumber=0) LegCharge for given len of
indices ind_len.

LegCharge.get_block_sizes() Return the sizes of the individual blocks.
LegCharge.get_charge(qindex) Return charge self.charges[qindex] *

self.qconj for a given qindex.
LegCharge.get_qindex(flat_index) Find qindex containing a flat index.
LegCharge.get_qindex_of_charges(charges) Return the slice selecting the block for given charge val-

ues.
LegCharge.get_slice(qindex) Return slice selecting the block for a given qindex.
LegCharge.is_blocked() Returns whether self is blocked, i.e. qindex map 1:1 to

charge values.
LegCharge.is_bunched() Checks whether bunch() would change something.
LegCharge.is_sorted() Returns whether self.charges is sorted lexiographically.
LegCharge.perm_flat_from_perm_qind(perm_qind)Convert a permutation of qind (acting on self) into a flat

permutation.
LegCharge.perm_qind_from_perm_flat(perm_flat)Convert flat permutation into qind permutation.
LegCharge.project(mask) Return copy keeping only the indices specified by mask.
LegCharge.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

LegCharge.sort([bunch]) Return a copy of self sorted by charges (but maybe not
bunched).

LegCharge.test_contractible(other) Raises a ValueError if charges are incompatible for con-
traction with other.

LegCharge.test_equal(other) Test if charges are equal including qconj.
LegCharge.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
LegCharge.to_qdict() Return charges in qdict form.

continues on next page

308 Chapter 18. linalg

TeNPy, Release 0.8.1

Table 16 – continued from previous page
LegCharge.to_qflat() Return charges in qflat form.

class tenpy.linalg.charges.LegCharge(chargeinfo, slices, charges, qconj=1)
Bases: object

Save the charge data associated to a leg of a tensor.

This class is more or less a wrapper around a 2D numpy array charges and a 1D array slices. See Charge
conservation with np_conserved for more details.

(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg.
np_conserved for convenience.)

Parameters

• chargeinfo (ChargeInfo) – The nature of the charge.

• slices (1D array_like, len(block_number+1)) – A block with ‘qindex’ qi
correspondes to the leg indices in slice(slices[qi], slices[qi+1]).

• charges (2D array_like, shape(block_number, chargeinfo.
qnumber)) – charges[qi] gives the charges for a block with ‘qindex’ qi.

• qconj ({+1, -1}) – A flag telling whether the charge points inwards (+1, default) or
outwards (-1).

ind_len
The number of indices for this leg.

Type int

block_number
The number of blocks, i.e., a ‘qindex’ for this leg is in range(block_number).

chinfo
The nature of the charge. Can be shared between LegCharges.

Type ChargeInfo instance

slices
A block with ‘qindex’ qi correspondes to the leg indices in slice(self.slices[qi], self.
slices[qi+1]). See get_slice().

Type ndarray[np.intp_t,ndim=1] (block_number+1)

charges
charges[qi] gives the charges for a block with ‘qindex’ qi. Note: the sign might be changed by qconj.
See also get_charge().

Type ndarray[QTYPE_t,ndim=1] (block_number, chinfo.qnumber)

qconj
A flag telling whether the charge points inwards (+1) or outwards (-1). Whenever charges are added, they
should be multiplied with their qconj value.

Type {-1, 1}

sorted
Whether the charges are guaranteed to be sorted.

Type bool

bunched
Whether the charges are guaranteed to be bunched.

18.2. charges 309

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Type bool

Notes

Instances of this class can be shared between different npc.Array. Thus, functions changing self.slices or
self.charges must always make copies. Further they must set sorted and bunched to False (if they might
not preserve them).

copy()
Return a (shallow) copy of self.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Checks format for an ouput format key "LegCharge". Possible choices are:

"blocks" (default) Store slices and charges directly as datasets, and block_number,
sorted, bunched as further attributes.

"compact" A single array np.hstack([self.slices[:-1], self.slices[1:], self.
charges]) as dataset "blockcharges", and block_number, sorted, bunched as further
attributes.

"flat" Insufficient (!) to recover the exact blocks; saves only the array returned by to_flat() as
dataset 'charges'.

The ind_len, qconj, and the format parameter are saved as group attributes under the same names.
chinfo is always saved as subgroup.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

classmethod from_trivial(ind_len, chargeinfo=None, qconj=1)
Create trivial (qnumber=0) LegCharge for given len of indices ind_len.

classmethod from_qflat(chargeinfo, qflat, qconj=1)
Create a LegCharge from qflat form.

Does neither bunch nor sort. We recommend to sort (and bunch) afterwards, if you expect that tensors
using the LegCharge have entries at all positions compatible with the charges.

310 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters

• chargeinfo (ChargeInfo) – The nature of the charge.

• qflat (array_like (ind_len, qnumber)) – qnumber charges for each index of the leg on
entry.

• qconj ({-1, 1}) – A flag telling whether the charge points inwards (+1) or outwards
(-1).

See also:

sort sorts by charges

bunch bunches contiguous blocks of the same charge.

classmethod from_qind(chargeinfo, slices, charges, qconj=1)
Just a wrapper around self.__init__(), see class doc-string for parameters.

See also:

sort sorts by charges

bunch bunches contiguous blocks of the same charge.

classmethod from_qdict(chargeinfo, qdict, qconj=1)
Create a LegCharge from qdict form.

Parameters

• chargeinfo (ChargeInfo) – The nature of the charge.

• qdict (dict) – A dictionary mapping a tuple of charges to slices.

classmethod from_add_charge(legs, chargeinfo=None)
Add the (independent) charges of two or more legs to get larger qnumber.

Parameters

• legs (iterable of LegCharge) – The legs for which the charges are to be com-
bined/added.

• chargeinfo (ChargeInfo) – The ChargeInfo for all charges; create new if None.

Returns combined – A LegCharge with the charges of both legs. Is neither sorted nor bunched!

Return type LegCharge

classmethod from_drop_charge(leg, charge=None, chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

• leg (LegCharge) – The leg from which to drop/remove a charge.

• charge (int | str) – Number or name of the charge (within chinfo) which is to be
dropped. None means dropping all charges.

• chargeinfo (ChargeInfo) – The ChargeInfo with charge dropped; create new if
None.

Returns dropped – A LegCharge with the specified charge dropped. Is neither sorted nor
bunched!

Return type LegCharge

18.2. charges 311

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

classmethod from_change_charge(leg, charge, new_qmod, new_name='', chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

• leg (LegCharge) – The leg from which to drop/remove a charge.

• charge (int | str) – Number or name of the charge (within chinfo) for which mod
is to be changed.

• new_qmod (int) – The new mod to be set for charge in the ChargeInfo.

• new_name (str) – The new name for charge.

• chargeinfo (ChargeInfo) – The ChargeInfo with charge changed; create new if
None.

Returns leg – A LegCharge with the specified charge changed. Is neither sorted nor bunched!

Return type LegCharge

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

conj()
Return a (shallow) copy with opposite self.qconj.

Returns conjugated – Shallow copy of self with flipped qconj. test_contractible()
of self with conjugated will not raise an error.

Return type LegCharge

flip_charges_qconj()
Return a copy with both negative qconj and charges.

Returns conj_charges – (Shallow) copy of self with negative qconj and charges, thus repre-
senting the very same charges. test_equal() of self with conj_charges will not raise an
error.

Return type LegCharge

to_qflat()
Return charges in qflat form.

to_qdict()
Return charges in qdict form.

Raises ValueError, if not blocked.

is_blocked()
Returns whether self is blocked, i.e. qindex map 1:1 to charge values.

is_sorted()
Returns whether self.charges is sorted lexiographically.

is_bunched()
Checks whether bunch() would change something.

test_contractible(other)
Raises a ValueError if charges are incompatible for contraction with other.

Parameters other (LegCharge) – The LegCharge of the other leg condsidered for contrac-
tion.

Raises ValueError – If the charges are incompatible for direct contraction.

312 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

TeNPy, Release 0.8.1

Notes

This function checks that two legs are ready for contraction. This is the case, if all of the following
conditions are met:

• the ChargeInfo is equal

• the slices are equal

• the charges are the same up to opposite signs qconj:

self.charges * self.qconj = - other.charges * other.qconj

In general, there could also be a change of the total charge, see Charge conservation with np_conserved
This special case is not considered here - instead use gauge_total_charge(), if a change of the
charge is desired.

If you are sure that the legs should be contractable, check whether the charges are actually valid or whether
self and other are blocked or should be sorted.

See also:

test_equal self.test_contractible(other) just performs self.
test_equal(other.conj()).

test_equal(other)
Test if charges are equal including qconj.

Check that all of the following conditions are met:

• the ChargeInfo is equal

• the slices are equal

• the charges are the same up to the signs qconj:

self.charges * self.qconj = other.charges * other.qconj

See also:

test_contractible self.test_equal(other) is equivalent to self.
test_contractible(other.conj()).

get_block_sizes()
Return the sizes of the individual blocks.

Returns sizes – The sizes of the individual blocks; sizes[i] = slices[i+1] -
slices[i].

Return type ndarray, shape (block_number,)

get_slice(qindex)
Return slice selecting the block for a given qindex.

get_qindex(flat_index)
Find qindex containing a flat index.

Given a flat index, to find the corresponding entry in an Array, we need to determine the block it is saved
in. For example, if slices = [[0, 3], [3, 7], [7, 12]], the flat index 5 corresponds to the
second entry, qindex = 1 (since 5 is in [3:7]), and the index within the block would be 2 = 5 - 3.

Parameters flat_index (int) – A flat index of the leg. Negative index counts from behind.

18.2. charges 313

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns

• qindex (int) – The qindex, i.e. the index of the block containing flat_index.

• index_within_block (int) – The index of flat_index within the block given by qindex.

get_qindex_of_charges(charges)
Return the slice selecting the block for given charge values.

Inverse function of get_charge().

Parameters charges (1D array_like) – Charge values for which the slice of the block is
to be determined.

Returns slice(i, j) – Slice of the charge values for

Return type slice

:raises ValueError : if the answer is not unique (because self is not blocked).:

get_charge(qindex)
Return charge self.charges[qindex] * self.qconj for a given qindex.

sort(bunch=True)
Return a copy of self sorted by charges (but maybe not bunched).

If bunch=True, the returned copy is completely blocked by charge.

Parameters bunch (bool) – Whether self.bunch is called after sorting. If True, the leg is
guaranteed to be fully blocked by charge.

Returns

• perm_qind (array (self.block_len,)) – The permutation of the qindices (before bunching)
used for the sorting. To obtain the flat permuation such that sorted_array[.
.., :] = unsorted_array[..., perm_flat], use perm_flat =
unsorted_leg.perm_flat_from_perm_qind(perm_qind)

• sorted_copy (LegCharge) – A shallow copy of self, with new qind sorted (and thus
blocked if bunch) by charges.

See also:

bunch enlarge blocks for contiguous qind of the same charges.

numpy.take can apply perm_flat to a given axis

tenpy.tools.misc.inverse_permutation returns inverse of a permutation

bunch()
Return a copy with bunched self.charges: form blocks for contiguous equal charges.

Returns

• idx (1D array) – idx[:-1] are the indices of the old qind which are kept, idx[-1] =
old_block_number.

• cp (LegCharge) – A new LegCharge with the same charges at given indices of the leg,
but (possibly) shorter self.charges and self.slices.

See also:

sort sorts by charges, thus enforcing complete blocking in combination with bunch.

314 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take

TeNPy, Release 0.8.1

project(mask)
Return copy keeping only the indices specified by mask.

Parameters mask (1D array(bool)) – Whether to keep of the indices.

Returns

• map_qind (1D array) – Map of qindices, such that qind_new =
map_qind[qind_old], and map_qind[qind_old] = -1 for qindices pro-
jected out.

• block_masks (1D array) – The bool mask for each of the remaining blocks.

• projected_copy (LegCharge) – Copy of self with the qind projected by mask.

extend(extra)
Return a new LegCharge, which extends self with futher charges.

This is needed to formally increase the dimension of an Array.

Parameters extra (LegCharge | int) – By what to extend, i.e. the charges to be appended to
self. An int stands for extending the length of the array by a single new block of that size and
zero charges.

Returns extended_leg – Copy of self extended by the charge blocks of the extra leg.

Return type LegCharge

charge_sectors()
Return unique rows of self.charges.

Returns charges – Rows are the rows of self.charges lexsorted and without duplicates.

Return type array[QTYPE, ndim=2]

perm_flat_from_perm_qind(perm_qind)
Convert a permutation of qind (acting on self) into a flat permutation.

perm_qind_from_perm_flat(perm_flat)
Convert flat permutation into qind permutation.

Parameters perm_flat (1D array) – A permutation acting on self, which doesn’t mix the
blocks of qind.

Returns perm_qind – The permutation of self.qind described by perm_flat.

Return type 1D array

Raises ValueError – If perm_flat mixes blocks of different qindex.

18.2.3 LegPipe

• full name: tenpy.linalg.charges.LegPipe

• parent module: tenpy.linalg.charges

• type: class

18.2. charges 315

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

TeNPy, Release 0.8.1

Inheritance Diagram

LegCharge

LegPipe

Methods

LegPipe.__init__(legs[, qconj, sort, bunch]) Initialize self.
LegPipe.bunch(*args, **kwargs) Convert to LegCharge and call LegCharge.

bunch().
LegPipe.charge_sectors() Return unique rows of self.charges.
LegPipe.conj() Return a shallow copy with opposite self.qconj.
LegPipe.copy() Return a (shallow) copy of self.
LegPipe.extend(extra) Return a new LegCharge, which extends self with

futher charges.
LegPipe.flip_charges_qconj() Return a copy with both negative qconj and charges.
LegPipe.from_add_charge(legs[, chargeinfo]) Add the (independent) charges of two or more legs to

get larger qnumber.
LegPipe.from_change_charge(leg, charge,
new_qmod)

Remove a charge from a LegCharge.

LegPipe.from_drop_charge(leg[, charge, . . .]) Remove a charge from a LegCharge.
LegPipe.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
LegPipe.from_qdict(chargeinfo, qdict[, qconj]) Create a LegCharge from qdict form.
LegPipe.from_qflat(chargeinfo, qflat[, qconj]) Create a LegCharge from qflat form.
LegPipe.from_qind(chargeinfo, slices, charges) Just a wrapper around self.__init__(), see class doc-

string for parameters.
LegPipe.from_trivial(ind_len[, chargeinfo,
. . .])

Create trivial (qnumber=0) LegCharge for given len of
indices ind_len.

LegPipe.get_block_sizes() Return the sizes of the individual blocks.
LegPipe.get_charge(qindex) Return charge self.charges[qindex] *

self.qconj for a given qindex.
LegPipe.get_qindex(flat_index) Find qindex containing a flat index.
LegPipe.get_qindex_of_charges(charges) Return the slice selecting the block for given charge val-

ues.
LegPipe.get_slice(qindex) Return slice selecting the block for a given qindex.
LegPipe.is_blocked() Returns whether self is blocked, i.e. qindex map 1:1 to

charge values.
LegPipe.is_bunched() Checks whether bunch() would change something.
LegPipe.is_sorted() Returns whether self.charges is sorted lexiographically.

continues on next page

316 Chapter 18. linalg

TeNPy, Release 0.8.1

Table 17 – continued from previous page
LegPipe.map_incoming_flat(incoming_indices) Map (flat) incoming indices to an index in the outgoing

pipe.
LegPipe.outer_conj() Like conj(), but don’t change qconj for incoming

legs.
LegPipe.perm_flat_from_perm_qind(perm_qind)Convert a permutation of qind (acting on self) into a flat

permutation.
LegPipe.perm_qind_from_perm_flat(perm_flat)Convert flat permutation into qind permutation.
LegPipe.project(*args, **kwargs) Convert self to LegCharge and call LegCharge.

project().
LegPipe.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
LegPipe.sort(*args, **kwargs) Convert to LegCharge and call LegCharge.sort().
LegPipe.test_contractible(other) Raises a ValueError if charges are incompatible for con-

traction with other.
LegPipe.test_equal(other) Test if charges are equal including qconj.
LegPipe.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
LegPipe.to_LegCharge() Convert self to a LegCharge, discarding the information

how to split the legs.
LegPipe.to_qdict() Return charges in qdict form.
LegPipe.to_qflat() Return charges in qflat form.

class tenpy.linalg.charges.LegPipe(legs, qconj=1, sort=True, bunch=True)
Bases: tenpy.linalg.charges.LegCharge

A LegPipe combines multiple legs of a tensor to one.

Often, it is necessary to “combine” multiple legs into one: for example to perfom a SVD, the tensor needs to be
viewed as a matrix.

This class does exactly this job: it combines multiple LegCharges (‘incoming legs’) into one ‘pipe’ (the ‘outgo-
ing leg’). The pipe itself is a LegCharge, with indices running from 0 to the product of the individual legs’
ind_len, corresponding to all possible combinations of input leg indices.

(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg.
np_conserved for convenience.)

Parameters

• legs (list of LegCharge) – The legs which are to be combined.

• qconj ({+1, -1}) – A flag telling whether the charge of the resulting pipe points inwards
(+1, default) or outwards (-1).

• sort (bool) – Whether the outgoing pipe should be sorted. Default True; recommended.
Note: calling sort() after initialization converts to a LegCharge.

• bunch (bool) – Whether the outgoing pipe should be bunched. Default True; recom-
mended. Note: calling bunch() after initialization converts to a LegCharge.

nlegs
The number of legs.

Type int

legs
The original legs, which were combined in the pipe.

Type tuple of LegCharge

18.2. charges 317

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

subshape
ind_len for each of the incoming legs.

Type tuple of int

subqshape
block_number for each of the incoming legs.

Type tuple of int

q_map
Shape (block_number, 3 + nlegs). Rows: [b_j, b_{j+1}, I_s, i_1, ..., i_{nlegs}],
See Notes below for details.

Type array[np.intp, ndim=2]

q_map_slices
Defined such that the row indices of in range(q_map_slices[I_s], q_map_slices[I_s+1])
have q_map[:, 2] == I_s.

Type array[np.intp, ndim=1]

_perm
A permutation such that q_map[_perm, 3:] is sorted by i_l.

Type 1D array

_strides
Strides for mapping incoming qindices i_l to the index of q_map[_perm, :].

Type 1D array

Notes

For np.reshape, taking, for example, 𝑖, 𝑗, ... → 𝑘 amounted to 𝑘 = 𝑠1 * 𝑖 + 𝑠2 * 𝑗 + ... for appropriate strides
𝑠1, 𝑠2.

In the charged case, however, we want to block 𝑘 by charge, so we must implicitly permute as well. This
reordering is encoded in q_map.

Each qindex combination of the nlegs input legs (𝑖1, ..., 𝑖𝑛𝑙𝑒𝑔𝑠), will end up getting placed in some slice 𝑎𝑗 : 𝑎𝑗+1

of the outgoing pipe. Within this slice, the data is simply reshaped in usual row-major fashion (‘C’-order), i.e.,
with strides 𝑠1 > 𝑠2 >

It will be a subslice of a new total block labeled by qindex 𝐼𝑠. Because many charge combinations fuse to the
same total charge, in general there will be many tuples (𝑖1, ..., 𝑖𝑛𝑙𝑒𝑔𝑠) belonging to the same 𝐼𝑠. The rows of
q_map are precisely the collections of [b_j, b_{j+1}, I_s, i_1, . . . , i_{nlegs}]. Here,
𝑏𝑗 : 𝑏𝑗+1 denotes the slice of this qindex combination within the total block I_s, i.e., b_j = a_j - self.
slices[I_s].

The rows of q_map are lex-sorted first by I_s, then the i. Each I_s will have multiple rows, and the order in
which they are stored in q_map is the order the data is stored in the actual tensor, i.e., it might look like

[...,
[b_j, b_{j+1}, I_s, i_1, ..., i_{nlegs}],
[b_{j+1}, b_{j+2}, I_s, i'_1, ..., i'_{nlegs}],
[0, b_{j+3}, I_s + 1, i''_1, ..., i''_{nlegs}],
[b_{j+3}, b_{j+4}, I_s + 1, i'''_1, ..., i'''_{nlegs}],
...]

The charge fusion rule is:

318 Chapter 18. linalg

TeNPy, Release 0.8.1

self.charges[Qi]*self.qconj == sum([l.charges[qi_l]*l.qconj for l in self.legs])
→˓mod qmod

Here the qindex Qi of the pipe corresponds to qindices qi_l on the individual legs.

copy()
Return a (shallow) copy of self.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

In addition to the data saved for the LegCharge, it just saves the legs as subgroup.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

to_LegCharge()
Convert self to a LegCharge, discarding the information how to split the legs.

Usually not needed, but called by functions, which are not implemented for a LegPipe.

conj()
Return a shallow copy with opposite self.qconj.

Returns conjugated – Shallow copy of self with flipped qconj. Whenever we contract two
legs, they need to be conjugated to each other. The incoming legs of the pipe are also conju-
gated.

Return type LegCharge

outer_conj()
Like conj(), but don’t change qconj for incoming legs.

sort(*args, **kwargs)
Convert to LegCharge and call LegCharge.sort().

bunch(*args, **kwargs)
Convert to LegCharge and call LegCharge.bunch().

18.2. charges 319

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

project(*args, **kwargs)
Convert self to LegCharge and call LegCharge.project().

In general, this could be implemented for a LegPipe, but would make split_legs()more complicated,
thus we keep it simple. If you really want to project and split afterwards, use the following work-around,
which is for example used in exact_diagonalization:

1) Create the full pipe and save it separetely.

2) Convert the Pipe to a Leg & project the array with it.

3) [. . . do calculations . . .]

4) To split the ‘projected pipe’ of A, create and empty array B with the legs of A, but replace the projected
leg by the full pipe. Set A as a slice of B. Finally split the pipe.

map_incoming_flat(incoming_indices)
Map (flat) incoming indices to an index in the outgoing pipe.

Parameters incoming_indices (iterable of int) – One (flat) index on each of the
incoming legs.

Returns outgoing_index – The index in the outgoing leg.

Return type int

charge_sectors()
Return unique rows of self.charges.

Returns charges – Rows are the rows of self.charges lexsorted and without duplicates.

Return type array[QTYPE, ndim=2]

extend(extra)
Return a new LegCharge, which extends self with futher charges.

This is needed to formally increase the dimension of an Array.

Parameters extra (LegCharge | int) – By what to extend, i.e. the charges to be appended to
self. An int stands for extending the length of the array by a single new block of that size and
zero charges.

Returns extended_leg – Copy of self extended by the charge blocks of the extra leg.

Return type LegCharge

flip_charges_qconj()
Return a copy with both negative qconj and charges.

Returns conj_charges – (Shallow) copy of self with negative qconj and charges, thus repre-
senting the very same charges. test_equal() of self with conj_charges will not raise an
error.

Return type LegCharge

classmethod from_add_charge(legs, chargeinfo=None)
Add the (independent) charges of two or more legs to get larger qnumber.

Parameters

• legs (iterable of LegCharge) – The legs for which the charges are to be com-
bined/added.

• chargeinfo (ChargeInfo) – The ChargeInfo for all charges; create new if None.

Returns combined – A LegCharge with the charges of both legs. Is neither sorted nor bunched!

320 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type LegCharge

classmethod from_change_charge(leg, charge, new_qmod, new_name='', chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

• leg (LegCharge) – The leg from which to drop/remove a charge.

• charge (int | str) – Number or name of the charge (within chinfo) for which mod
is to be changed.

• new_qmod (int) – The new mod to be set for charge in the ChargeInfo.

• new_name (str) – The new name for charge.

• chargeinfo (ChargeInfo) – The ChargeInfo with charge changed; create new if
None.

Returns leg – A LegCharge with the specified charge changed. Is neither sorted nor bunched!

Return type LegCharge

classmethod from_drop_charge(leg, charge=None, chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

• leg (LegCharge) – The leg from which to drop/remove a charge.

• charge (int | str) – Number or name of the charge (within chinfo) which is to be
dropped. None means dropping all charges.

• chargeinfo (ChargeInfo) – The ChargeInfo with charge dropped; create new if
None.

Returns dropped – A LegCharge with the specified charge dropped. Is neither sorted nor
bunched!

Return type LegCharge

classmethod from_qdict(chargeinfo, qdict, qconj=1)
Create a LegCharge from qdict form.

Parameters

• chargeinfo (ChargeInfo) – The nature of the charge.

• qdict (dict) – A dictionary mapping a tuple of charges to slices.

classmethod from_qflat(chargeinfo, qflat, qconj=1)
Create a LegCharge from qflat form.

Does neither bunch nor sort. We recommend to sort (and bunch) afterwards, if you expect that tensors
using the LegCharge have entries at all positions compatible with the charges.

Parameters

• chargeinfo (ChargeInfo) – The nature of the charge.

• qflat (array_like (ind_len, qnumber)) – qnumber charges for each index of the leg on
entry.

• qconj ({-1, 1}) – A flag telling whether the charge points inwards (+1) or outwards
(-1).

See also:

18.2. charges 321

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

sort sorts by charges

bunch bunches contiguous blocks of the same charge.

classmethod from_qind(chargeinfo, slices, charges, qconj=1)
Just a wrapper around self.__init__(), see class doc-string for parameters.

See also:

sort sorts by charges

bunch bunches contiguous blocks of the same charge.

classmethod from_trivial(ind_len, chargeinfo=None, qconj=1)
Create trivial (qnumber=0) LegCharge for given len of indices ind_len.

get_block_sizes()
Return the sizes of the individual blocks.

Returns sizes – The sizes of the individual blocks; sizes[i] = slices[i+1] -
slices[i].

Return type ndarray, shape (block_number,)

get_charge(qindex)
Return charge self.charges[qindex] * self.qconj for a given qindex.

get_qindex(flat_index)
Find qindex containing a flat index.

Given a flat index, to find the corresponding entry in an Array, we need to determine the block it is saved
in. For example, if slices = [[0, 3], [3, 7], [7, 12]], the flat index 5 corresponds to the
second entry, qindex = 1 (since 5 is in [3:7]), and the index within the block would be 2 = 5 - 3.

Parameters flat_index (int) – A flat index of the leg. Negative index counts from behind.

Returns

• qindex (int) – The qindex, i.e. the index of the block containing flat_index.

• index_within_block (int) – The index of flat_index within the block given by qindex.

get_qindex_of_charges(charges)
Return the slice selecting the block for given charge values.

Inverse function of get_charge().

Parameters charges (1D array_like) – Charge values for which the slice of the block is
to be determined.

Returns slice(i, j) – Slice of the charge values for

Return type slice

:raises ValueError : if the answer is not unique (because self is not blocked).:

get_slice(qindex)
Return slice selecting the block for a given qindex.

is_blocked()
Returns whether self is blocked, i.e. qindex map 1:1 to charge values.

is_bunched()
Checks whether bunch() would change something.

322 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice

TeNPy, Release 0.8.1

is_sorted()
Returns whether self.charges is sorted lexiographically.

perm_flat_from_perm_qind(perm_qind)
Convert a permutation of qind (acting on self) into a flat permutation.

perm_qind_from_perm_flat(perm_flat)
Convert flat permutation into qind permutation.

Parameters perm_flat (1D array) – A permutation acting on self, which doesn’t mix the
blocks of qind.

Returns perm_qind – The permutation of self.qind described by perm_flat.

Return type 1D array

Raises ValueError – If perm_flat mixes blocks of different qindex.

test_contractible(other)
Raises a ValueError if charges are incompatible for contraction with other.

Parameters other (LegCharge) – The LegCharge of the other leg condsidered for contrac-
tion.

Raises ValueError – If the charges are incompatible for direct contraction.

Notes

This function checks that two legs are ready for contraction. This is the case, if all of the following
conditions are met:

• the ChargeInfo is equal

• the slices are equal

• the charges are the same up to opposite signs qconj:

self.charges * self.qconj = - other.charges * other.qconj

In general, there could also be a change of the total charge, see Charge conservation with np_conserved
This special case is not considered here - instead use gauge_total_charge(), if a change of the
charge is desired.

If you are sure that the legs should be contractable, check whether the charges are actually valid or whether
self and other are blocked or should be sorted.

See also:

test_equal self.test_contractible(other) just performs self.
test_equal(other.conj()).

test_equal(other)
Test if charges are equal including qconj.

Check that all of the following conditions are met:

• the ChargeInfo is equal

• the slices are equal

• the charges are the same up to the signs qconj:

18.2. charges 323

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

TeNPy, Release 0.8.1

self.charges * self.qconj = other.charges * other.qconj

See also:

test_contractible self.test_equal(other) is equivalent to self.
test_contractible(other.conj()).

to_qdict()
Return charges in qdict form.

Raises ValueError, if not blocked.

to_qflat()
Return charges in qflat form.

Module description

Basic definitions of a charge.

This module contains implementations for handling the quantum numbers (“charges”) of the Array .

In particular, the classes ChargeInfo, LegCharge and LegPipe are implemented here.

Note: The contents of this module are imported in np_conserved, so you usually don’t need to import this module
in your application.

A detailed introduction to np_conserved can be found in Charge conservation with np_conserved.

In this module, some functions have the python decorator @use_cython. Functions with this decorator are replaced
by the ones written in Cython, implemented in the file tenpy/linalg/_npc_helper.pyx. For further details,
see the definition of use_cython().

tenpy.linalg.charges.QTYPE = <class 'numpy.int64'>
Numpy data type for the charges.

18.3 svd_robust

• full name: tenpy.linalg.svd_robust

• parent module: tenpy.linalg

• type: module

Functions

svd(a[, full_matrices, compute_uv, . . .]) Wrapper around scipy.linalg.svd() with gesvd
backup plan.

svd_gesvd(a[, full_matrices, compute_uv, . . .]) svd with LAPACK’s ‘#gesvd’ (with # = d/z for
float/complex).

324 Chapter 18. linalg

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd

TeNPy, Release 0.8.1

18.3.1 svd

• full name: tenpy.linalg.svd_robust.svd

• parent module: tenpy.linalg.svd_robust

• type: function

tenpy.linalg.svd_robust.svd(a, full_matrices=True, compute_uv=True, overwrite_a=False,
check_finite=True, lapack_driver='gesdd', warn=True)

Wrapper around scipy.linalg.svd() with gesvd backup plan.

Tries to avoid raising an LinAlgError by using using the lapack_driver gesvd, if gesdd failed.

Parameters not described below are as in scipy.linalg.svd()

Parameters

• overwrite_a (bool) – Ignored (i.e. set to False) if lapack_driver='gesdd'.
Otherwise described in scipy.linalg.svd().

• lapack_driver ({'gesdd', 'gesvd'}, optional) – Whether to use the
more efficient divide-and-conquer approach ('gesdd') or general rectangular approach
('gesvd') to compute the SVD. MATLAB and Octave use the 'gesvd' approach. De-
fault is 'gesdd'. If 'gesdd' fails, 'gesvd' is used as backup.

• warn (bool) – Whether to create a warning when the SVD failed.

Returns U, S, Vh – As described in doc-string of scipy.linalg.svd().

Return type ndarray

18.3.2 svd_gesvd

• full name: tenpy.linalg.svd_robust.svd_gesvd

• parent module: tenpy.linalg.svd_robust

• type: function

tenpy.linalg.svd_robust.svd_gesvd(a, full_matrices=True, compute_uv=True,
check_finite=True)

svd with LAPACK’s ‘#gesvd’ (with # = d/z for float/complex).

Similar as numpy.linalg.svd(), but use LAPACK ‘gesvd’ driver. Works only with 2D arrays. Outer part
is based on the code of numpy.linalg.svd.

Parameters

• a – See numpy.linalg.svd() for details.

• full_matrices – See numpy.linalg.svd() for details.

• compute_uv – See numpy.linalg.svd() for details.

• check_finite – check whether input arrays contain ‘NaN’ or ‘inf’.

Returns U, S, Vh – See numpy.linalg.svd() for details.

Return type ndarray

18.3. svd_robust 325

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd

TeNPy, Release 0.8.1

Module description

(More) robust version of singular value decomposition.

We often need to perform an SVD. In general, an SVD is a matrix factorization that is always well defined and should
also work for ill-conditioned matrices. But sadly, both numpy.linalg.svd() and scipy.linalg.svd() fail
from time to time, raising LinalgError("SVD did not converge"). The reason is that both of them call
the LAPACK function #gesdd (where # depends on the data type), which takes an iterative approach that can fail.
However, it is usually much faster than the alternative (and robust) #gesvd.

Our workaround is as follows: we provide a function svd() with call signature as scipy’s svd. This function is
basically just a wrapper around scipy’s svd, i.e., we keep calling the faster dgesdd. But if that fails, we can still use
dgesvd as a backup.

Sadly, dgesvd and zgesvd were not included into scipy until version ‘0.18.0’ (nor in numpy), which is as the time of
this writing the latest stable scipy version. For scipy version newer than ‘0.18.0’, we make use of the new keyword
‘lapack_driver’ for svd, otherwise we (try to) load dgesvd and zgesvd from shared LAPACK libraries.

The tribute for the dgesvd wrapper code goes to ‘jgarcke’, originally posted at http://projects.scipy.org/
numpy/ticket/990, which is now hosted at https://github.com/numpy/numpy/issues/1588 He explains a bit more
in detail what fails.

The include of dgesvd to scipy was done in https://github.com/scipy/scipy/pull/5994.

Examples

The idea is that you just import the svd from this module and use it as replacement for np.linalg.svd or scipy.
linalg.svd:

>>> from tenpy.linalg.svd_robust import svd
>>> U, S, VT = svd([[1., 1.], [0., 1.]])

18.4 random_matrix

• full name: tenpy.linalg.random_matrix

• parent module: tenpy.linalg

• type: module

Functions

COE(size) Circular orthogonal ensemble (COE).
CRE(size) Circular real ensemble (CRE).
CUE(size) Circular unitary ensemble (CUE).
GOE(size) Gaussian orthogonal ensemble (GOE).
GUE(size) Gaussian unitary ensemble (GUE).
O_close_1(size[, a]) return an random orthogonal matrix ‘close’ to the Iden-

tity.
U_close_1(size[, a]) return an random orthogonal matrix ‘close’ to the iden-

tity.
box(size[, W]) return random number uniform in (-W, W].

continues on next page

326 Chapter 18. linalg

https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd
https://github.com/numpy/numpy/issues/1588
https://github.com/scipy/scipy/pull/5994

TeNPy, Release 0.8.1

Table 19 – continued from previous page
standard_normal_complex(size) return (R + 1.j*I) for independent R and I from

np.random.standard_normal.

18.4.1 COE

• full name: tenpy.linalg.random_matrix.COE

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.COE(size)
Circular orthogonal ensemble (COE).

Parameters size (tuple) – (n, n), where n is the dimension of the output matrix.

Returns U – Unitary, symmetric (complex) matrix drawn from the COE (=Haar measure on this
space).

Return type ndarray

18.4.2 CRE

• full name: tenpy.linalg.random_matrix.CRE

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.CRE(size)
Circular real ensemble (CRE).

Parameters size (tuple) – (n, n), where n is the dimension of the output matrix.

Returns U – Orthogonal matrix drawn from the CRE (=Haar measure on O(n)).

Return type ndarray

18.4.3 CUE

• full name: tenpy.linalg.random_matrix.CUE

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.CUE(size)
Circular unitary ensemble (CUE).

Parameters size (tuple) – (n, n), where n is the dimension of the output matrix.

Returns U – Unitary matrix drawn from the CUE (=Haar measure on U(n)).

Return type ndarray

18.4. random_matrix 327

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

TeNPy, Release 0.8.1

18.4.4 GOE

• full name: tenpy.linalg.random_matrix.GOE

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.GOE(size)
Gaussian orthogonal ensemble (GOE).

Parameters size (tuple) – (n, n), where n is the dimension of the output matrix.

Returns H – Real, symmetric numpy matrix drawn from the GOE, i.e. 𝑝(𝐻) =
1/𝑍𝑒𝑥𝑝(−𝑛/4𝑡𝑟(𝐻2))

Return type ndarray

18.4.5 GUE

• full name: tenpy.linalg.random_matrix.GUE

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.GUE(size)
Gaussian unitary ensemble (GUE).

Parameters size (tuple) – (n, n), where n is the dimension of the output matrix.

Returns H – Hermitian (complex) numpy matrix drawn from the GUE, i.e. 𝑝(𝐻) =
1/𝑍𝑒𝑥𝑝(−𝑛/4𝑡𝑟(𝐻2)).

Return type ndarray

18.4.6 O_close_1

• full name: tenpy.linalg.random_matrix.O_close_1

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.O_close_1(size, a=0.01)
return an random orthogonal matrix ‘close’ to the Identity.

Parameters

• size (tuple) – (n, n), where n is the dimension of the output matrix.

• a (float) – Parameter determining how close the result is on O; lim𝑎→0 < |𝑂−𝐸| >𝑎= 0
(where E is the identity).

Returns O – Orthogonal matrix close to the identiy (for small a).

Return type ndarray

328 Chapter 18. linalg

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

18.4.7 U_close_1

• full name: tenpy.linalg.random_matrix.U_close_1

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.U_close_1(size, a=0.01)
return an random orthogonal matrix ‘close’ to the identity.

Parameters

• size (tuple) – (n, n), where n is the dimension of the output matrix.

• a (float) – Parameter determining how close the result is to the identity. lim𝑎→0 <
|𝑂 − 𝐸| >𝑎= 0 (where E is the identity).

Returns U – Unitary matrix close to the identiy (for small a). Eigenvalues are chosen i.i.d. as
exp(1.j*a*x) with x uniform in [-1, 1].

Return type ndarray

18.4.8 box

• full name: tenpy.linalg.random_matrix.box

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.box(size, W=1.0)
return random number uniform in (-W, W].

18.4.9 standard_normal_complex

• full name: tenpy.linalg.random_matrix.standard_normal_complex

• parent module: tenpy.linalg.random_matrix

• type: function

tenpy.linalg.random_matrix.standard_normal_complex(size)
return (R + 1.j*I) for independent R and I from np.random.standard_normal.

Module description

Provide some random matrix ensembles for numpy.

The implemented ensembles are:

ensemble matrix class drawn from measure invariant under beta
GOE real, symmetric ~ exp(-n/4 tr(H^2)) orthogonal O 1
GUE hermitian ~ exp(-n/2 tr(H^2)) unitary U 2
CRE O(n) Haar orthogonal O /
COE U in U(n) with U = U^T Haar orthogonal O 1
CUE U(n) Haar unitary U 2
O_close_1 O(n) ? / /
U_close_1 U(n) ? / /

18.4. random_matrix 329

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

All functions in this module take a tuple (n, n) as first argument, such that we can use the function from_func()
to generate a block diagonal Array with the block from the corresponding ensemble, for example:

npc.Array.from_func_square(GOE, [leg, leg.conj()])

18.5 sparse

• full name: tenpy.linalg.sparse

• parent module: tenpy.linalg

• type: module

Classes

FlatHermitianOperator

FlatLinearOperator

LinearOperator NpcLinearOperator NpcLinearOperatorWrapper

OrthogonalNpcLinearOperator ShiftNpcLinearOperator SumNpcLinearOperator

FlatHermitianOperator(*args, **kwargs) Hermitian variant of FlatLinearOperator.
FlatLinearOperator(*args, **kwargs) Square Linear operator acting on numpy arrays based

on a matvec acting on npc Arrays.
NpcLinearOperator() Prototype for a Linear Operator acting on Array .
NpcLinearOperatorWrapper(orig_operator) Base class for wrapping around another

NpcLinearOperator.
OrthogonalNpcLinearOperator(orig_operator,
. . .)

Replace H -> P H P with the projector P = 1 -
sum_o |o> <o|.

ShiftNpcLinearOperator(orig_operator, shift) Representes original_operator + shift *
identity.

SumNpcLinearOperator(orig_operator, . . .) Sum of two linear operators.

330 Chapter 18. linalg

TeNPy, Release 0.8.1

18.5.1 FlatHermitianOperator

• full name: tenpy.linalg.sparse.FlatHermitianOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

FlatHermitianOperator

FlatLinearOperator

LinearOperator

Methods

FlatHermitianOperator.
__init__(npc_matvec, . . .)

Initialize this LinearOperator.

FlatHermitianOperator.adjoint() Hermitian adjoint.
FlatHermitianOperator.dot(x) Matrix-matrix or matrix-vector multiplication.
FlatHermitianOperator.
eigenvectors(*args, . . .)

Same as FlatLinearOperator(. . . , hermitian=True).

FlatHermitianOperator.flat_to_npc(vec) Convert flat numpy vector of selected charge sector into
npc Array.

FlatHermitianOperator.
flat_to_npc_None_sector(vec)

Convert flat vector of undetermined charge sectors into
npc Array.

FlatHermitianOperator.
flat_to_npc_all_sectors(vec)

Convert flat vector of all charge sectors into npc Array
with extra “charge” leg.

FlatHermitianOperator.
from_NpcArray(mat[, . . .])

Create a FlatLinearOperator from a square Array .

FlatHermitianOperator.
from_guess_with_pipe(. . .)

Create a FlatLinearOperator` from a matvec function
acting on multiple legs.

FlatHermitianOperator.matmat(X) Matrix-matrix multiplication.
FlatHermitianOperator.matvec(x) Matrix-vector multiplication.
FlatHermitianOperator.
npc_to_flat(npc_vec)

Convert npc Array into a 1D ndarray, inverse of
flat_to_npc().

continues on next page

18.5. sparse 331

TeNPy, Release 0.8.1

Table 21 – continued from previous page
FlatHermitianOperator.
npc_to_flat_all_sectors(npc_vec)

Convert npc Array with qtotal = self.charge_sector into
ndarray.

FlatHermitianOperator.rmatmat(X) Adjoint matrix-matrix multiplication.
FlatHermitianOperator.rmatvec(x) Adjoint matrix-vector multiplication.
FlatHermitianOperator.transpose() Transpose this linear operator.

Class Attributes and Properties

FlatHermitianOperator.H Hermitian adjoint.
FlatHermitianOperator.T Transpose this linear operator.
FlatHermitianOperator.charge_sector Charge sector of the vector which is acted on.
FlatHermitianOperator.ndim

class tenpy.linalg.sparse.FlatHermitianOperator(*args, **kwargs)
Bases: tenpy.linalg.sparse.FlatLinearOperator

Hermitian variant of FlatLinearOperator.

Note that we don’t check matvec() to return a hermitian result, we only define an adjoint to be self.

property H
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H – Hermitian adjoint of self.

Return type LinearOperator

property T
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H – Hermitian adjoint of self.

Return type LinearOperator

property charge_sector
Charge sector of the vector which is acted on.

dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters x (array_like) – 1-d or 2-d array, representing a vector or matrix.

332 Chapter 18. linalg

TeNPy, Release 0.8.1

Returns Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying
this linear operator on x.

Return type array

flat_to_npc(vec)
Convert flat numpy vector of selected charge sector into npc Array.

If charge_sector is not None, convert to a 1D npc vector with leg self.leg. Otherwise convert vec,
which can be non-zero in all charge sectors, to a npc matrix with an additional 'charge' leg to allow
representing the full vector at once.

Parameters vec (1D ndarray) – Numpy vector to be converted. Should have the entries
according to self.charge_sector.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

flat_to_npc_None_sector(vec, cutoff=1e-10)
Convert flat vector of undetermined charge sectors into npc Array.

The charge sector to be used is chosen as the block with the maximal norm, not by self.charge_sector
(which might be None).

Parameters vec (1D ndarray) – Numpy vector to be converted.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

flat_to_npc_all_sectors(vec)
Convert flat vector of all charge sectors into npc Array with extra “charge” leg.

Deprecated since version 0.7.3: This is merged into flat_to_npc() with self.charge_sector
= None.

Parameters vec (1D ndarray) – Numpy vector to be converted.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

classmethod from_NpcArray(mat, charge_sector=0)
Create a FlatLinearOperator from a square Array .

Parameters

• mat (Array) – A square matrix, with contractable legs.

• charge_sector (None | charges | 0) – Selects the charge sector of the vector onto
which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge
sector. Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0.

classmethod from_guess_with_pipe(npc_matvec, v0_guess, labels_split=None,
dtype=None)

Create a FlatLinearOperator` from a matvec function acting on multiple legs.

This function creates a wrapper matvec function to allow acting on a “vector” with multiple legs. The
wrapper combines the legs into a LegPipe before calling the actual matvec function, and splits them
again in the end.

Parameters

18.5. sparse 333

TeNPy, Release 0.8.1

• npc_matvec (function) – Function to calculate the action of the linear operator on
an npc vector with the given split labels labels_split. Has to return an npc vector with the
same legs.

• v0_guess (Array) – Initial guess/starting vector which can be applied to npc_matvec.

• labels_split (None | list of str) – Labels of v0_guess in the order in
which they are to be combined into a LegPipe. None defaults to v0_guess.
get_leg_labels().

• dtype (np.dtype | None) – The data type of the arrays. None defaults to dtype of
v0_guess (!).

Returns

• lin_op (cls) – Instance of the class to be used as linear operator

• guess_flat (np.ndarray) – Numpy vector representing the guess v0_guess.

matmat(X)
Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters X ({matrix, ndarray}) – An array with shape (N,K).

Returns Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type {matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has
the correct type.

matvec(x)
Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of
the x argument.

Return type {matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has
the correct shape and type.

npc_to_flat(npc_vec)
Convert npc Array into a 1D ndarray, inverse of flat_to_npc().

Parameters npc_vec (Array) – Npc Array to be converted. If self.charge_sector is not None,
this should be a 1D array with that qtotal. If self.charge_sector is not None, it should have
an additional "charge" leg, (as returned by flat_to_npc()).

Returns vec – Same entries as npc_vec, but converted into a flat Numpy array.

Return type 1D ndarray

334 Chapter 18. linalg

TeNPy, Release 0.8.1

npc_to_flat_all_sectors(npc_vec)
Convert npc Array with qtotal = self.charge_sector into ndarray.

Deprecated since version 0.7.3: This is merged into npc_to_flat() with self.charge_sector
= None.

Parameters npc_vec (Array) – Npc Array to be converted. Should only have entries in
self.charge_sector.

Returns vec – Same as npc_vec, but converted into a flat Numpy array.

Return type 1D ndarray

rmatmat(X)
Adjoint matrix-matrix multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array, or 2-d array. The default implementation defers to the adjoint.

Parameters X ({matrix, ndarray}) – A matrix or 2D array.

Returns Y – A matrix or 2D array depending on the type of the input.

Return type {matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)
Adjoint matrix-vector multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array.

Parameters x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of
the x argument.

Return type {matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has
the correct shape and type.

transpose()
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

eigenvectors(*args, **kwargs)
Same as FlatLinearOperator(. . . , hermitian=True).

18.5. sparse 335

TeNPy, Release 0.8.1

18.5.2 FlatLinearOperator

• full name: tenpy.linalg.sparse.FlatLinearOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

FlatLinearOperator

LinearOperator

Methods

FlatLinearOperator.__init__(npc_matvec,
leg, . . .)

Initialize this LinearOperator.

FlatLinearOperator.adjoint() Hermitian adjoint.
FlatLinearOperator.dot(x) Matrix-matrix or matrix-vector multiplication.
FlatLinearOperator.
eigenvectors([num_ev, . . .])

Find (dominant) eigenvector(s) of self using scipy.
sparse.linalg.eigs().

FlatLinearOperator.flat_to_npc(vec) Convert flat numpy vector of selected charge sector into
npc Array.

FlatLinearOperator.
flat_to_npc_None_sector(vec)

Convert flat vector of undetermined charge sectors into
npc Array.

FlatLinearOperator.
flat_to_npc_all_sectors(vec)

Convert flat vector of all charge sectors into npc Array
with extra “charge” leg.

FlatLinearOperator.from_NpcArray(mat[,
. . .])

Create a FlatLinearOperator from a square Array .

FlatLinearOperator.
from_guess_with_pipe(. . .)

Create a FlatLinearOperator` from a matvec function
acting on multiple legs.

FlatLinearOperator.matmat(X) Matrix-matrix multiplication.
FlatLinearOperator.matvec(x) Matrix-vector multiplication.
FlatLinearOperator.npc_to_flat(npc_vec) Convert npc Array into a 1D ndarray, inverse of

flat_to_npc().
FlatLinearOperator.
npc_to_flat_all_sectors(npc_vec)

Convert npc Array with qtotal = self.charge_sector into
ndarray.

FlatLinearOperator.rmatmat(X) Adjoint matrix-matrix multiplication.
FlatLinearOperator.rmatvec(x) Adjoint matrix-vector multiplication.
FlatLinearOperator.transpose() Transpose this linear operator.

336 Chapter 18. linalg

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs

TeNPy, Release 0.8.1

Class Attributes and Properties

FlatLinearOperator.H Hermitian adjoint.
FlatLinearOperator.T Transpose this linear operator.
FlatLinearOperator.charge_sector Charge sector of the vector which is acted on.
FlatLinearOperator.ndim

class tenpy.linalg.sparse.FlatLinearOperator(*args, **kwargs)
Bases: scipy.sparse.linalg.interface.LinearOperator

Square Linear operator acting on numpy arrays based on a matvec acting on npc Arrays.

Note that this class represents a square linear operator. In terms of charges, this means it has legs [self.leg.
conj(), self.leg] and trivial (zero) qtotal.

Parameters

• npc_matvec (function) – Function to calculate the action of the linear operator on an
npc vector (with the specified leg). Has to return an npc vector with the same leg.

• leg (LegCharge) – Leg of the vector on which npc_matvec can act on.

• dtype (np.dtype) – The data type of the arrays.

• charge_sector (None | charges | 0) – Selects the charge sector of the vector onto which
the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector.
Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0.

• vec_label (None | str) – Label to be set to the npc vector before acting on it with
npc_matvec. Ignored if None.

possible_charge_sectors
Each row corresponds to one possible choice for charge_sector.

Type ndarray[QTYPE, ndim=2]

shape
The dimensions for the selected charge sector.

Type (int, int)

dtype
The data type of the arrays.

Type np.dtype

leg
Leg of the vector on which npc_matvec can act on.

Type LegCharge

vec_label
Label to be set to the npc vector before acting on it with npc_matvec. Ignored if None.

Type None | str

npc_matvec
Function to calculate the action of the linear operator on an npc vector (with one leg).

Type function

18.5. sparse 337

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

matvec_count
The number of times npc_matvec was called.

Type int

_mask
The indices of leg corresponding to the charge_sector to be diagonalized.

Type ndarray[ndim=1, bool]

_npc_matvec_multileg
Only set if initalized with from_guess_with_pipe(). The npc_matvec function to be wrapped
around. Takes the npc Array in multidimensional form and returns it that way.

Type function | None

_labels_split
Only set if initalized with from_guess_with_pipe(). Labels of the guess before combining them
into a pipe (stored as leg).

Type list of str

classmethod from_NpcArray(mat, charge_sector=0)
Create a FlatLinearOperator from a square Array .

Parameters

• mat (Array) – A square matrix, with contractable legs.

• charge_sector (None | charges | 0) – Selects the charge sector of the vector onto
which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge
sector. Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0.

classmethod from_guess_with_pipe(npc_matvec, v0_guess, labels_split=None,
dtype=None)

Create a FlatLinearOperator` from a matvec function acting on multiple legs.

This function creates a wrapper matvec function to allow acting on a “vector” with multiple legs. The
wrapper combines the legs into a LegPipe before calling the actual matvec function, and splits them
again in the end.

Parameters

• npc_matvec (function) – Function to calculate the action of the linear operator on
an npc vector with the given split labels labels_split. Has to return an npc vector with the
same legs.

• v0_guess (Array) – Initial guess/starting vector which can be applied to npc_matvec.

• labels_split (None | list of str) – Labels of v0_guess in the order in
which they are to be combined into a LegPipe. None defaults to v0_guess.
get_leg_labels().

• dtype (np.dtype | None) – The data type of the arrays. None defaults to dtype of
v0_guess (!).

Returns

• lin_op (cls) – Instance of the class to be used as linear operator

• guess_flat (np.ndarray) – Numpy vector representing the guess v0_guess.

property charge_sector
Charge sector of the vector which is acted on.

338 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

flat_to_npc(vec)
Convert flat numpy vector of selected charge sector into npc Array.

If charge_sector is not None, convert to a 1D npc vector with leg self.leg. Otherwise convert vec,
which can be non-zero in all charge sectors, to a npc matrix with an additional 'charge' leg to allow
representing the full vector at once.

Parameters vec (1D ndarray) – Numpy vector to be converted. Should have the entries
according to self.charge_sector.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

npc_to_flat(npc_vec)
Convert npc Array into a 1D ndarray, inverse of flat_to_npc().

Parameters npc_vec (Array) – Npc Array to be converted. If self.charge_sector is not None,
this should be a 1D array with that qtotal. If self.charge_sector is not None, it should have
an additional "charge" leg, (as returned by flat_to_npc()).

Returns vec – Same entries as npc_vec, but converted into a flat Numpy array.

Return type 1D ndarray

flat_to_npc_all_sectors(vec)
Convert flat vector of all charge sectors into npc Array with extra “charge” leg.

Deprecated since version 0.7.3: This is merged into flat_to_npc() with self.charge_sector
= None.

Parameters vec (1D ndarray) – Numpy vector to be converted.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

flat_to_npc_None_sector(vec, cutoff=1e-10)
Convert flat vector of undetermined charge sectors into npc Array.

The charge sector to be used is chosen as the block with the maximal norm, not by self.charge_sector
(which might be None).

Parameters vec (1D ndarray) – Numpy vector to be converted.

Returns npc_vec – Same as vec, but converted into a npc array.

Return type Array

npc_to_flat_all_sectors(npc_vec)
Convert npc Array with qtotal = self.charge_sector into ndarray.

Deprecated since version 0.7.3: This is merged into npc_to_flat() with self.charge_sector
= None.

Parameters npc_vec (Array) – Npc Array to be converted. Should only have entries in
self.charge_sector.

Returns vec – Same as npc_vec, but converted into a flat Numpy array.

Return type 1D ndarray

eigenvectors(num_ev=1, max_num_ev=None, max_tol=1e-12, which='LM', v0=None,
v0_npc=None, cutoff=1e-12, hermitian=False, **kwargs)

Find (dominant) eigenvector(s) of self using scipy.sparse.linalg.eigs().

If no charge_sector was selected, we look in all charge sectors.

18.5. sparse 339

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs

TeNPy, Release 0.8.1

Parameters

• num_ev (int) – Number of eigenvalues/vectors to look for.

• max_num_ev (int) – scipy.sparse.linalg.speigs() somtimes raises a No-
ConvergenceError for small num_ev, which might be avoided by increasing num_ev. As
a work-around, we try it again in the case of an error, just with larger num_ev up to
max_num_ev. None defaults to num_ev + 2.

• max_tol (float) – After the first NoConvergenceError we increase the tol argument to
that value.

• which (str) – Which eigenvalues to look for, see scipy.sparse.linalg.
eigs(). More details also in argsort().

• v0 (Array) – Initial guess as a “flat” numpy array.

• v0_npc (Array) – Initial guess, to be converted by npc_to_flat().

• cutoff (float) – Only used if self.charge_sector is None; in that case it
determines when entries in a given charge-block are considered nonzero, and what counts
as degenerate.

• hermitian (bool) – If False (default), use scipy.sparse.linalg.eigs() If
True, assume that self is hermitian and use scipy.sparse.linalg.eigsh().

• **kwargs – Further keyword arguments given to scipy.sparse.linalg.
eigsh() or scipy.sparse.linalg.eigs(), respectively.

Returns

• eta (1D ndarray) – The eigenvalues, sorted according to which.

• w (list of Array) – The eigenvectors corresponding to eta, as npc.Array with LegPipe.

property H
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H – Hermitian adjoint of self.

Return type LinearOperator

property T
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H – Hermitian adjoint of self.

Return type LinearOperator

340 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs

TeNPy, Release 0.8.1

dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying
this linear operator on x.

Return type array

matmat(X)
Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters X ({matrix, ndarray}) – An array with shape (N,K).

Returns Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type {matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has
the correct type.

matvec(x)
Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of
the x argument.

Return type {matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has
the correct shape and type.

rmatmat(X)
Adjoint matrix-matrix multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array, or 2-d array. The default implementation defers to the adjoint.

Parameters X ({matrix, ndarray}) – A matrix or 2D array.

Returns Y – A matrix or 2D array depending on the type of the input.

Return type {matrix, ndarray}

18.5. sparse 341

TeNPy, Release 0.8.1

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)
Adjoint matrix-vector multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array.

Parameters x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of
the x argument.

Return type {matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has
the correct shape and type.

transpose()
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

18.5.3 NpcLinearOperator

• full name: tenpy.linalg.sparse.NpcLinearOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

NpcLinearOperator

342 Chapter 18. linalg

TeNPy, Release 0.8.1

Methods

NpcLinearOperator.__init__() Initialize self.
NpcLinearOperator.adjoint() Return the hermitian conjugate of self
NpcLinearOperator.matvec(vec) Calculate the action of the operator on a vector vec.
NpcLinearOperator.to_matrix() Contract self to a matrix.

Class Attributes and Properties

NpcLinearOperator.acts_on

class tenpy.linalg.sparse.NpcLinearOperator
Bases: object

Prototype for a Linear Operator acting on Array .

Note that an Array implements a matvec function. Thus you can use any (square) npc Array as an NpcLinear-
Operator.

dtype
The data type of its action.

Type np.type

acts_on
Labels of the state on which the operator can act. NB: Class attribute.

Type list of str

matvec(vec)
Calculate the action of the operator on a vector vec.

Note that we don’t require vec to be one-dimensional. However, for square operators we require that the
result of matvec has the same legs (in the same order) as vec such that they can be added. Note that this
excludes a non-trivial qtotal for square operators.

to_matrix()
Contract self to a matrix.

If self represents an operator with very small shape, e.g. because the MPS bond dimension is very small,
an algorithm might choose to contract self to a single tensor.

Returns matrix – Contraction of the represented operator.

Return type Array

adjoint()
Return the hermitian conjugate of self

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

18.5. sparse 343

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

18.5.4 NpcLinearOperatorWrapper

• full name: tenpy.linalg.sparse.NpcLinearOperatorWrapper

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

NpcLinearOperatorWrapper

Methods

NpcLinearOperatorWrapper.
__init__(orig_operator)

Initialize self.

NpcLinearOperatorWrapper.adjoint() Return the hermitian conjugate of self.
NpcLinearOperatorWrapper.to_matrix() Contract self to a matrix.
NpcLinearOperatorWrapper.unwrapped() Return to the original NpcLinearOperator.

class tenpy.linalg.sparse.NpcLinearOperatorWrapper(orig_operator)
Bases: object

Base class for wrapping around another NpcLinearOperator.

Attributes not explicitly set with self.attribute = value (or by defining methods) default to the attributes of the
wrapped orig_operator.

Warning: If there are multiple levels of wrapping operators, the order might be critical to get correct
results; e.g. OrthogonalNpcLinearOperator needs to be the outer-most wrapper to produce correct
results and/or be efficient.

Parameters orig_operator (NpcLinearOperator) – The original operator implementing
the matvec.

orig_operator
The original operator implementing the matvec.

Type NpcLinearOperator

unwrapped()
Return to the original NpcLinearOperator.

If multiple levels of wrapping were used, this returns the most unwrapped one.

344 Chapter 18. linalg

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

to_matrix()
Contract self to a matrix.

adjoint()
Return the hermitian conjugate of self.

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

18.5.5 OrthogonalNpcLinearOperator

• full name: tenpy.linalg.sparse.OrthogonalNpcLinearOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

NpcLinearOperatorWrapper

OrthogonalNpcLinearOperator

Methods

OrthogonalNpcLinearOperator.
__init__(. . .)

Initialize self.

OrthogonalNpcLinearOperator.adjoint() Return the hermitian conjugate of self.
OrthogonalNpcLinearOperator.
matvec(vec)
OrthogonalNpcLinearOperator.
to_matrix()

Contract self to a matrix.

OrthogonalNpcLinearOperator.
unwrapped()

Return to the original NpcLinearOperator.

class tenpy.linalg.sparse.OrthogonalNpcLinearOperator(orig_operator, ortho_vecs)
Bases: tenpy.linalg.sparse.NpcLinearOperatorWrapper

Replace H -> P H P with the projector P = 1 - sum_o |o> <o|.

Here, |o> are the vectors from ortho_vecs.

Parameters

• orig_operator (EffectiveH) – The original EffectiveH instance to wrap around.

18.5. sparse 345

TeNPy, Release 0.8.1

• ortho_vecs (list of Array) – The vectors to orthogonalize against.

to_matrix()
Contract self to a matrix.

adjoint()
Return the hermitian conjugate of self.

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

unwrapped()
Return to the original NpcLinearOperator.

If multiple levels of wrapping were used, this returns the most unwrapped one.

18.5.6 ShiftNpcLinearOperator

• full name: tenpy.linalg.sparse.ShiftNpcLinearOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

NpcLinearOperatorWrapper

ShiftNpcLinearOperator

Methods

ShiftNpcLinearOperator.__init__(. . .) Initialize self.
ShiftNpcLinearOperator.adjoint() Return the hermitian conjugate of self.
ShiftNpcLinearOperator.matvec(vec)

ShiftNpcLinearOperator.to_matrix() Contract self to a matrix.
ShiftNpcLinearOperator.unwrapped() Return to the original NpcLinearOperator.

class tenpy.linalg.sparse.ShiftNpcLinearOperator(orig_operator, shift)
Bases: tenpy.linalg.sparse.NpcLinearOperatorWrapper

Representes original_operator + shift * identity.

This can be useful e.g. for better Lanczos convergence.

346 Chapter 18. linalg

TeNPy, Release 0.8.1

to_matrix()
Contract self to a matrix.

adjoint()
Return the hermitian conjugate of self.

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

unwrapped()
Return to the original NpcLinearOperator.

If multiple levels of wrapping were used, this returns the most unwrapped one.

18.5.7 SumNpcLinearOperator

• full name: tenpy.linalg.sparse.SumNpcLinearOperator

• parent module: tenpy.linalg.sparse

• type: class

Inheritance Diagram

NpcLinearOperatorWrapper

SumNpcLinearOperator

Methods

SumNpcLinearOperator.
__init__(orig_operator, . . .)

Initialize self.

SumNpcLinearOperator.adjoint() Return the hermitian conjugate of self.
SumNpcLinearOperator.matvec(vec)

SumNpcLinearOperator.to_matrix() Contract self to a matrix.
SumNpcLinearOperator.unwrapped() Return to the original NpcLinearOperator.

class tenpy.linalg.sparse.SumNpcLinearOperator(orig_operator, other_operator)
Bases: tenpy.linalg.sparse.NpcLinearOperatorWrapper

Sum of two linear operators.

to_matrix()
Contract self to a matrix.

18.5. sparse 347

TeNPy, Release 0.8.1

adjoint()
Return the hermitian conjugate of self.

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

unwrapped()
Return to the original NpcLinearOperator.

If multiple levels of wrapping were used, this returns the most unwrapped one.

Module description

Providing support for sparse algorithms (using matrix-vector products only).

Some linear algebra algorithms, e.g. Lanczos, do not require the full representations of a linear operator, but only
the action on a vector, i.e., a matrix-vector product matvec. Here we define the strucuture of such a general operator,
NpcLinearOperator, as it is used in our own implementations of these algorithms (e.g., lanczos). Moreover,
the FlatLinearOperator allows to use all the scipy sparse methods by providing functionality to convert flat
numpy arrays to and from np_conserved arrays.

18.6 lanczos

• full name: tenpy.linalg.lanczos

• parent module: tenpy.linalg

• type: module

Classes

LanczosEvolution

LanczosGroundState

LanczosEvolution(H, psi0, options) Calculate 𝑒𝑥𝑝(𝑑𝑒𝑙𝑡𝑎𝐻)|𝑝𝑠𝑖0 > using Lanczos.
LanczosGroundState(H, psi0, options[, . . .]) Lanczos algorithm working on npc arrays.

348 Chapter 18. linalg

TeNPy, Release 0.8.1

Functions

gram_schmidt(vecs[, rcond, verbose]) In place Gram-Schmidt Orthogonalization and normal-
ization for npc Arrays.

lanczos(H, psi[, options, orthogonal_to]) Simple wrapper calling LanczosGroundState(H,
psi, options, orthogonal_to).run()

lanczos_arpack(H, psi[, options, orthogonal_to]) Use scipy.sparse.linalg.eigsh() to find the
ground state of H.

plot_stats(ax, Es) Plot the convergence of the energies.

18.6.1 gram_schmidt

• full name: tenpy.linalg.lanczos.gram_schmidt

• parent module: tenpy.linalg.lanczos

• type: function

tenpy.linalg.lanczos.gram_schmidt(vecs, rcond=1e-14, verbose=None)
In place Gram-Schmidt Orthogonalization and normalization for npc Arrays.

Parameters

• vecs (list of Array) – The vectors which should be orthogonalized. All with the same
order of the legs. Entries are modified in place. if a norm < rcond, the entry is set to None.

• rcond (float) – Vectors of norm < rcond (after projecting out previous vectors) are
discarded.

Returns

• vecs (list of Array) – The ortho-normalized vectors (without any None).

• ov (2D Array) – For j >= i, ov[j, i] = npc.inner(vecs[j], vecs[i],
'range', do_conj=True) (where vecs[j] was orthogonalized to all vecs[k], k
< i).

18.6.2 lanczos

• full name: tenpy.linalg.lanczos.lanczos

• parent module: tenpy.linalg.lanczos

• type: function

tenpy.linalg.lanczos.lanczos(H, psi, options={}, orthogonal_to=[])
Simple wrapper calling LanczosGroundState(H, psi, options, orthogonal_to).run()

Deprecated since version 0.6.0: Going to remove the orthogonal_to argument. Instead, replace H with Orthog-
onalNpcLinearOperator(H, orthogonal_to) using the OrthogonalNpcLinearOperator.

Parameters

• H – See LanczosGroundState.

• psi – See LanczosGroundState.

• options – See LanczosGroundState.

• orthogonal_to – See LanczosGroundState.

18.6. lanczos 349

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Returns See LanczosGroundState.run().

Return type E0, psi0, N

18.6.3 lanczos_arpack

• full name: tenpy.linalg.lanczos.lanczos_arpack

• parent module: tenpy.linalg.lanczos

• type: function

tenpy.linalg.lanczos.lanczos_arpack(H, psi, options={}, orthogonal_to=[])
Use scipy.sparse.linalg.eigsh() to find the ground state of H.

This function has the same call/return structure as lanczos(), but uses the ARPACK package through the
functions speigsh() instead of the custom lanczos implementation in LanczosGroundState. This func-
tion is mostly intended for debugging, since it requires to convert the vector from np_conserved Array into a
flat numpy array and back during each matvec-operation!

Deprecated since version 0.6.0: Going to remove the orthogonal_to argument. Instead, replace H with Orthog-
onalNpcLinearOperator(H, orthogonal_to) using the OrthogonalNpcLinearOperator.

Parameters

• H – See LanczosGroundState. H and psi should have/use labels.

• psi – See LanczosGroundState. H and psi should have/use labels.

• options – See LanczosGroundState. H and psi should have/use labels.

• orthogonal_to – See LanczosGroundState. H and psi should have/use labels.

Returns

• E0 (float) – Ground state energy.

• psi0 (Array) – Ground state vector.

18.6.4 plot_stats

• full name: tenpy.linalg.lanczos.plot_stats

• parent module: tenpy.linalg.lanczos

• type: function

tenpy.linalg.lanczos.plot_stats(ax, Es)
Plot the convergence of the energies.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• Es (list of ndarray.) – The energies Lanczos.Es.

350 Chapter 18. linalg

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

Module description

Lanczos algorithm for np_conserved arrays.

18.6. lanczos 351

TeNPy, Release 0.8.1

352 Chapter 18. linalg

CHAPTER

NINETEEN

MODELS

• full name: tenpy.models

• parent module: tenpy

• type: module

Module description

Definition of the various models.

For an introduction to models see Models.

The module tenpy.models.model contains base classes for models. The module tenpy.models.lattice
contains base classes and implementations of lattices. All other modules in this folder contain model classes derived
from these base classes.

Submodules

lattice Classes to define the lattice structure of a model.
model This module contains some base classes for models.

19.1 lattice

• full name: tenpy.models.lattice

• parent module: tenpy.models

• type: module

353

TeNPy, Release 0.8.1

Classes

Chain

SimpleLattice

Square Triangular

HelicalLattice

Lattice

Honeycomb IrregularLattice Kagome Ladder TrivialLattice

Chain(L, site, **kwargs) A chain of L equal sites.
HelicalLattice(regular_lattice, N_unit_cells) Translation invariant version of a tilted, regular 2D lat-

tice.
Honeycomb(Lx, Ly, sites, **kwargs) A honeycomb lattice.
IrregularLattice(regular_lattice[, remove, . . .]) A variant of a regular lattice, where we might have extra

sites or sites missing.
Kagome(Lx, Ly, sites, **kwargs) A Kagome lattice.
Ladder(L, sites, **kwargs) A ladder coupling two chains.
Lattice(Ls, unit_cell[, order, bc, bc_MPS, . . .]) A general, regular lattice.
SimpleLattice(Ls, site, **kwargs) A lattice with a unit cell consiting of just a single site.
Square(Lx, Ly, site, **kwargs) A square lattice.
Triangular(Lx, Ly, site, **kwargs) A triangular lattice.
TrivialLattice(mps_sites, **kwargs) Trivial lattice consisting of a single (possibly large) unit

cell in 1D.

19.1.1 Chain

• full name: tenpy.models.lattice.Chain

• parent module: tenpy.models.lattice

• type: class

354 Chapter 19. models

TeNPy, Release 0.8.1

Inheritance Diagram

Chain

SimpleLattice

Lattice

Methods

Chain.__init__(L, site, **kwargs) Initialize self.
Chain.count_neighbors([u, key]) Count e.g.
Chain.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Chain.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Chain.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Chain.find_coupling_pairs([max_dx, cutoff,
eps])

Automatically find coupling pairs grouped by distances.

Chain.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Chain.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},

u) to MPS index i.
Chain.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,

x_{dim-1}, u).
Chain.mps2lat_values(A[, axes, u]) same as Lattice.mps2lat_values(), but ignore

u, setting it to 0.
Chain.mps2lat_values_masked(A[, axes, . . .]) Reshape/reorder an array A to replace an MPS index by

lattice indices.
Chain.mps_idx_fix_u([u]) return an index array of MPS indices for which the site

within the unit cell is u.
Chain.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the

corresponding lattice indices.
Chain.mps_sites() Return a list of sites for all MPS indices.
Chain.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Chain.number_nearest_neighbors([u]) Deprecated.
Chain.number_next_nearest_neighbors([u]) Deprecated.
Chain.ordering(order) Provide possible orderings of the N lattice sites.

continues on next page

19.1. lattice 355

TeNPy, Release 0.8.1

Table 3 – continued from previous page
Chain.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Chain.plot_bc_identified(ax[, direction,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

Chain.plot_coupling(ax[, coupling, wrap]) Plot lines connecting nearest neighbors of the lattice.
Chain.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and

text labels enumerating them.
Chain.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Chain.position(lat_idx) return ‘space’ position of one or multiple sites.
Chain.possible_couplings(u1, u2, dx[,
strength])

Find possible MPS indices for two-site couplings.

Chain.possible_multi_couplings(ops[,
strength])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Chain.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Chain.site(i) return Site instance corresponding to an MPS index i
Chain.test_sanity() Sanity check.

Class Attributes and Properties

Chain.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Chain.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Chain.dim the dimension of the lattice
Chain.nearest_neighbors

Chain.next_nearest_neighbors

Chain.next_next_nearest_neighbors

Chain.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Chain(L, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice

A chain of L equal sites.

1 0 1 2 3 4
0.5

0.0

0.5

0 1 2 3

Parameters

• L (int) – The lenght of the chain.

• site (Site) – The local lattice site. The unit_cell of the Lattice is just [site].

356 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• **kwargs – Additional keyword arguments given to the Lattice. pairs are initialize
with [next_]next_]nearest_neighbors. positions can be specified as a single
vector.

dim = 1
the dimension of the lattice

ordering(order)
Provide possible orderings of the N lattice sites.

The following orders are defined in this method compared to Lattice.ordering():

or-
der

Resulting order

'default'0, 1, 2, 3, 4, ... ,L-1
'folded'0, L-1, 1, L-2, ... , L//2. This order might be usefull if you want to consider a

ring with periodic boundary conditions with a finite MPS: It avoids the ultra-long range of the
coupling from site 0 to L present in the default order.

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

19.1. lattice 357

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

358 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0.

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

19.1. lattice 359

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

360 Chapter 19. models

TeNPy, Release 0.8.1

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

19.1. lattice 361

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

362 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.2 HelicalLattice

• full name: tenpy.models.lattice.HelicalLattice

• parent module: tenpy.models.lattice

• type: class

19.1. lattice 363

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

HelicalLattice

Lattice

Methods

HelicalLattice.__init__(regular_lattice, . . .) Initialize self.
HelicalLattice.count_neighbors([u, key]) Count e.g.
HelicalLattice.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
HelicalLattice.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
HelicalLattice.enlarge_mps_unit_cell([factor])Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
HelicalLattice.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

HelicalLattice.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

HelicalLattice.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

HelicalLattice.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

HelicalLattice.mps2lat_values(*args,
**kwargs)

Not implemented, use
mps2lat_values_masked() instead.

HelicalLattice.mps2lat_values_masked(*args,
. . .)

Reshape/reorder an array A to replace an MPS index by
lattice indices.

HelicalLattice.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

HelicalLattice.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

HelicalLattice.mps_sites() Return a list of sites for all MPS indices.
HelicalLattice.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
HelicalLattice.number_nearest_neighbors([u])Deprecated.
HelicalLattice.number_next_nearest_neighbors([u])Deprecated.
HelicalLattice.ordering(order) Provide possible orderings of the lattice sites.
HelicalLattice.plot_basis(ax[, origin,
shade])

Plot arrows indicating the basis vectors of the lattice.

HelicalLattice.plot_bc_identified(ax[,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

continues on next page

364 Chapter 19. models

TeNPy, Release 0.8.1

Table 5 – continued from previous page
HelicalLattice.plot_coupling(ax[, cou-
pling, . . .])

Plot lines connecting nearest neighbors of the lattice.

HelicalLattice.plot_order(ax[, order, . . .]) Plot a line connecting sites in the specified “order” and
text labels enumerating them.

HelicalLattice.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
HelicalLattice.position(lat_idx) return ‘space’ position of one or multiple sites.
HelicalLattice.possible_couplings(u1,
u2, dx)

Find possible MPS indices for two-site couplings.

HelicalLattice.possible_multi_couplings(ops)Generalization of possible_couplings() to cou-
plings with more than 2 sites.

HelicalLattice.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

HelicalLattice.site(i) return Site instance corresponding to an MPS index i
HelicalLattice.test_sanity() Sanity check.

Class Attributes and Properties

HelicalLattice.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

HelicalLattice.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

HelicalLattice.dim The dimension of the lattice.
HelicalLattice.nearest_neighbors

HelicalLattice.next_nearest_neighbors

HelicalLattice.next_next_nearest_neighbors

HelicalLattice.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.HelicalLattice(regular_lattice, N_unit_cells)
Bases: tenpy.models.lattice.Lattice

Translation invariant version of a tilted, regular 2D lattice.

A 2D lattice on an infinite cylinder becomes translation invariant by a single lattice unit cell if we tilt/shift the
boundary conditions around the cylinder such that the unit cell at (x, y=Ly-1) is neighbored by (x+1,
y=0), and the MPS winds as a helix around the cylinder. Let’s illustrate this for the Square lattice with a
single-site unit cell - for a multi-site unit cell, imagine it being inserted at each of the sites of a Square lattice.

Warning: Some assumptions of the regular lattice like “the number of the sites in the MPS unit cell is
product(lat.shape)” no longer hold for this model! Be very careful e.g. for getting the units of the
correlation_length() right.

Parameters N_unit_cells (int) – Number of lattice unit cells to include into the MPS unit
cell. The total number of sites will be N_unit_cells * len(regular_lattice.
unit_cell).

19.1. lattice 365

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

0 1 2 3 4 5 6
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

neighbors
sites
MPS

366 Chapter 19. models

TeNPy, Release 0.8.1

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

ordering(order)
Provide possible orderings of the lattice sites.

Parameters order – Argument for the Lattice.ordering() of the
regular_lattice, or 2D ndarray providing the order of the regular lattice. Note
that really the only freedom is the order of the sites in the unit_cell.

Returns order – The order to be used for order, i.e. order with added/removed sites as speci-
fied by remove and add.

Return type array, shape (N, D+1)

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

19.1. lattice 367

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_values(*args, **kwargs)
Not implemented, use mps2lat_values_masked() instead.

mps2lat_values_masked(*args, **kwargs)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

368 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

plot_coupling(ax, coupling=None, wrap=True, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

19.1. lattice 369

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

property dim
The dimension of the lattice.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

370 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

19.1. lattice 371

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

372 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.3 Honeycomb

• full name: tenpy.models.lattice.Honeycomb

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

Honeycomb

Lattice

19.1. lattice 373

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

Methods

Honeycomb.__init__(Lx, Ly, sites, **kwargs) Initialize self.
Honeycomb.count_neighbors([u, key]) Count e.g.
Honeycomb.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Honeycomb.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Honeycomb.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Honeycomb.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

Honeycomb.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

Honeycomb.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

Honeycomb.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

Honeycomb.mps2lat_values(A[, axes, u]) Reshape/reorder A to replace an MPS index by lattice
indices.

Honeycomb.mps2lat_values_masked(A[,
axes, . . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Honeycomb.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

Honeycomb.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

Honeycomb.mps_sites() Return a list of sites for all MPS indices.
Honeycomb.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Honeycomb.number_nearest_neighbors([u]) Deprecated.
Honeycomb.number_next_nearest_neighbors([u])Deprecated.
Honeycomb.ordering(order) Provide possible orderings of the N lattice sites.
Honeycomb.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Honeycomb.plot_bc_identified(ax[, . . .]) Mark two sites indified by periodic boundary condi-

tions.
Honeycomb.plot_coupling(ax[, coupling,
wrap])

Plot lines connecting nearest neighbors of the lattice.

Honeycomb.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and
text labels enumerating them.

Honeycomb.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Honeycomb.position(lat_idx) return ‘space’ position of one or multiple sites.
Honeycomb.possible_couplings(u1, u2, dx[,
. . .])

Find possible MPS indices for two-site couplings.

Honeycomb.possible_multi_couplings(ops[,
. . .])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Honeycomb.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

Honeycomb.site(i) return Site instance corresponding to an MPS index i
Honeycomb.test_sanity() Sanity check.

374 Chapter 19. models

TeNPy, Release 0.8.1

Class Attributes and Properties

Honeycomb.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Honeycomb.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Honeycomb.dim the dimension of the lattice
Honeycomb.fifth_nearest_neighbors

Honeycomb.fourth_nearest_neighbors

Honeycomb.nearest_neighbors

Honeycomb.next_nearest_neighbors

Honeycomb.next_next_nearest_neighbors

Honeycomb.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Honeycomb(Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice

A honeycomb lattice.

Parameters

• Lx (int) – The length in each direction.

• Ly (int) – The length in each direction.

• sites ((list of) Site) – The two local lattice sites making the unit_cell of the Lattice.
If only a single Site is given, it is used for both sites.

• **kwargs – Additional keyword arguments given to the Lattice. basis, pos and pairs
are set accordingly. For the Honeycomb lattice 'fourth_nearest_neighbors',
'fifth_nearest_neighbors' are set in pairs.

dim = 2
the dimension of the lattice

Lu = 2
the (expected) number of sites in the unit cell, len(unit_cell).

ordering(order)
Provide possible orderings of the N lattice sites.

The following orders are defined in this method compared to Lattice.ordering():

order equivalent priority equivalent snake_winding
'default' (0, 2, 1) (False, False, False)
'snake' (0, 2, 1) (False, True, False)

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

19.1. lattice 375

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

1 0 1 2 3
1

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

376 Chapter 19. models

TeNPy, Release 0.8.1

1 0 1 2
1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
'default'

1 0 1 2

0

1

2

3

4

5
6

7

8

9

10

11
12

13

14

15

16

17
18

19

20

21

22

23

'snake'

19.1. lattice 377

TeNPy, Release 0.8.1

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

378 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

19.1. lattice 379

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

380 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

19.1. lattice 381

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

382 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

19.1. lattice 383

https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

384 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.4 IrregularLattice

• full name: tenpy.models.lattice.IrregularLattice

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

IrregularLattice

Lattice

Methods

IrregularLattice.__init__(regular_lattice[,
. . .])

Initialize self.

IrregularLattice.count_neighbors([u,
key])

Count e.g.

IrregularLattice.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
IrregularLattice.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
IrregularLattice.
enlarge_mps_unit_cell([factor])

Repeat the unit cell for infinite MPS boundary condi-
tions; in place.

IrregularLattice.
find_coupling_pairs([. . .])

Automatically find coupling pairs grouped by distances.

IrregularLattice.from_hdf5(hdf5_loader,
. . .)

Load instance from a HDF5 file.

IrregularLattice.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

IrregularLattice.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

IrregularLattice.mps2lat_values(A[,
axes, u])

Reshape/reorder A to replace an MPS index by lattice
indices.

continues on next page

19.1. lattice 385

TeNPy, Release 0.8.1

Table 9 – continued from previous page
IrregularLattice.
mps2lat_values_masked(A[, . . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

IrregularLattice.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

IrregularLattice.
mps_lat_idx_fix_u([u])

Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

IrregularLattice.mps_sites() Return a list of sites for all MPS indices.
IrregularLattice.
multi_coupling_shape(dx)

Calculate correct shape of the strengths for a
multi_coupling.

IrregularLattice.
number_nearest_neighbors([u])

Deprecated.

IrregularLattice.
number_next_nearest_neighbors([u])

Deprecated.

IrregularLattice.ordering(order) Provide possible orderings of the lattice sites.
IrregularLattice.plot_basis(ax[, origin,
shade])

Plot arrows indicating the basis vectors of the lattice.

IrregularLattice.
plot_bc_identified(ax[, . . .])

Mark two sites indified by periodic boundary condi-
tions.

IrregularLattice.plot_coupling(ax[, . . .]) Plot lines connecting nearest neighbors of the lattice.
IrregularLattice.plot_order(ax[, order,
. . .])

Plot a line connecting sites in the specified “order” and
text labels enumerating them.

IrregularLattice.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
IrregularLattice.position(lat_idx) return ‘space’ position of one or multiple sites.
IrregularLattice.
possible_couplings(u1, u2, dx)

Find possible MPS indices for two-site couplings.

IrregularLattice.
possible_multi_couplings(ops)

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

IrregularLattice.save_hdf5(hdf5_saver,
h5gr, . . .)

Export self into a HDF5 file.

IrregularLattice.site(i) return Site instance corresponding to an MPS index i
IrregularLattice.test_sanity() Sanity check.

Class Attributes and Properties

IrregularLattice.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

IrregularLattice.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

IrregularLattice.dim The dimension of the lattice.
IrregularLattice.nearest_neighbors

IrregularLattice.
next_nearest_neighbors
IrregularLattice.
next_next_nearest_neighbors
IrregularLattice.order Defines an ordering of the lattice sites, thus mapping the

lattice to a 1D chain.

class tenpy.models.lattice.IrregularLattice(regular_lattice, remove=None, add=None,
add_unit_cell=[], add_positions=None)

386 Chapter 19. models

TeNPy, Release 0.8.1

Bases: tenpy.models.lattice.Lattice

A variant of a regular lattice, where we might have extra sites or sites missing.

Note: The lattice defines only the geometry of the sites, not the couplings; you can have position-dependent
couplings/onsite terms despite having a regular lattice.

By adjusting the order and a few private attributes and methods, we can make functions like
possible_couplings()work with a more “irregular” lattice structure, where some of the sites are missing
and other sites added instead.

Parameters

• regular_lattice (Lattice) – The lattice this is based on.

• remove (2D array | None) – Each row is a lattice index (x_0, ...,
x_{dim-1}, u) of a site to be removed. If None, don’t remove something.

• add (Tuple[2D array, list] | None) – Each row of the 2D array is a lattice
index (x_0, ..., x_{dim-1}, u) specifiying where a site is to be added; u is the
index of the site within the final unit_cell of the irregular lattice. For each row of the
2D array, there is one entry in the list specifying where the site is inserted in the MPS; the
values are compared to the MPS indices of the regular lattice and sorted into it, so “2.5”
goes between what was site 2 and 3 in the regular lattice. An entry None indicates that
the site should be inserted after the lattice site (x_0, ..., x_{dim-1}, -1) of the
regular_lattice.

• add_unit_cell (list of Site) – Extra sites to be added to the unit cell.

• add_positions (iterable of 1D arrays) – For each extra site in add_unit_cell
the position within the unit cell. Defaults to np.zeros((len(add_unit_cell),
dim)).

regular_lattice
The lattice this is based on.

Type Lattice

remove, add
See above. Used in ordering() only.

Type 2D array | None

Examples

Let’s imagine that we have two different sites; for concreteness we can thing of a fermion site, which we repre-
sent with 'F', and a spin site 'S'. If you want to preserve charges, take a look at set_common_charges()
for the proper way to initialize the sites.

You could now imagine that to have fermion chain with spins on the “bonds”. In the periodic/infinite case, you
would simply define

>>> lat = Lattice([2], unit_cell=['F', 'S'], bc='periodic', bc_MPS='infinite')
>>> lat.mps_sites()
['F', 'S', 'F', 'S']

For a finite system, you don’t want to terminate with a spin on the right, so you need to remove the very last site
by specifying the lattice index [L-1, 1] of that site:

19.1. lattice 387

https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

>>> L = 4
>>> reg_lat = Lattice([L], unit_cell=['F', 'S'], bc='open', bc_MPS='finite')
>>> irr_lat = IrregularLattice(reg_lat, remove=[[L - 1, 1]])
>>> irr_lat.mps_sites()
['F', 'S', 'F', 'S', 'F', 'S', 'F']

Another simple example would be to add a spin in the center of a fermion chain. In that case, we add another
site to the unit cell and specify the lattice index as [(L-1)//2, 1] (where the 1 is the index of 'S' in the
unit cell ['F', 'S'] of the irregular lattice). The None for the MPS index is equivalent to (L-1)/2 in this
case.

>>> reg_lat = Lattice([L], unit_cell=['F'])
>>> irr_lat = IrregularLattice(reg_lat, add=([[(L - 1)//2, 1]], [None]),
... add_unit_cell=['S'])
>>> irr_lat.mps_sites()
['F', 'F', 'S', 'F', 'F']

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

ordering(order)
Provide possible orderings of the lattice sites.

Parameters order – Argument for the Lattice.ordering() of the
regular_lattice, or 2D ndarray providing the order of the regular lattice.

Returns order – The order to be used for order, i.e. order with added/removed sites as speci-
fied by remove and add.

Return type array, shape (N, D+1)

388 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

property dim
The dimension of the lattice.

19.1. lattice 389

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and

390 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

19.1. lattice 391

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

392 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

19.1. lattice 393

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

394 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.5 Kagome

• full name: tenpy.models.lattice.Kagome

• parent module: tenpy.models.lattice

• type: class

19.1. lattice 395

TeNPy, Release 0.8.1

Inheritance Diagram

Kagome

Lattice

Methods

Kagome.__init__(Lx, Ly, sites, **kwargs) Initialize self.
Kagome.count_neighbors([u, key]) Count e.g.
Kagome.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Kagome.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Kagome.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Kagome.find_coupling_pairs([max_dx, cut-
off, eps])

Automatically find coupling pairs grouped by distances.

Kagome.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Kagome.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},

u) to MPS index i.
Kagome.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,

x_{dim-1}, u).
Kagome.mps2lat_values(A[, axes, u]) Reshape/reorder A to replace an MPS index by lattice

indices.
Kagome.mps2lat_values_masked(A[, axes,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Kagome.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

Kagome.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

Kagome.mps_sites() Return a list of sites for all MPS indices.
Kagome.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Kagome.number_nearest_neighbors([u]) Deprecated.
Kagome.number_next_nearest_neighbors([u])Deprecated.
Kagome.ordering(order) Provide possible orderings of the N lattice sites.
Kagome.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Kagome.plot_bc_identified(ax[, direction,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

Kagome.plot_coupling(ax[, coupling, wrap]) Plot lines connecting nearest neighbors of the lattice.
continues on next page

396 Chapter 19. models

TeNPy, Release 0.8.1

Table 11 – continued from previous page
Kagome.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and

text labels enumerating them.
Kagome.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Kagome.position(lat_idx) return ‘space’ position of one or multiple sites.
Kagome.possible_couplings(u1, u2, dx[,
strength])

Find possible MPS indices for two-site couplings.

Kagome.possible_multi_couplings(ops[,
strength])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Kagome.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Kagome.site(i) return Site instance corresponding to an MPS index i
Kagome.test_sanity() Sanity check.

Class Attributes and Properties

Kagome.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Kagome.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Kagome.dim the dimension of the lattice
Kagome.nearest_neighbors

Kagome.next_nearest_neighbors

Kagome.next_next_nearest_neighbors

Kagome.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Kagome(Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice

A Kagome lattice.

Parameters

• Lx (int) – The length in each direction.

• Ly (int) – The length in each direction.

• sites ((list of) Site) – The two local lattice sites making the unit_cell of the Lattice.
If only a single Site is given, it is used for both sites.

• **kwargs – Additional keyword arguments given to the Lattice. basis, pos and pairs
are set accordingly.

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

19.1. lattice 397

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

0 2 4 6 8 10
1

0

1

2

3

4

5

6

7

0 1
2

3 4
5

6 7
8

9 10
11

12 13
14

15 16
17

18 19
20

21 22
23

24 25
26

27 28
29

30 31
32

33 34
35

36 37
38

39 40
41

42 43
44

45 46
47

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

398 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

19.1. lattice 399

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

400 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

19.1. lattice 401

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

402 Chapter 19. models

TeNPy, Release 0.8.1

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

19.1. lattice 403

TeNPy, Release 0.8.1

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

404 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

19.1. lattice 405

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

dim = 2
the dimension of the lattice

Lu = 3
the (expected) number of sites in the unit cell, len(unit_cell).

406 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.1.6 Ladder

• full name: tenpy.models.lattice.Ladder

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

Ladder

Lattice

Methods

Ladder.__init__(L, sites, **kwargs) Initialize self.
Ladder.count_neighbors([u, key]) Count e.g.
Ladder.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Ladder.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Ladder.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Ladder.find_coupling_pairs([max_dx, cut-
off, eps])

Automatically find coupling pairs grouped by distances.

Ladder.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Ladder.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},

u) to MPS index i.
Ladder.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,

x_{dim-1}, u).
Ladder.mps2lat_values(A[, axes, u]) Reshape/reorder A to replace an MPS index by lattice

indices.
Ladder.mps2lat_values_masked(A[, axes,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Ladder.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

Ladder.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

Ladder.mps_sites() Return a list of sites for all MPS indices.
Ladder.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
continues on next page

19.1. lattice 407

TeNPy, Release 0.8.1

Table 13 – continued from previous page
Ladder.number_nearest_neighbors([u]) Deprecated.
Ladder.number_next_nearest_neighbors([u])Deprecated.
Ladder.ordering(order) Provide possible orderings of the N lattice sites.
Ladder.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Ladder.plot_bc_identified(ax[, direction,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

Ladder.plot_coupling(ax[, coupling, wrap]) Plot lines connecting nearest neighbors of the lattice.
Ladder.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and

text labels enumerating them.
Ladder.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Ladder.position(lat_idx) return ‘space’ position of one or multiple sites.
Ladder.possible_couplings(u1, u2, dx[,
strength])

Find possible MPS indices for two-site couplings.

Ladder.possible_multi_couplings(ops[,
strength])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Ladder.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Ladder.site(i) return Site instance corresponding to an MPS index i
Ladder.test_sanity() Sanity check.

Class Attributes and Properties

Ladder.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Ladder.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Ladder.dim the dimension of the lattice
Ladder.nearest_neighbors

Ladder.next_nearest_neighbors

Ladder.next_next_nearest_neighbors

Ladder.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Ladder(L, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice

A ladder coupling two chains.

1 0 1 2 3 4
1

0

1

0

1

2

3

4

5

6

7

Parameters

408 Chapter 19. models

TeNPy, Release 0.8.1

• L (int) – The length of each chain, we have 2*L sites in total.

• sites ((list of) Site) – The two local lattice sites making the unit_cell of the Lattice.
If only a single Site is given, it is used for both chains.

• **kwargs – Additional keyword arguments given to the Lattice. basis, pos and pairs
are set accordingly.

Lu = 2
the (expected) number of sites in the unit cell, len(unit_cell).

dim = 1
the dimension of the lattice

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

19.1. lattice 409

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

410 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)

(continues on next page)

19.1. lattice 411

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

(continued from previous page)

>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

412 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

19.1. lattice 413

TeNPy, Release 0.8.1

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

414 Chapter 19. models

TeNPy, Release 0.8.1

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,

19.1. lattice 415

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

416 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

19.1. lattice 417

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.7 Lattice

• full name: tenpy.models.lattice.Lattice

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

Lattice

Methods

Lattice.__init__(Ls, unit_cell[, order, bc, . . .]) Initialize self.
Lattice.count_neighbors([u, key]) Count e.g.
Lattice.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Lattice.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Lattice.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Lattice.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

Lattice.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Lattice.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},

u) to MPS index i.
Lattice.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,

x_{dim-1}, u).
Lattice.mps2lat_values(A[, axes, u]) Reshape/reorder A to replace an MPS index by lattice

indices.
Lattice.mps2lat_values_masked(A[, axes,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Lattice.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

Lattice.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

Lattice.mps_sites() Return a list of sites for all MPS indices.
continues on next page

418 Chapter 19. models

TeNPy, Release 0.8.1

Table 15 – continued from previous page
Lattice.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Lattice.number_nearest_neighbors([u]) Deprecated.
Lattice.number_next_nearest_neighbors([u])Deprecated.
Lattice.ordering(order) Provide possible orderings of the N lattice sites.
Lattice.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Lattice.plot_bc_identified(ax[, direction,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

Lattice.plot_coupling(ax[, coupling, wrap]) Plot lines connecting nearest neighbors of the lattice.
Lattice.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and

text labels enumerating them.
Lattice.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Lattice.position(lat_idx) return ‘space’ position of one or multiple sites.
Lattice.possible_couplings(u1, u2, dx[,
. . .])

Find possible MPS indices for two-site couplings.

Lattice.possible_multi_couplings(ops[,
strength])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Lattice.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Lattice.site(i) return Site instance corresponding to an MPS index i
Lattice.test_sanity() Sanity check.

Class Attributes and Properties

Lattice.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Lattice.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Lattice.dim the dimension of the lattice
Lattice.nearest_neighbors

Lattice.next_nearest_neighbors

Lattice.next_next_nearest_neighbors

Lattice.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Lattice(Ls, unit_cell, order='default', bc='open',
bc_MPS='finite', basis=None, positions=None, near-
est_neighbors=None, next_nearest_neighbors=None,
next_next_nearest_neighbors=None, pairs=None)

Bases: object

A general, regular lattice.

The lattice consists of a unit cell which is repeated in dim different directions. A site of the lattice is thus identi-
fied by lattice indices (x_0, ..., x_{dim-1}, u), where 0 <= x_l < Ls[l] pick the position of
the unit cell in the lattice and 0 <= u < len(unit_cell) picks the site within the unit cell. The site is lo-
cated in ‘space’ at sum_l x_l*basis[l] + unit_cell_positions[u] (see position()). (Note
that the position in space is only used for plotting, not for defining the couplings.)

In addition to the pure geometry, this class also defines an order of all sites. This order maps the lattice to

19.1. lattice 419

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

a finite 1D chain and defines the geometry of MPSs and MPOs. The MPS index i corresponds thus to the
lattice sites given by (x_0, ..., x_{dim-1}, u) = tuple(self.order[i]). Infinite boundary
conditions of the MPS repeat in the first spatial direction of the lattice, i.e., if the site at (x_0, x_1, ..
., x_{dim-1},u) has MPS index i, the site at at (x_0 + Ls[0], x_1, ..., x_{dim-1}, u)
corresponds to MPS index i + N_sites. Use mps2lat_idx() and lat2mps_idx() for conversion of
indices. The function mps2lat_values() performs the necessary reshaping and re-ordering from arrays
indexed in MPS form to arrays indexed in lattice form.

Deprecated since version 0.5.0: The parameters and attributes nearest_neighbors, next_nearest_neighbors and
next_next_nearest_neighbors are deprecated. Instead, we use a dictionary pairs with those names as keys and
the corresponding values as specified before.

Parameters

• Ls (list of int) – the length in each direction

• unit_cell (list of Site) – The sites making up a unit cell of the lattice. If you want to
specify it only after initialization, use None entries in the list.

• order (str | ('standard', snake_winding, priority) | ('grouped',
groups, ...)) – A string or tuple specifying the order, given to ordering().

• bc ((iterable of) {'open' | 'periodic' | int}) – Boundary conditions
in each direction of the lattice. A single string holds for all directions. An integer shift
means that we have periodic boundary conditions along this direction, but shift/tilt by
-shift*lattice.basis[0] (~cylinder axis for bc_MPS='infinite') when go-
ing around the boundary along this direction.

• bc_MPS ('finite' | 'segment' | 'infinite') – Boundary conditions for an
MPS/MPO living on the ordered lattice. If the system is 'infinite', the infinite di-
rection is always along the first basis vector (justifying the definition of N_rings and
N_sites_per_ring).

• basis (iterable of 1D arrays) – For each direction one translation vectors shift-
ing the unit cell. Defaults to the standard ONB np.eye(dim).

• positions (iterable of 1D arrays) – For each site of the unit cell the position
within the unit cell. Defaults to np.zeros((len(unit_cell), dim)).

• nearest_neighbors (None | list of (u1, u2, dx)) – Deprecated. Specify as
pairs['nearest_neighbors'] instead.

• next_nearest_neighbors (None | list of (u1, u2, dx)) – Deprecated. Specify
as pairs['next_nearest_neighbors'] instead.

• next_next_nearest_neighbors (None | list of (u1, u2, dx)) – Deprecated.
Specify as pairs['next_next_nearest_neighbors'] instead.

• pairs (dict) – Of the form {'nearest_neighbors': [(u1,
u2, dx), ...], ...}. Typical keys are 'nearest_neighbors',
'next_nearest_neighbors'. For each of them, it specifies a list of tuples
(u1, u2, dx) which can be used as parameters for add_coupling() to generate
couplings over each pair of ,e.g., 'nearest_neighbors'. Note that this adds couplings
for each pair only in one direction!

Ls
the length in each direction.

Type tuple of int

shape
the ‘shape’ of the lattice, same as Ls + (len(unit_cell),)

420 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Type tuple of int

N_cells
the number of unit cells in the lattice, np.prod(self.Ls).

Type int

N_sites
the number of sites in the lattice, np.prod(self.shape).

Type int

N_sites_per_ring
Defined as N_sites / Ls[0], for an infinite system the number of cites per “ring”.

Type int

N_rings
Alias for Ls[0], for an infinite system the number of “rings” in the unit cell.

Type int

unit_cell
the sites making up a unit cell of the lattice.

Type list of Site

bc
Boundary conditions of the couplings in each direction of the lattice, translated into a bool array with the
global bc_choices.

Type bool ndarray

bc_shift
The shift in x-direction when going around periodic boundaries in other directions.

Type None | ndarray(int)

bc_MPS
Boundary conditions for an MPS/MPO living on the ordered lattice. If the system is 'infinite',
the infinite direction is always along the first basis vector (justifying the definition of N_rings and
N_sites_per_ring).

Type ‘finite’ | ‘segment’ | ‘infinite’

basis
translation vectors shifting the unit cell. The row i gives the vector shifting in direction i.

Type ndarray (dim, Dim)

unit_cell_positions
for each site in the unit cell a vector giving its position within the unit cell.

Type ndarray, shape (len(unit_cell), Dim)

pairs
See above.

Type dict

_order
The place where order is stored.

Type ndarray (N_sites, dim+1)

19.1. lattice 421

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

_strides
necessary for lat2mps_idx().

Type ndarray (dim,)

_perm
permutation needed to make order lexsorted, _perm = np.lexsort(_order.T).

Type ndarray (N,)

_mps2lat_vals_idx
index array for reshape/reordering in mps2lat_vals()

Type ndarray shape

_mps_fix_u
for each site of the unit cell an index array selecting the mps indices of that site.

Type tuple of ndarray (N_cells,) np.intp

_mps2lat_vals_idx_fix_u
similar as _mps2lat_vals_idx, but for a fixed u picking a site from the unit cell.

Type tuple of ndarray of shape Ls

Lu = None
the (expected) number of sites in the unit cell, len(unit_cell).

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS
", and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

422 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

property dim
the dimension of the lattice

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

19.1. lattice 423

TeNPy, Release 0.8.1

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

site(i)
return Site instance corresponding to an MPS index i

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

424 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

19.1. lattice 425

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

426 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out

19.1. lattice 427

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

428 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

19.1. lattice 429

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

430 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

19.1.8 SimpleLattice

• full name: tenpy.models.lattice.SimpleLattice

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

Lattice

SimpleLattice

Methods

SimpleLattice.__init__(Ls, site, **kwargs) Initialize self.
SimpleLattice.count_neighbors([u, key]) Count e.g.
SimpleLattice.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
SimpleLattice.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
SimpleLattice.enlarge_mps_unit_cell([factor])Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
SimpleLattice.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

SimpleLattice.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

SimpleLattice.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

SimpleLattice.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

SimpleLattice.mps2lat_values(A[, axes, u]) same as Lattice.mps2lat_values(), but ignore
u, setting it to 0.

SimpleLattice.mps2lat_values_masked(A[,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

SimpleLattice.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

SimpleLattice.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

SimpleLattice.mps_sites() Return a list of sites for all MPS indices.
continues on next page

19.1. lattice 431

TeNPy, Release 0.8.1

Table 17 – continued from previous page
SimpleLattice.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
SimpleLattice.number_nearest_neighbors([u])Deprecated.
SimpleLattice.number_next_nearest_neighbors([u])Deprecated.
SimpleLattice.ordering(order) Provide possible orderings of the N lattice sites.
SimpleLattice.plot_basis(ax[, origin,
shade])

Plot arrows indicating the basis vectors of the lattice.

SimpleLattice.plot_bc_identified(ax[,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

SimpleLattice.plot_coupling(ax[, coupling,
wrap])

Plot lines connecting nearest neighbors of the lattice.

SimpleLattice.plot_order(ax[, order, textk-
wargs])

Plot a line connecting sites in the specified “order” and
text labels enumerating them.

SimpleLattice.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
SimpleLattice.position(lat_idx) return ‘space’ position of one or multiple sites.
SimpleLattice.possible_couplings(u1,
u2, dx)

Find possible MPS indices for two-site couplings.

SimpleLattice.possible_multi_couplings(ops)Generalization of possible_couplings() to cou-
plings with more than 2 sites.

SimpleLattice.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

SimpleLattice.site(i) return Site instance corresponding to an MPS index i
SimpleLattice.test_sanity() Sanity check.

Class Attributes and Properties

SimpleLattice.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

SimpleLattice.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

SimpleLattice.dim The dimension of the lattice.
SimpleLattice.nearest_neighbors

SimpleLattice.next_nearest_neighbors

SimpleLattice.next_next_nearest_neighbors

SimpleLattice.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.SimpleLattice(Ls, site, **kwargs)
Bases: tenpy.models.lattice.Lattice

A lattice with a unit cell consiting of just a single site.

In many cases, the unit cell consists just of a single site, such that the the last entry of u of an ‘lattice index’ can
only be 0. From the point of internal algorithms, we handle this class like a Lattice – in that way we don’t
need to distinguish special cases in the algorithms.

Yet, from the point of a tenpy user, for example if you measure an expectation value on each site in a Sim-
pleLattice, you expect to get an ndarray of dimensions self.Ls, not self.shape. To avoid that problem,
SimpleLattice overwrites just the meaning of u=None in mps2lat_values() to be the same as u=0.

432 Chapter 19. models

TeNPy, Release 0.8.1

Parameters

• Ls (list of int) – the length in each direction

• site (Site) – the lattice site. The unit_cell of the Lattice is just [site].

• **kwargs – Additional keyword arguments given to the Lattice. If order is specified in
the form ('standard', snake_windingi, priority), the snake_winding and
priority should only be specified for the spatial directions. Similarly, positions can be spec-
ified as a single vector.

Lu = 1
the (expected) number of sites in the unit cell, len(unit_cell).

mps2lat_values(A, axes=0, u=None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0.

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

property dim
The dimension of the lattice.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

19.1. lattice 433

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

434 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

19.1. lattice 435

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

436 Chapter 19. models

TeNPy, Release 0.8.1

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

19.1. lattice 437

TeNPy, Release 0.8.1

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

438 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

19.1. lattice 439

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.9 Square

• full name: tenpy.models.lattice.Square

• parent module: tenpy.models.lattice

• type: class

440 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

Lattice

SimpleLattice

Square

Methods

Square.__init__(Lx, Ly, site, **kwargs) Initialize self.
Square.count_neighbors([u, key]) Count e.g.
Square.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Square.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Square.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Square.find_coupling_pairs([max_dx, cut-
off, eps])

Automatically find coupling pairs grouped by distances.

Square.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Square.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},

u) to MPS index i.
Square.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,

x_{dim-1}, u).
Square.mps2lat_values(A[, axes, u]) same as Lattice.mps2lat_values(), but ignore

u, setting it to 0.
Square.mps2lat_values_masked(A[, axes,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Square.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

Square.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

Square.mps_sites() Return a list of sites for all MPS indices.
Square.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Square.number_nearest_neighbors([u]) Deprecated.
Square.number_next_nearest_neighbors([u])Deprecated.
Square.ordering(order) Provide possible orderings of the N lattice sites.

continues on next page

19.1. lattice 441

TeNPy, Release 0.8.1

Table 19 – continued from previous page
Square.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Square.plot_bc_identified(ax[, direction,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

Square.plot_coupling(ax[, coupling, wrap]) Plot lines connecting nearest neighbors of the lattice.
Square.plot_order(ax[, order, textkwargs]) Plot a line connecting sites in the specified “order” and

text labels enumerating them.
Square.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Square.position(lat_idx) return ‘space’ position of one or multiple sites.
Square.possible_couplings(u1, u2, dx[,
strength])

Find possible MPS indices for two-site couplings.

Square.possible_multi_couplings(ops[,
strength])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Square.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Square.site(i) return Site instance corresponding to an MPS index i
Square.test_sanity() Sanity check.

Class Attributes and Properties

Square.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Square.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Square.dim the dimension of the lattice
Square.nearest_neighbors

Square.next_nearest_neighbors

Square.next_next_nearest_neighbors

Square.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Square(Lx, Ly, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice

A square lattice.

Parameters

• Lx (int) – The length in each direction.

• Ly (int) – The length in each direction.

• site (Site) – The local lattice site. The unit_cell of the Lattice is just [site].

• **kwargs – Additional keyword arguments given to the Lattice. pairs are set
accordingly. If order is specified in the form ('standard', snake_winding,
priority), the snake_winding and priority should only be specified for the spatial di-
rections. Similarly, positions can be specified as a single vector.

dim = 2
the dimension of the lattice

442 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

1 0 1 2 3 4
1

0

1

2

3

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

19.1. lattice 443

TeNPy, Release 0.8.1

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

444 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

19.1. lattice 445

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0.

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

446 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the

19.1. lattice 447

TeNPy, Release 0.8.1

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

448 Chapter 19. models

TeNPy, Release 0.8.1

strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

19.1. lattice 449

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

450 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1. lattice 451

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.1.10 Triangular

• full name: tenpy.models.lattice.Triangular

• parent module: tenpy.models.lattice

• type: class

Inheritance Diagram

Lattice

SimpleLattice

Triangular

Methods

Triangular.__init__(Lx, Ly, site, **kwargs) Initialize self.
Triangular.count_neighbors([u, key]) Count e.g.
Triangular.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
Triangular.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
Triangular.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Triangular.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

Triangular.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

Triangular.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

Triangular.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

Triangular.mps2lat_values(A[, axes, u]) same as Lattice.mps2lat_values(), but ignore
u, setting it to 0.

Triangular.mps2lat_values_masked(A[,
axes, . . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

Triangular.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

continues on next page

452 Chapter 19. models

TeNPy, Release 0.8.1

Table 21 – continued from previous page
Triangular.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the

corresponding lattice indices.
Triangular.mps_sites() Return a list of sites for all MPS indices.
Triangular.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
Triangular.number_nearest_neighbors([u]) Deprecated.
Triangular.number_next_nearest_neighbors([u])Deprecated.
Triangular.ordering(order) Provide possible orderings of the N lattice sites.
Triangular.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
Triangular.plot_bc_identified(ax[, . . .]) Mark two sites indified by periodic boundary condi-

tions.
Triangular.plot_coupling(ax[, coupling,
wrap])

Plot lines connecting nearest neighbors of the lattice.

Triangular.plot_order(ax[, order, textk-
wargs])

Plot a line connecting sites in the specified “order” and
text labels enumerating them.

Triangular.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
Triangular.position(lat_idx) return ‘space’ position of one or multiple sites.
Triangular.possible_couplings(u1, u2, dx[,
. . .])

Find possible MPS indices for two-site couplings.

Triangular.possible_multi_couplings(ops[,
. . .])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

Triangular.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

Triangular.site(i) return Site instance corresponding to an MPS index i
Triangular.test_sanity() Sanity check.

Class Attributes and Properties

Triangular.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

Triangular.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

Triangular.dim the dimension of the lattice
Triangular.nearest_neighbors

Triangular.next_nearest_neighbors

Triangular.next_next_nearest_neighbors

Triangular.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.Triangular(Lx, Ly, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice

A triangular lattice.

Parameters

• Lx (int) – The length in each direction.

• Ly (int) – The length in each direction.

19.1. lattice 453

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

1 0 1 2 3

1

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

454 Chapter 19. models

TeNPy, Release 0.8.1

• site (Site) – The local lattice site. The unit_cell of the Lattice is just [site].

• **kwargs – Additional keyword arguments given to the Lattice. pairs are set ac-
cordingly. If order is specified in the form ('standard', snake_windingi,
priority), the snake_winding and priority should only be specified for the spatial di-
rections. Similarly, positions can be specified as a single vector.

dim = 2
the dimension of the lattice

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

19.1. lattice 455

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and

456 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0.

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

19.1. lattice 457

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

458 Chapter 19. models

TeNPy, Release 0.8.1

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

Return type array, shape (N, D+1), dtype np.intp

19.1. lattice 459

TeNPy, Release 0.8.1

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

460 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

19.1. lattice 461

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

19.1.11 TrivialLattice

• full name: tenpy.models.lattice.TrivialLattice

• parent module: tenpy.models.lattice

• type: class

462 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

Lattice

TrivialLattice

Methods

TrivialLattice.__init__(mps_sites,
**kwargs)

Initialize self.

TrivialLattice.count_neighbors([u, key]) Count e.g.
TrivialLattice.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
TrivialLattice.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
TrivialLattice.enlarge_mps_unit_cell([factor])Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
TrivialLattice.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

TrivialLattice.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

TrivialLattice.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

TrivialLattice.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

TrivialLattice.mps2lat_values(A[, axes,
u])

Reshape/reorder A to replace an MPS index by lattice
indices.

TrivialLattice.mps2lat_values_masked(A[,
. . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

TrivialLattice.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

TrivialLattice.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

TrivialLattice.mps_sites() Return a list of sites for all MPS indices.
TrivialLattice.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
TrivialLattice.number_nearest_neighbors([u])Deprecated.
TrivialLattice.number_next_nearest_neighbors([u])Deprecated.
TrivialLattice.ordering(order) Provide possible orderings of the N lattice sites.
TrivialLattice.plot_basis(ax[, origin,
shade])

Plot arrows indicating the basis vectors of the lattice.

continues on next page

19.1. lattice 463

TeNPy, Release 0.8.1

Table 23 – continued from previous page
TrivialLattice.plot_bc_identified(ax[,
. . .])

Mark two sites indified by periodic boundary condi-
tions.

TrivialLattice.plot_coupling(ax[, cou-
pling, . . .])

Plot lines connecting nearest neighbors of the lattice.

TrivialLattice.plot_order(ax[, order, . . .]) Plot a line connecting sites in the specified “order” and
text labels enumerating them.

TrivialLattice.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
TrivialLattice.position(lat_idx) return ‘space’ position of one or multiple sites.
TrivialLattice.possible_couplings(u1,
u2, dx)

Find possible MPS indices for two-site couplings.

TrivialLattice.possible_multi_couplings(ops)Generalization of possible_couplings() to cou-
plings with more than 2 sites.

TrivialLattice.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

TrivialLattice.site(i) return Site instance corresponding to an MPS index i
TrivialLattice.test_sanity() Sanity check.

Class Attributes and Properties

TrivialLattice.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

TrivialLattice.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

TrivialLattice.dim The dimension of the lattice.
TrivialLattice.nearest_neighbors

TrivialLattice.next_nearest_neighbors

TrivialLattice.next_next_nearest_neighbors

TrivialLattice.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.lattice.TrivialLattice(mps_sites, **kwargs)
Bases: tenpy.models.lattice.Lattice

Trivial lattice consisting of a single (possibly large) unit cell in 1D.

This is usefull if you need a valid Lattice with given mps_sites() and don’t care about the actual geom-
etry, e.g, because you don’t intend to use the CouplingModel.

Parameters

• mps_sites (list of Site) – The sites making up a unit cell of the lattice.

• **kwargs – Further keyword arguments given to Lattice.

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

464 Chapter 19. models

TeNPy, Release 0.8.1

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

property dim
The dimension of the lattice.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in

19.1. lattice 465

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

466 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

19.1. lattice 467

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

468 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

ordering(order)
Provide possible orderings of the N lattice sites.

This function can be overwritten by derived lattices to define additional orderings. The following orders
are defined in this method:

order equivalent priority equivalent snake_winding
'Cstyle' (0, 1, . . . , dim-1, dim) (False, . . . , False, False)
'default'
'snake' (0, 1, . . . , dim-1, dim) (True, . . . , True, True)
'snakeCstyle'
'Fstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)
'snakeFstyle' (dim-1, . . . , 1, 0, dim) (False, . . . , False, False)

Note: For lattices with a non-trivial unit cell (e.g. Honeycomb, Kagome), the grouped order might be
more appropriate, see get_order_grouped()

Parameters order (str | ('standard', snake_winding, priority) |
('grouped', groups, ...)) – Specifies the desired ordering using one of the
strings of the above tables. Alternatively, an ordering is specified by a tuple with
first entry specifying a function, 'standard' for get_order() and 'grouped'
for get_order_grouped(), and other arguments in the tuple as specified in the
documentation of these functions.

Returns order – the order to be used for order.

19.1. lattice 469

TeNPy, Release 0.8.1

1

0

1

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
'Cstyle'

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14
'snakeCstyle'

1 0 1 2 3 4
1

0

1

2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
'Fstyle'

1 0 1 2 3 4

0 1 2 3 4

56789

10 11 12 13 14
'snakeFstyle'

470 Chapter 19. models

TeNPy, Release 0.8.1

Return type array, shape (N, D+1), dtype np.intp

See also:

get_order generates the order from equivalent priority and snake_winding.

get_order_grouped variant of get_order.

plot_order visualizes the resulting order.

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

19.1. lattice 471

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

472 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

Functions

get_lattice(lattice_name) Given the name of a Lattice class, get the lattice class
itself.

get_order(shape, snake_winding[, priority]) Built the Lattice.order in (Snake-) C-Style for a
given lattice shape.

get_order_grouped(shape, groups[, priority]) Variant of get_order(), grouping some sites of the
unit cell.

19.1. lattice 473

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.1.12 get_lattice

• full name: tenpy.models.lattice.get_lattice

• parent module: tenpy.models.lattice

• type: function

tenpy.models.lattice.get_lattice(lattice_name)
Given the name of a Lattice class, get the lattice class itself.

Parameters lattice_name (str) – Name of a Lattice class defined in the module
lattice, for example "Chain", "Square", "Honeycomb",

Returns LatticeClass – The lattice class (type, not instance) specified by lattice_name.

Return type Lattice

19.1.13 get_order

• full name: tenpy.models.lattice.get_order

• parent module: tenpy.models.lattice

• type: function

tenpy.models.lattice.get_order(shape, snake_winding, priority=None)
Built the Lattice.order in (Snake-) C-Style for a given lattice shape.

Note: In this doc-string, the word ‘direction’ referst to a physical direction of the lattice or the index u of the
unit cell as an “artificial direction”.

Parameters

• shape (tuple of int) – The shape of the lattice, i.e., the length in each direction.

• snake_winding (tuple of bool) – For each direction one bool, whether we should
wind as a “snake” (True) in that direction (i.e., going forth and back) or simply repeat
ascending (False)

• priority (None | tuple of float) – If None (default), use C-Style ordering. Otherwise,
this defines the priority along which direction to wind first; the direction with the highest
priority increases fastest. For example, “C-Style” order is enforced by priority=(0,
1, 2, ...), and Fortrans F-style order is enforced by priority=(dim, dim-1,
..., 1, 0)

• group (None | tuple of tuple) – If None (default), ignore it. Otherwise, it specifies that we
group the fastests changing dimension

Returns order – An order of the sites for Lattice.order in the specified ordering.

Return type ndarray (np.prod(shape), len(shape))

See also:

Lattice.ordering method in Lattice to obtain the order from parameters.

Lattice.plot_order visualizes the resulting order in a Lattice.

get_order_grouped a variant grouping sites of the unit cell.

474 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.1.14 get_order_grouped

• full name: tenpy.models.lattice.get_order_grouped

• parent module: tenpy.models.lattice

• type: function

tenpy.models.lattice.get_order_grouped(shape, groups, priority=None)
Variant of get_order(), grouping some sites of the unit cell.

This function is usefull for lattices with a unit cell of more than 2 sites (e.g. Kagome). For 2D lattices with a
unit cell, the ordering goes first within a group , then along y, then the next group (for the same x-value), again
along y, and finally along x when all groups are done.

As an example, consider the Kagome lattice.

1

0

1

2

3

4

0 1
2

3 4
5

6 7
8

9 10
11

12 13
14

15 16
17

18 19
20

21 22
23

24 25
26

("grouped", [(0, 1, 2)], None)

0
1

2

3
4

5

6
7

8

9
10

11

12
13

14

15
16

17

18
19

20

21
22

23

24
25

26

("grouped", [(0, 2, 1)], None)

0 2 4 6
1

0

1

2

3

4

0 1

2 3

4 5

6

7

8

9 10

11 12

13 14

15

16

17

18 19

20 21

22 23

24

25

26
("grouped", [(0, 1), (2,)], None)

0 2 4 6

0
1

2
3

4
5

6 7 8

9
10

11
12

13
14

15 16 17

18
19

20
21

22
23

24 25 26

("grouped", [(0, 2), (1,)], [1, 0, 2])

Note: In this doc-string, the word ‘direction’ referst to a physical direction of the lattice or the index u of the
unit cell as an “artificial direction”.

Parameters

• shape (tuple of int) – The shape of the lattice, i.e., the length in each direction.

19.1. lattice 475

TeNPy, Release 0.8.1

• groups (tuple of tuple of int) – A partition and reordering of
range(shape[-1]) into smaller groups. The ordering goes first within a group,
then along the last spatial dimensions, then changing between different groups and finally
in Cstyle order along the remaining spatial dimensions.

• priority (None | tuple of ints) – By default (None), use C-style order for ev-
erything except the unit cell, as shown above. If a tuple, it should have length len(shape)
and specifies which order to go first, similarly as in get_order(). To group sites in the
unit cell, you should make the last entry of priority the largest. However, you can also
choose to group along another direction - in that case groups should be a partitioning of
range(shape(argmax(priority))). Try and plot it, if you need it!

Returns order – An order of the sites for Lattice.order in the specified ordering.

Return type ndarray (np.prod(shape), len(shape))

See also:

Lattice.ordering() method in Lattice to obtain the order from parameters.

Lattice.plot_order() visualizes the resulting order in a Lattice.

Module description

Classes to define the lattice structure of a model.

The base class Lattice defines the general structure of a lattice, you can subclass this to define you own lattice. The
SimpleLattice is a slight simplification for lattices with a single-site unit cell. Further, we have some predefined
lattices, namely Chain, Ladder in 1D and Square, Triangular, Honeycomb, and Kagome in 2D.

The IrregularLattice provides a way to remove or add sites to an existing, regular lattice.

See also the Models and Details on the lattice geometry.

19.2 model

• full name: tenpy.models.model

• parent module: tenpy.models

• type: module

476 Chapter 19. models

TeNPy, Release 0.8.1

Classes

CouplingMPOModel

CouplingModel

MultiCouplingModel

MPOModel

Model

NearestNeighborModel

Hdf5Exportable

CouplingMPOModel(model_params) Combination of the CouplingModel and
MPOModel.

CouplingModel(lattice[, bc_coupling, . . .]) Base class for a general model of a Hamiltonian consist-
ing of two-site couplings.

MPOModel(lattice, H_MPO) Base class for a model with an MPO representation of
the Hamiltonian.

Model(lattice) Base class for all models.
MultiCouplingModel(lattice[, bc_coupling, . . .]) Deprecated class which was a generalization of the Cou-

plingModel.
NearestNeighborModel(lattice, H_bond) Base class for a model of nearest neigbor interactions

w.r.t.

19.2.1 CouplingModel

• full name: tenpy.models.model.CouplingModel

• parent module: tenpy.models.model

• type: class

19.2. model 477

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingModel

Model

Hdf5Exportable

Methods

CouplingModel.__init__(lattice[, . . .]) Initialize self.
CouplingModel.add_coupling(strength, u1,
. . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

CouplingModel.add_coupling_term(strength,
i, . . .)

Add a two-site coupling term on given MPS sites.

CouplingModel.add_exponentially_decaying_coupling(. . .)Add an exponentially decaying long-range coupling.
CouplingModel.add_local_term(strength,
term)

Add a single term to self.

CouplingModel.add_multi_coupling(strength,
ops)

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

CouplingModel.add_multi_coupling_term(. . . [,
. . .])

Add a general M-site coupling term on given MPS sites.

CouplingModel.add_onsite(strength, u, op-
name)

Add onsite terms to onsite_terms.

CouplingModel.add_onsite_term(strength, i,
op)

Add an onsite term on a given MPS site.

CouplingModel.all_coupling_terms() Sum of all coupling_terms.
CouplingModel.all_onsite_terms() Sum of all onsite_terms.
CouplingModel.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
CouplingModel.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and

onsite_terms.
CouplingModel.calc_H_onsite([tol_zero]) Calculate H_onsite from self.onsite_terms.
CouplingModel.coupling_strength_add_ext_flux(. . .)Add an external flux to the coupling strength.
CouplingModel.enlarge_mps_unit_cell([factor])Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
CouplingModel.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

continues on next page

478 Chapter 19. models

TeNPy, Release 0.8.1

Table 27 – continued from previous page
CouplingModel.group_sites([n,
grouped_sites])

Modify self in place to group sites.

CouplingModel.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

CouplingModel.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

Class Attributes and Properties

CouplingModel.logger class attribute.

class tenpy.models.model.CouplingModel(lattice, bc_coupling=None, ex-
plicit_plus_hc=False)

Bases: tenpy.models.model.Model

Base class for a general model of a Hamiltonian consisting of two-site couplings.

In this class, the terms of the Hamiltonian are specified explicitly as OnsiteTerms or CouplingTerms.

Deprecated since version 0.4.0: bc_coupling will be removed in 1.0.0. To specify the full geometry in the lattice,
use the bc parameter of the Lattice.

Parameters

• lattice (Lattice) – The lattice defining the geometry and the local Hilbert space(s).

• bc_coupling ((iterable of) {'open' | 'periodic' | int}) – Boundary condi-
tions of the couplings in each direction of the lattice. Defines how the couplings are
added in add_coupling(). A single string holds for all directions. An integer shift
means that we have periodic boundary conditions along this direction, but shift/tilt by
-shift*lattice.basis[0] (~cylinder axis for bc_MPS='infinite') when go-
ing around the boundary along this direction.

• explicit_plus_hc (bool) – If True, the Hermitian conjugate of the MPO is computed
at runtime, rather than saved in the MPO.

onsite_terms
The OnsiteTerms ordered by category.

Type {‘category’: OnsiteTerms}

coupling_terms
The CouplingTerms ordered by category. In case we’ve added terms with more than 2 operators, e.g.
with add_multi_coupling(), the values of the dictionary may also be MultiCouplingTerms.

Type {‘category’: CouplingTerms}

exp_decaying_terms
Collection of coupling terms with exponentially decaying long-range interactions. Filled by
add_exponentially_decaying_coupling().

Type ExponentiallyDecayingTerms

explicit_plus_hc
If True, self represents the terms in onsite_terms, coupling_terms and
exp_decaying_terms plus their hermitian conjugate added. The flag will be carried on to the
MPO, which will have a reduced bond dimension if self.add_coupling(..., plus_hc=True)
was used. Note that add_onsite(), add_coupling(), add_multi_coupling() and

19.2. model 479

https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_exponentially_decaying_coupling() respect this flag, ensuring that the represented
Hamiltonian is indepentent of the explicit_plus_hc flag.

Type bool

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

480 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_onsite_terms()
Sum of all onsite_terms.

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a

19.2. model 481

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

482 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

19.2. model 483

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

484 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

19.2. model 485

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

486 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

19.2. model 487

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

19.2.2 MPOModel

• full name: tenpy.models.model.MPOModel

• parent module: tenpy.models.model

• type: class

Inheritance Diagram

Hdf5Exportable

Model

MPOModel

488 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Methods

MPOModel.__init__(lattice, H_MPO) Initialize self.
MPOModel.calc_H_bond_from_MPO([tol_zero]) Calculate the bond Hamiltonian from the MPO Hamil-

tonian.
MPOModel.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
MPOModel.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
MPOModel.group_sites([n, grouped_sites]) Modify self in place to group sites.
MPOModel.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
MPOModel.test_sanity()

Class Attributes and Properties

MPOModel.logger class attribute.

class tenpy.models.model.MPOModel(lattice, H_MPO)
Bases: tenpy.models.model.Model

Base class for a model with an MPO representation of the Hamiltonian.

In this class, the Hamiltonian gets represented by an MPO. Thus, instances of this class are suitable for MPO-
based algorithms like DMRG dmrg and MPO time evolution.

Parameters H_MPO (MPO) – The Hamiltonian rewritten as an MPO.

H_MPO
MPO representation of the Hamiltonian. If the explicit_plus_hc flag of the MPO is True, the represented
Hamiltonian is H_MPO + hermitian_cojugate(H_MPO).

Type tenpy.networks.mpo.MPO

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

19.2. model 489

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type list of GroupedSite

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

19.2.3 Model

• full name: tenpy.models.model.Model

• parent module: tenpy.models.model

• type: class

490 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

Hdf5Exportable

Model

Methods

Model.__init__(lattice) Initialize self.
Model.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
Model.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Model.group_sites([n, grouped_sites]) Modify self in place to group sites.
Model.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.

Class Attributes and Properties

Model.logger class attribute.

class tenpy.models.model.Model(lattice)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Base class for all models.

The common base to all models is the underlying Hilbert space and geometry, specified by a Lattice.

Parameters lattice (Lattice) – The lattice defining the geometry and the local Hilbert
space(s).

lat
The lattice defining the geometry and the local Hilbert space(s).

Type Lattice

dtype
The data type of the Hamiltonian

Type dtype

logger = <Logger tenpy.models.model.Model (WARNING)>
class attribute.

Type logging.Logger

Type An instance of a logger; see Logging and terminal output. NB

19.2. model 491

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/logging.html#logging.Logger

TeNPy, Release 0.8.1

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

492 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.2.4 MultiCouplingModel

• full name: tenpy.models.model.MultiCouplingModel

• parent module: tenpy.models.model

• type: class

Inheritance Diagram

CouplingModel

MultiCouplingModel

Model

Hdf5Exportable

Methods

MultiCouplingModel.__init__(lattice[, . . .]) Initialize self.
MultiCouplingModel.
add_coupling(strength, . . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

MultiCouplingModel.
add_coupling_term(. . . [, . . .])

Add a two-site coupling term on given MPS sites.

MultiCouplingModel.
add_exponentially_decaying_coupling(. . .)

Add an exponentially decaying long-range coupling.

MultiCouplingModel.
add_local_term(strength, term)

Add a single term to self.

MultiCouplingModel.
add_multi_coupling(. . . [, . . .])

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

MultiCouplingModel.
add_multi_coupling_term(. . .)

Add a general M-site coupling term on given MPS sites.

MultiCouplingModel.add_onsite(strength, u,
. . .)

Add onsite terms to onsite_terms.

continues on next page

19.2. model 493

TeNPy, Release 0.8.1

Table 33 – continued from previous page
MultiCouplingModel.
add_onsite_term(strength, . . .)

Add an onsite term on a given MPS site.

MultiCouplingModel.
all_coupling_terms()

Sum of all coupling_terms.

MultiCouplingModel.all_onsite_terms() Sum of all onsite_terms.
MultiCouplingModel.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
MultiCouplingModel.
calc_H_bond([tol_zero])

calculate H_bond from coupling_terms and
onsite_terms.

MultiCouplingModel.
calc_H_onsite([tol_zero])

Calculate H_onsite from self.onsite_terms.

MultiCouplingModel.
coupling_strength_add_ext_flux(. . .)

Add an external flux to the coupling strength.

MultiCouplingModel.
enlarge_mps_unit_cell([. . .])

Repeat the unit cell for infinite MPS boundary condi-
tions; in place.

MultiCouplingModel.from_hdf5(hdf5_loader,
. . .)

Load instance from a HDF5 file.

MultiCouplingModel.group_sites([n, . . .]) Modify self in place to group sites.
MultiCouplingModel.save_hdf5(hdf5_saver,
. . .)

Export self into a HDF5 file.

MultiCouplingModel.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

Class Attributes and Properties

MultiCouplingModel.logger class attribute.

class tenpy.models.model.MultiCouplingModel(lattice, bc_coupling=None, ex-
plicit_plus_hc=False)

Bases: tenpy.models.model.CouplingModel

Deprecated class which was a generalization of the CouplingModel.

Deprecated since version 0.7.2: In earlier versions of TeNPy, this class contained the methods
add_multi_coupling() and add_multi_coupling_term(). However, since we introduced the
MultiCouplingTerms, this separation within the Model class is no longer necessary. We hence merged
the MultiCouplingModel with the CouplingModel.

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

494 Chapter 19. models

TeNPy, Release 0.8.1

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

19.2. model 495

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

496 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

19.2. model 497

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

498 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

19.2. model 499

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

500 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])

(continues on next page)

19.2. model 501

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

(continued from previous page)

... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)

... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

502 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

19.2.5 NearestNeighborModel

• full name: tenpy.models.model.NearestNeighborModel

• parent module: tenpy.models.model

• type: class

Inheritance Diagram

Hdf5Exportable

Model

NearestNeighborModel

Methods

NearestNeighborModel.__init__(lattice,
H_bond)

Initialize self.

NearestNeighborModel.
bond_energies(psi)

Calculate bond energies <psi|H_bond|psi>.

NearestNeighborModel.
calc_H_MPO_from_bond([. . .])

Calculate the MPO Hamiltonian from the bond Hamil-
tonian.

NearestNeighborModel.
enlarge_mps_unit_cell([. . .])

Repeat the unit cell for infinite MPS boundary condi-
tions; in place.

NearestNeighborModel.
from_MPOModel(mpo_model)

Initialize a NearestNeighborModel from a model class
defining an MPO.

NearestNeighborModel.
from_hdf5(hdf5_loader, . . .)

Load instance from a HDF5 file.

NearestNeighborModel.group_sites([n,
. . .])

Modify self in place to group sites.

NearestNeighborModel.
save_hdf5(hdf5_saver, . . .)

Export self into a HDF5 file.

continues on next page

19.2. model 503

TeNPy, Release 0.8.1

Table 35 – continued from previous page
NearestNeighborModel.test_sanity()

NearestNeighborModel.
trivial_like_NNModel()

Return a NearestNeighborModel with same lattice, but
trivial (H=0) bonds.

Class Attributes and Properties

NearestNeighborModel.logger class attribute.

class tenpy.models.model.NearestNeighborModel(lattice, H_bond)
Bases: tenpy.models.model.Model

Base class for a model of nearest neigbor interactions w.r.t. the MPS index.

In this class, the Hamiltonian 𝐻 =
∑︀

𝑖𝐻𝑖,𝑖+1 is represented by “bond terms” 𝐻𝑖,𝑖+1 acting only on two
neighboring sites i and i+1, where i is an integer. Instances of this class are suitable for tebd.

Note that the “nearest-neighbor” in the name refers to the MPS index, not the lattice. In short, this works only
for 1-dimensional (1D) nearest-neighbor models: A 2D lattice is internally mapped to a 1D MPS “snake”, and
even a nearest-neighbor coupling in 2D becomes long-range in the MPS chain.

Parameters

• lattice (tenpy.model.lattice.Lattice) – The lattice defining the geometry
and the local Hilbert space(s).

• H_bond (list of {Array | None}) – The Hamiltonian rewritten as sum_i H_bond[i]
for MPS indices i. H_bond[i] acts on sites (i-1, i); we require len(H_bond) ==
lat.N_sites. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

H_bond
The Hamiltonian rewritten as sum_i H_bond[i] for MPS indices i. H_bond[i] acts on sites (i-1,
i), None represents 0. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*']. H_bond
is not affected by the explicit_plus_hc flag of a CouplingModel.

Type list of {Array | None}

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

504 Chapter 19. models

TeNPy, Release 0.8.1

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

19.2. model 505

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

Module description

This module contains some base classes for models.

A ‘model’ is supposed to represent a Hamiltonian in a generalized way. The Lattice specifies the geometry and
underlying Hilbert space, and is thus common to all models. It is needed to intialize the common base class Model
of all models.

Different algorithms require different representations of the Hamiltonian. For example for DMRG, the Hamiltonian
needs to be given as an MPO, while TEBD needs the Hamiltonian to be represented by ‘nearest neighbor’ bond
terms. This module contains the base classes defining these possible representations, namley the MPOModel and
NearestNeighborModel.

A particular model like the XXZChain should then yet another class derived from these classes. In it’s __init__, it
needs to explicitly call the MPOModel.__init__(self, lattice, H_MPO), providing an MPO represen-
tation of H, and also the NearestNeighborModel.__init__(self, lattice, H_bond), providing a
representation of H by bond terms H_bond.

The CouplingModel is the attempt to generalize the representation of H by explicitly specifying the couplings in
a general way, and providing functionality for converting them into H_MPO and H_bond. This allows to quickly
generate new model classes for a very broad class of Hamiltonians.

The CouplingMPOModel aims at structuring the initialization for most models and is used as base class in (most
of) the predefined models in TeNPy.

See also the introduction in Models.

506 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Specific models

tf_ising Prototypical example of a quantum model: the trans-
verse field Ising model.

xxz_chain Prototypical example of a 1D quantum model: the spin-
1/2 XXZ chain.

spins Nearest-neighbour spin-S models.
spins_nnn Next-Nearest-neighbour spin-S models.
fermions_spinless Spinless fermions with hopping and interaction.
hubbard Bosonic and fermionic Hubbard models.
hofstadter Cold atomic (Harper-)Hofstadter model on a strip or

cylinder.
haldane Bosonic and fermionic Haldane models.
toric_code Kitaev’s exactly solvable toric code model.

19.3 tf_ising

• full name: tenpy.models.tf_ising

• parent module: tenpy.models

• type: module

19.3. tf_ising 507

TeNPy, Release 0.8.1

Classes

CouplingMPOModel

TFIModel

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

TFIChain

TFIChain(model_params) The TFIModel on a Chain, suitable for TEBD.
TFIModel(model_params) Transverse field Ising model on a general lattice.

19.3.1 TFIChain

• full name: tenpy.models.tf_ising.TFIChain

• parent module: tenpy.models.tf_ising

• type: class

508 Chapter 19. models

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingMPOModel

TFIModel

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

TFIChain

Methods

TFIChain.__init__(model_params) Initialize self.
TFIChain.add_coupling(strength, u1, op1, u2,
. . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

TFIChain.add_coupling_term(strength, i, j,
. . .)

Add a two-site coupling term on given MPS sites.

TFIChain.add_exponentially_decaying_coupling(. . .)Add an exponentially decaying long-range coupling.
TFIChain.add_local_term(strength, term[,
. . .])

Add a single term to self.

TFIChain.add_multi_coupling(strength,
ops[, . . .])

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

TFIChain.add_multi_coupling_term(strength,
. . .)

Add a general M-site coupling term on given MPS sites.

TFIChain.add_onsite(strength, u, opname[, . . .]) Add onsite terms to onsite_terms.
continues on next page

19.3. tf_ising 509

TeNPy, Release 0.8.1

Table 39 – continued from previous page
TFIChain.add_onsite_term(strength, i, op[,
. . .])

Add an onsite term on a given MPS site.

TFIChain.all_coupling_terms() Sum of all coupling_terms.
TFIChain.all_onsite_terms() Sum of all onsite_terms.
TFIChain.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.
TFIChain.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
TFIChain.calc_H_MPO_from_bond([tol_zero]) Calculate the MPO Hamiltonian from the bond Hamil-

tonian.
TFIChain.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and

onsite_terms.
TFIChain.calc_H_bond_from_MPO([tol_zero]) Calculate the bond Hamiltonian from the MPO Hamil-

tonian.
TFIChain.calc_H_onsite([tol_zero]) Calculate H_onsite from self.onsite_terms.
TFIChain.coupling_strength_add_ext_flux(. . .)Add an external flux to the coupling strength.
TFIChain.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
TFIChain.from_MPOModel(mpo_model) Initialize a NearestNeighborModel from a model class

defining an MPO.
TFIChain.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
TFIChain.group_sites([n, grouped_sites]) Modify self in place to group sites.
TFIChain.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the

CouplingModel.
TFIChain.init_lattice(model_params) Initialize a lattice for the given model parameters.
TFIChain.init_sites(model_params) Define the local Hilbert space and operators; needs to

be implemented in subclasses.
TFIChain.init_terms(model_params) Add the onsite and coupling terms to the model; sub-

classes should implement this.
TFIChain.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
TFIChain.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
TFIChain.trivial_like_NNModel() Return a NearestNeighborModel with same lattice, but

trivial (H=0) bonds.

Class Attributes and Properties

TFIChain.force_default_lattice If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

TFIChain.logger class attribute.
TFIChain.verbose

class tenpy.models.tf_ising.TFIChain(model_params)
Bases: tenpy.models.tf_ising.TFIModel, tenpy.models.model.
NearestNeighborModel

The TFIModel on a Chain, suitable for TEBD.

See the TFIModel for the documentation of parameters.

default_lattice
alias of tenpy.models.lattice.Chain

510 Chapter 19. models

TeNPy, Release 0.8.1

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

19.3. tf_ising 511

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

512 Chapter 19. models

TeNPy, Release 0.8.1

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)

(continues on next page)

19.3. tf_ising 513

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

(continued from previous page)

>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length

514 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

19.3. tf_ising 515

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

516 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

19.3. tf_ising 517

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

518 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

19.3. tf_ising 519

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

520 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

Module description

Prototypical example of a quantum model: the transverse field Ising model.

Like the XXZChain, the transverse field ising chain TFIChain is contained in the more general SpinChain; the
idea is more to serve as a pedagogical example for a ‘model’.

We choose the field along z to allow to conserve the parity, if desired.

19.3. tf_ising 521

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

19.4 xxz_chain

• full name: tenpy.models.xxz_chain

• parent module: tenpy.models

• type: module

Classes

CouplingMPOModel

XXZChain2

CouplingModel

XXZChain

MPOModel

Model

NearestNeighborModel

Hdf5Exportable

XXZChain(model_params) Spin-1/2 XXZ chain with Sz conservation.
XXZChain2(model_params) Another implementation of the Spin-1/2 XXZ chain

with Sz conservation.

19.4.1 XXZChain2

• full name: tenpy.models.xxz_chain.XXZChain2

• parent module: tenpy.models.xxz_chain

• type: class

522 Chapter 19. models

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingMPOModel

XXZChain2

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

Methods

XXZChain2.__init__(model_params) Initialize self.
XXZChain2.add_coupling(strength, u1, op1, . . .) Add twosite coupling terms to the Hamiltonian, sum-

ming over lattice sites.
XXZChain2.add_coupling_term(strength, i, j,
. . .)

Add a two-site coupling term on given MPS sites.

XXZChain2.add_exponentially_decaying_coupling(. . .)Add an exponentially decaying long-range coupling.
XXZChain2.add_local_term(strength, term[,
. . .])

Add a single term to self.

XXZChain2.add_multi_coupling(strength,
ops)

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

XXZChain2.add_multi_coupling_term(strength,
. . .)

Add a general M-site coupling term on given MPS sites.

XXZChain2.add_onsite(strength, u, opname[,
. . .])

Add onsite terms to onsite_terms.

XXZChain2.add_onsite_term(strength, i, op[,
. . .])

Add an onsite term on a given MPS site.

XXZChain2.all_coupling_terms() Sum of all coupling_terms.
XXZChain2.all_onsite_terms() Sum of all onsite_terms.
XXZChain2.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.

continues on next page

19.4. xxz_chain 523

TeNPy, Release 0.8.1

Table 42 – continued from previous page
XXZChain2.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
XXZChain2.calc_H_MPO_from_bond([tol_zero]) Calculate the MPO Hamiltonian from the bond Hamil-

tonian.
XXZChain2.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and

onsite_terms.
XXZChain2.calc_H_bond_from_MPO([tol_zero]) Calculate the bond Hamiltonian from the MPO Hamil-

tonian.
XXZChain2.calc_H_onsite([tol_zero]) Calculate H_onsite from self.onsite_terms.
XXZChain2.coupling_strength_add_ext_flux(. . .)Add an external flux to the coupling strength.
XXZChain2.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
XXZChain2.from_MPOModel(mpo_model) Initialize a NearestNeighborModel from a model class

defining an MPO.
XXZChain2.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

XXZChain2.group_sites([n, grouped_sites]) Modify self in place to group sites.
XXZChain2.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the

CouplingModel.
XXZChain2.init_lattice(model_params) Initialize a lattice for the given model parameters.
XXZChain2.init_sites(model_params) Define the local Hilbert space and operators; needs to

be implemented in subclasses.
XXZChain2.init_terms(model_params) Add the onsite and coupling terms to the model; sub-

classes should implement this.
XXZChain2.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

XXZChain2.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
XXZChain2.trivial_like_NNModel() Return a NearestNeighborModel with same lattice, but

trivial (H=0) bonds.

Class Attributes and Properties

XXZChain2.default_lattice The default lattice class or class name to be used in
init_lattice().

XXZChain2.force_default_lattice If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

XXZChain2.logger class attribute.
XXZChain2.verbose

class tenpy.models.xxz_chain.XXZChain2(model_params)
Bases: tenpy.models.model.CouplingMPOModel, tenpy.models.model.
NearestNeighborModel

Another implementation of the Spin-1/2 XXZ chain with Sz conservation.

This implementation takes the same parameters as the XXZChain, but is implemented based on the
CouplingMPOModel.

Parameters model_params (dict | Config) – See XXZChain

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

524 Chapter 19. models

TeNPy, Release 0.8.1

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

19.4. xxz_chain 525

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

526 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

19.4. xxz_chain 527

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength

528 Chapter 19. models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

19.4. xxz_chain 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

530 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

19.4. xxz_chain 531

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:

(continues on next page)

532 Chapter 19. models

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

(continued from previous page)

... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

19.4. xxz_chain 533

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

534 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

Module description

Prototypical example of a 1D quantum model: the spin-1/2 XXZ chain.

The XXZ chain is contained in the more general SpinChain; the idea of this module is more to serve as a pedagogical
example for a model.

19.5 spins

• full name: tenpy.models.spins

• parent module: tenpy.models

• type: module

19.5. spins 535

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Classes

CouplingMPOModel

SpinModel

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

SpinChain

SpinChain(model_params) The SpinModel on a Chain, suitable for TEBD.
SpinModel(model_params) Spin-S sites coupled by nearest neighbour interactions.

19.5.1 SpinChain

• full name: tenpy.models.spins.SpinChain

• parent module: tenpy.models.spins

• type: class

536 Chapter 19. models

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingMPOModel

SpinModel

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

SpinChain

Methods

SpinChain.__init__(model_params) Initialize self.
SpinChain.add_coupling(strength, u1, op1, . . .) Add twosite coupling terms to the Hamiltonian, sum-

ming over lattice sites.
SpinChain.add_coupling_term(strength, i, j,
. . .)

Add a two-site coupling term on given MPS sites.

SpinChain.add_exponentially_decaying_coupling(. . .)Add an exponentially decaying long-range coupling.
SpinChain.add_local_term(strength, term[,
. . .])

Add a single term to self.

SpinChain.add_multi_coupling(strength,
ops)

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

SpinChain.add_multi_coupling_term(strength,
. . .)

Add a general M-site coupling term on given MPS sites.

SpinChain.add_onsite(strength, u, opname[,
. . .])

Add onsite terms to onsite_terms.

continues on next page

19.5. spins 537

TeNPy, Release 0.8.1

Table 45 – continued from previous page
SpinChain.add_onsite_term(strength, i, op[,
. . .])

Add an onsite term on a given MPS site.

SpinChain.all_coupling_terms() Sum of all coupling_terms.
SpinChain.all_onsite_terms() Sum of all onsite_terms.
SpinChain.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.
SpinChain.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
SpinChain.calc_H_MPO_from_bond([tol_zero]) Calculate the MPO Hamiltonian from the bond Hamil-

tonian.
SpinChain.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and

onsite_terms.
SpinChain.calc_H_bond_from_MPO([tol_zero]) Calculate the bond Hamiltonian from the MPO Hamil-

tonian.
SpinChain.calc_H_onsite([tol_zero]) Calculate H_onsite from self.onsite_terms.
SpinChain.coupling_strength_add_ext_flux(. . .)Add an external flux to the coupling strength.
SpinChain.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
SpinChain.from_MPOModel(mpo_model) Initialize a NearestNeighborModel from a model class

defining an MPO.
SpinChain.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

SpinChain.group_sites([n, grouped_sites]) Modify self in place to group sites.
SpinChain.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the

CouplingModel.
SpinChain.init_lattice(model_params) Initialize a lattice for the given model parameters.
SpinChain.init_sites(model_params) Define the local Hilbert space and operators; needs to

be implemented in subclasses.
SpinChain.init_terms(model_params) Add the onsite and coupling terms to the model; sub-

classes should implement this.
SpinChain.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

SpinChain.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
SpinChain.trivial_like_NNModel() Return a NearestNeighborModel with same lattice, but

trivial (H=0) bonds.

Class Attributes and Properties

SpinChain.force_default_lattice If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

SpinChain.logger class attribute.
SpinChain.verbose

class tenpy.models.spins.SpinChain(model_params)
Bases: tenpy.models.spins.SpinModel, tenpy.models.model.NearestNeighborModel

The SpinModel on a Chain, suitable for TEBD.

See the SpinModel for the documentation of parameters.

default_lattice
alias of tenpy.models.lattice.Chain

538 Chapter 19. models

TeNPy, Release 0.8.1

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

19.5. spins 539

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

540 Chapter 19. models

TeNPy, Release 0.8.1

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)

(continues on next page)

19.5. spins 541

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

(continued from previous page)

>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length

542 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

19.5. spins 543

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

544 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

19.5. spins 545

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

546 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

19.5. spins 547

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

548 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

Module description

Nearest-neighbour spin-S models.

Uniform lattice of spin-S sites, coupled by nearest-neighbour interactions.

19.6 spins_nnn

• full name: tenpy.models.spins_nnn

• parent module: tenpy.models

• type: module

19.6. spins_nnn 549

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Classes

CouplingMPOModel

SpinChainNNNSpinChainNNN2

CouplingModel MPOModel

Model

NearestNeighborModel

Hdf5Exportable

SpinChainNNN(model_params) Spin-S sites coupled by (next-)nearest neighbour inter-
actions on a GroupedSite.

SpinChainNNN2(model_params) Spin-S sites coupled by next-nearest neighbour interac-
tions.

Module description

Next-Nearest-neighbour spin-S models.

Uniform lattice of spin-S sites, coupled by next-nearest-neighbour interactions. We have two variants implementing
the same hamiltonian. The SpinChainNNN uses the GroupedSite to keep it a NearestNeighborModel suit-
able for TEBD, while the SpinChainNNN2 just involves longer-range couplings in the MPO. The latter is preferable
for pure DMRG calculations and avoids having to add each of the short range couplings twice for the grouped sites.

Note that you can also get a NearestNeighborModel for TEBD from the latter by using group_sites() and
from_MPOModel(). An example for such a case is given in the file examples/c_tebd.py.

550 Chapter 19. models

TeNPy, Release 0.8.1

19.7 fermions_spinless

• full name: tenpy.models.fermions_spinless

• parent module: tenpy.models

• type: module

Classes

CouplingMPOModel

FermionModel

CouplingModel MPOModel

Model

NearestNeighborModel

FermionChain

Hdf5Exportable

FermionChain(model_params) The FermionModel on a Chain, suitable for TEBD.
FermionModel(model_params) Spinless fermions with particle number conservation.

19.7. fermions_spinless 551

TeNPy, Release 0.8.1

19.7.1 FermionChain

• full name: tenpy.models.fermions_spinless.FermionChain

• parent module: tenpy.models.fermions_spinless

• type: class

Inheritance Diagram

CouplingMPOModel

FermionModel

CouplingModel MPOModel

Model

NearestNeighborModel

FermionChain

Hdf5Exportable

Methods

FermionChain.__init__(model_params) Initialize self.
FermionChain.add_coupling(strength, u1,
op1, . . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

FermionChain.add_coupling_term(strength,
i, . . .)

Add a two-site coupling term on given MPS sites.

FermionChain.add_exponentially_decaying_coupling(. . .)Add an exponentially decaying long-range coupling.
continues on next page

552 Chapter 19. models

TeNPy, Release 0.8.1

Table 49 – continued from previous page
FermionChain.add_local_term(strength,
term)

Add a single term to self.

FermionChain.add_multi_coupling(strength,
ops)

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

FermionChain.add_multi_coupling_term(. . . [,
. . .])

Add a general M-site coupling term on given MPS sites.

FermionChain.add_onsite(strength, u, op-
name)

Add onsite terms to onsite_terms.

FermionChain.add_onsite_term(strength, i,
op)

Add an onsite term on a given MPS site.

FermionChain.all_coupling_terms() Sum of all coupling_terms.
FermionChain.all_onsite_terms() Sum of all onsite_terms.
FermionChain.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.
FermionChain.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
FermionChain.calc_H_MPO_from_bond([tol_zero])Calculate the MPO Hamiltonian from the bond Hamil-

tonian.
FermionChain.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and

onsite_terms.
FermionChain.calc_H_bond_from_MPO([tol_zero])Calculate the bond Hamiltonian from the MPO Hamil-

tonian.
FermionChain.calc_H_onsite([tol_zero]) Calculate H_onsite from self.onsite_terms.
FermionChain.coupling_strength_add_ext_flux(. . .)Add an external flux to the coupling strength.
FermionChain.enlarge_mps_unit_cell([factor])Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
FermionChain.from_MPOModel(mpo_model) Initialize a NearestNeighborModel from a model class

defining an MPO.
FermionChain.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

FermionChain.group_sites([n,
grouped_sites])

Modify self in place to group sites.

FermionChain.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the
CouplingModel.

FermionChain.init_lattice(model_params) Initialize a lattice for the given model parameters.
FermionChain.init_sites(model_params) Define the local Hilbert space and operators; needs to

be implemented in subclasses.
FermionChain.init_terms(model_params) Add the onsite and coupling terms to the model; sub-

classes should implement this.
FermionChain.save_hdf5(hdf5_saver, h5gr,
subpath)

Export self into a HDF5 file.

FermionChain.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
FermionChain.trivial_like_NNModel() Return a NearestNeighborModel with same lattice, but

trivial (H=0) bonds.

19.7. fermions_spinless 553

TeNPy, Release 0.8.1

Class Attributes and Properties

FermionChain.force_default_lattice If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

FermionChain.logger class attribute.
FermionChain.verbose

class tenpy.models.fermions_spinless.FermionChain(model_params)
Bases: tenpy.models.fermions_spinless.FermionModel, tenpy.models.model.
NearestNeighborModel

The FermionModel on a Chain, suitable for TEBD.

See the FermionModel for the documentation of parameters.

default_lattice
alias of tenpy.models.lattice.Chain

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator

554 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

19.7. fermions_spinless 555

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

556 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

19.7. fermions_spinless 557

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

558 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

19.7. fermions_spinless 559

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

560 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

19.7. fermions_spinless 561

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

562 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

19.7. fermions_spinless 563

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

564 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Module description

Spinless fermions with hopping and interaction.

Todo: add further terms (e.g. c^dagger c^dagger + h.c.) to the Hamiltonian.

19.8 hubbard

• full name: tenpy.models.hubbard

• parent module: tenpy.models

• type: module

Classes

BoseHubbardChain

BoseHubbardModel NearestNeighborModel

FermiHubbardChain

CouplingMPOModel

FermiHubbardModel

CouplingModelMPOModel

Model

Hdf5Exportable

19.8. hubbard 565

TeNPy, Release 0.8.1

BoseHubbardChain(model_params) The BoseHubbardModel on a Chain, suitable for
TEBD.

BoseHubbardModel(model_params) Spinless Bose-Hubbard model.
FermiHubbardChain(model_params) The FermiHubbardModel on a Chain, suitable for

TEBD.
FermiHubbardModel(model_params) Spin-1/2 Fermi-Hubbard model.

19.8.1 BoseHubbardChain

• full name: tenpy.models.hubbard.BoseHubbardChain

• parent module: tenpy.models.hubbard

• type: class

Inheritance Diagram

BoseHubbardChain

BoseHubbardModel

NearestNeighborModel CouplingMPOModel

CouplingModel MPOModel

Model

Hdf5Exportable

566 Chapter 19. models

TeNPy, Release 0.8.1

Methods

BoseHubbardChain.__init__(model_params) Initialize self.
BoseHubbardChain.add_coupling(strength,
u1, . . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

BoseHubbardChain.
add_coupling_term(strength, . . .)

Add a two-site coupling term on given MPS sites.

BoseHubbardChain.
add_exponentially_decaying_coupling(. . .)

Add an exponentially decaying long-range coupling.

BoseHubbardChain.
add_local_term(strength, term)

Add a single term to self.

BoseHubbardChain.
add_multi_coupling(. . . [, . . .])

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

BoseHubbardChain.
add_multi_coupling_term(. . .)

Add a general M-site coupling term on given MPS sites.

BoseHubbardChain.add_onsite(strength, u,
opname)

Add onsite terms to onsite_terms.

BoseHubbardChain.
add_onsite_term(strength, i, op)

Add an onsite term on a given MPS site.

BoseHubbardChain.all_coupling_terms() Sum of all coupling_terms.
BoseHubbardChain.all_onsite_terms() Sum of all onsite_terms.
BoseHubbardChain.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.
BoseHubbardChain.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
BoseHubbardChain.
calc_H_MPO_from_bond([tol_zero])

Calculate the MPO Hamiltonian from the bond Hamil-
tonian.

BoseHubbardChain.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and
onsite_terms.

BoseHubbardChain.
calc_H_bond_from_MPO([tol_zero])

Calculate the bond Hamiltonian from the MPO Hamil-
tonian.

BoseHubbardChain.
calc_H_onsite([tol_zero])

Calculate H_onsite from self.onsite_terms.

BoseHubbardChain.
coupling_strength_add_ext_flux(. . .)

Add an external flux to the coupling strength.

BoseHubbardChain.
enlarge_mps_unit_cell([factor])

Repeat the unit cell for infinite MPS boundary condi-
tions; in place.

BoseHubbardChain.
from_MPOModel(mpo_model)

Initialize a NearestNeighborModel from a model class
defining an MPO.

BoseHubbardChain.from_hdf5(hdf5_loader,
. . .)

Load instance from a HDF5 file.

BoseHubbardChain.group_sites([n,
grouped_sites])

Modify self in place to group sites.

BoseHubbardChain.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the
CouplingModel.

BoseHubbardChain.
init_lattice(model_params)

Initialize a lattice for the given model parameters.

BoseHubbardChain.
init_sites(model_params)

Define the local Hilbert space and operators; needs to
be implemented in subclasses.

BoseHubbardChain.
init_terms(model_params)

Add the onsite and coupling terms to the model; sub-
classes should implement this.

BoseHubbardChain.save_hdf5(hdf5_saver,
h5gr, . . .)

Export self into a HDF5 file.

continues on next page

19.8. hubbard 567

TeNPy, Release 0.8.1

Table 52 – continued from previous page
BoseHubbardChain.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
BoseHubbardChain.
trivial_like_NNModel()

Return a NearestNeighborModel with same lattice, but
trivial (H=0) bonds.

Class Attributes and Properties

BoseHubbardChain.default_lattice The default lattice class or class name to be used in
init_lattice().

BoseHubbardChain.
force_default_lattice

If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

BoseHubbardChain.logger class attribute.
BoseHubbardChain.verbose

class tenpy.models.hubbard.BoseHubbardChain(model_params)
Bases: tenpy.models.hubbard.BoseHubbardModel, tenpy.models.model.
NearestNeighborModel

The BoseHubbardModel on a Chain, suitable for TEBD.

See the BoseHubbardModel for the documentation of parameters.

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

568 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

19.8. hubbard 569

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

570 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

19.8. hubbard 571

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

572 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

19.8. hubbard 573

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

574 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

19.8. hubbard 575

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

576 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

19.8. hubbard 577

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

578 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

19.8.2 FermiHubbardChain

• full name: tenpy.models.hubbard.FermiHubbardChain

• parent module: tenpy.models.hubbard

• type: class

19.8. hubbard 579

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingMPOModel

FermiHubbardModel

CouplingModel MPOModel

Model

NearestNeighborModel

FermiHubbardChain

Hdf5Exportable

Methods

FermiHubbardChain.__init__(model_params) Initialize self.
FermiHubbardChain.add_coupling(strength,
u1, . . .)

Add twosite coupling terms to the Hamiltonian, sum-
ming over lattice sites.

FermiHubbardChain.
add_coupling_term(. . . [, . . .])

Add a two-site coupling term on given MPS sites.

FermiHubbardChain.
add_exponentially_decaying_coupling(. . .)

Add an exponentially decaying long-range coupling.

FermiHubbardChain.
add_local_term(strength, term)

Add a single term to self.

FermiHubbardChain.
add_multi_coupling(. . . [, . . .])

Add multi-site coupling terms to the Hamiltonian, sum-
ming over lattice sites.

FermiHubbardChain.
add_multi_coupling_term(. . .)

Add a general M-site coupling term on given MPS sites.

continues on next page

580 Chapter 19. models

TeNPy, Release 0.8.1

Table 54 – continued from previous page
FermiHubbardChain.add_onsite(strength, u,
opname)

Add onsite terms to onsite_terms.

FermiHubbardChain.
add_onsite_term(strength, . . .)

Add an onsite term on a given MPS site.

FermiHubbardChain.
all_coupling_terms()

Sum of all coupling_terms.

FermiHubbardChain.all_onsite_terms() Sum of all onsite_terms.
FermiHubbardChain.bond_energies(psi) Calculate bond energies <psi|H_bond|psi>.
FermiHubbardChain.calc_H_MPO([tol_zero]) Calculate MPO representation of the Hamiltonian.
FermiHubbardChain.
calc_H_MPO_from_bond([. . .])

Calculate the MPO Hamiltonian from the bond Hamil-
tonian.

FermiHubbardChain.calc_H_bond([tol_zero]) calculate H_bond from coupling_terms and
onsite_terms.

FermiHubbardChain.
calc_H_bond_from_MPO([. . .])

Calculate the bond Hamiltonian from the MPO Hamil-
tonian.

FermiHubbardChain.
calc_H_onsite([tol_zero])

Calculate H_onsite from self.onsite_terms.

FermiHubbardChain.
coupling_strength_add_ext_flux(. . .)

Add an external flux to the coupling strength.

FermiHubbardChain.
enlarge_mps_unit_cell([factor])

Repeat the unit cell for infinite MPS boundary condi-
tions; in place.

FermiHubbardChain.
from_MPOModel(mpo_model)

Initialize a NearestNeighborModel from a model class
defining an MPO.

FermiHubbardChain.from_hdf5(hdf5_loader,
. . .)

Load instance from a HDF5 file.

FermiHubbardChain.group_sites([n,
grouped_sites])

Modify self in place to group sites.

FermiHubbardChain.init_H_from_terms() Initialize H_MPO (and H_bond) from the terms of the
CouplingModel.

FermiHubbardChain.
init_lattice(model_params)

Initialize a lattice for the given model parameters.

FermiHubbardChain.
init_sites(model_params)

Define the local Hilbert space and operators; needs to
be implemented in subclasses.

FermiHubbardChain.
init_terms(model_params)

Add the onsite and coupling terms to the model; sub-
classes should implement this.

FermiHubbardChain.save_hdf5(hdf5_saver,
. . .)

Export self into a HDF5 file.

FermiHubbardChain.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
FermiHubbardChain.
trivial_like_NNModel()

Return a NearestNeighborModel with same lattice, but
trivial (H=0) bonds.

Class Attributes and Properties

FermiHubbardChain.
force_default_lattice

If True, init_lattice() asserts that the initialized
lattice is (a subclass of) default_lattice

FermiHubbardChain.logger class attribute.
FermiHubbardChain.verbose

class tenpy.models.hubbard.FermiHubbardChain(model_params)

19.8. hubbard 581

TeNPy, Release 0.8.1

Bases: tenpy.models.hubbard.FermiHubbardModel, tenpy.models.model.
NearestNeighborModel

The FermiHubbardModel on a Chain, suitable for TEBD.

See the FermiHubbardModel for the documentation of parameters.

default_lattice
alias of tenpy.models.lattice.Chain

add_coupling(strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True,
raise_op2_left=False, category=None, plus_hc=False)

Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form
∑︀

𝑥0,...,𝑥𝑑𝑖𝑚−1
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1, where OP0

:= lat.unit_cell[u0].get_op(op0) acts on the site (x_0, ..., x_{dim-1}, u1),
and OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0+dx[0], ...,
x_{dim-1}+dx[dim-1], u1). Possible combinations x_0, ..., x_{dim-1} are determined
from the boundary conditions in possible_couplings().

The coupling strength may vary spatially if the given strength is a numpy array. The correct shape of
this array is the coupling_shape returned by tenpy.models.lattice.coupling_shape() and
depends on the boundary conditions. The shift(...) depends on dx, and is chosen such that the first
entry strength[0, 0, ...] of strength is the prefactor for the first possible coupling fitting into the
lattice if you imagine open boundary conditions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version
1.0.0.

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially (see
above). If an array of smaller size is provided, it gets tiled to the required shape.

• u1 (int) – Picks the site lat.unit_cell[u1] for OP1.

• op1 (str) – Valid operator name of an onsite operator in lat.unit_cell[u1] for
OP1.

• u2 (int) – Picks the site lat.unit_cell[u2] for OP2.

• op2 (str) – Valid operator name of an onsite operator in lat.unit_cell[u2] for
OP2.

• dx (iterable of int) – Translation vector (of the unit cell) between OP1 and OP2.
For a 1D lattice, a single int is also fine.

• op_string (str | None) – Name of an operator to be used between the OP1 and
OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator
should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-
Wigner string is needed, using op_needs_JW().

• str_on_first (bool) – Whether the provided op_string should also act on the first
site. This option should be chosen as True for Jordan-Wigner strings. When handling
Jordan-Wigner strings we need to extend the op_string to also act on the ‘left’, first site
(in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a
well-defined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts
first on a given state). We follow the convention that op2 acts first (in the physical sense),
independent of the MPS ordering. Deprecated.

582 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• raise_op2_left (bool) – Raise an error when op2 appears left of op1 (in the sense
of the MPS ordering given by the lattice). Deprecated.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

When initializing a model, you can add a term 𝐽
∑︀

<𝑖,𝑗> 𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 on all nearest-neighbor bonds of the lattice

like this:

>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)

The strength can be an array, which gets tiled to the correct shape. For example, in a 1D Chain with an
even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and
weak couplings with a line like:

>>> self.add_coupling([1.5, 1.], u1, 'Sz', u2, 'Sz', dx)

Make sure to use the plus_hc argument if necessary, e.g. for hoppings:

>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx, plus_hc=True)

Alternatively, you can add the hermitian conjugate terms explictly. The correct way is to complex con-
jugate the strength, take the hermitian conjugate of the operators and swap the order (including a swap
u1 <-> u2), and use the opposite direction -dx, i.e. the h.c. of add_coupling(t, u1, 'A', u2,
'B', dx) is add_coupling(np.conj(t), u2, hc('B'), u1, hc('A'), -dx), where
hc takes the hermitian conjugate of the operator names, see get_hc_op_name(). For spin-less fermions
(FermionSite), this would be

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.

With spin-full fermions (SpinHalfFermions), it could be:

>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
→˓Cdagger_down C_up

Note that the Jordan-Wigner strings for the fermions are added automatically!

See also:

add_onsite Add terms acting on one site only.

add_multi_coupling_term for terms on more than two sites.

add_coupling_term Add a single term without summing over �⃗�.

19.8. hubbard 583

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id', category=None, plus_hc=False)
Add a two-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_coupling_term(...).

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op1}_i {op2}_j".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string=None, plus_hc=False)

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∑︁
𝑖<𝑗

𝜆|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems going beyond the MPS unit cell. Moreover, note that the distance in the exponent is the
distance within subsites.

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (None | str) – The operator to be inserted between A and B; If None,
this function checks whether a fermionic "JW" string is needed for the given operators; in
this case the right op_j acts first.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

584 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Examples

At least for simple enough 1D chains (or ladders), you can use fit_with_sum_of_exp() to approx-
imate a long-range function with a few sum of exponentials and then add them with this function.

>>> def decay(x):
... return np.exp(-0.1*x) / x**2
>>> from tenpy.tools.fit import fit_with_sum_of_exp, sum_of_exp
>>> n_exp = 5
>>> fit_range = 50
>>> lam, pref = fit_with_sum_of_exp(decay, n_exp, fit_range)
>>> x = np.arange(1, fit_range + 1)
>>> print('error in fit: {0:.3e}'.format(np.sum(np.abs(decay(x) - sum_of_
→˓exp(lam, pref, x)))))
error in fit: 1.073e-04
>>> for pr, la in zip(pref, lam):
... self.add_exponentially_decaying_coupling(pr, la, 'N', 'N')

add_local_term(strength, term, category=None, plus_hc=False)
Add a single term to self.

The repesented term is strength times the product of the operators given in terms. Each operator is specified
by the name and the site it acts on; the latter given by a lattice index, see Lattice.

Depending on the length of term, it can add an onsite term or a coupling term to onsite_terms or
coupling_terms, respectively.

Parameters

• strength (float/complex) – The prefactor of the term.

• term (list of (str, array_like)) – List of tuples (opname, lat_idx)
where opname is a string describing the operator acting on the site given by the lattice
index lat_idx. Here, lat_idx is for example [x, y, u] for a 2D lattice, with u being the index
within the unit cell.

• category – Descriptive name used as key for onsite_terms or
coupling_terms.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

add_multi_coupling(strength, ops, _deprecate_1='DEPRECATED', _depre-
cate_2='DEPRECATED', op_string=None, category=None, plus_hc=False)

Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form 𝑠𝑢𝑚�⃗�𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑠ℎ𝑖𝑓𝑡(�⃗�)] * 𝑂𝑃0 * 𝑂𝑃1 * ... * 𝑂𝑃𝑀−1, involving M
operators. Here, 𝑂𝑃𝑚 stands for the operator defined by the m-th tuple (opname, dx, u) given in the
argument ops, which determines the position �⃗� + 𝑑𝑥 and unit-cell index u of the site it acts on; the actual
operator is given by self.lat.unit_cell[u].get_op(opname).

The coupling strength may vary spatially if the given strength is a numpy array. The
correct shape of this array is the coupling_shape returned by tenpy.models.lattice.
possible_multi_couplings() and depends on the boundary conditions. The shift(...) de-
pends on the dx entries of ops and is chosen such that the first entry strength[0, 0, ...] of strength
is the prefactor for the first possible coupling fitting into the lattice if you imagine open boundary condi-
tions.

The necessary terms are just added to coupling_terms; this function does not rebuild the MPO.

19.8. hubbard 585

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Deprecated since version 0.6.0: We switched from the three arguments u0, op0 and other_op with
other_ops=[(u1, op1, dx1), (op2, u2, dx2), ...] to a single, equivalent argment ops
which should now read ops=[(op0, dx0, u0), (op1, dx1, u1), (op2, dx2, u2), .
..], where dx0 = [0]*self.lat.dim. Note the changed order inside the tuples!

Parameters

• strength (scalar | array) – Prefactor of the coupling. May vary spatially, and is
tiled to the required shape.

• ops (list of (opname, dx, u)) – Each tuple determines one operator of the coupling,
see the description above. opname (str) is the name of the operator, dx (list of length
lat.dim) is a translation vector, and u (int) is the index of lat.unit_cell on which the operator
acts. The first entry of ops corresponds to 𝑂𝑃0 and acts last in the physical sense.

• op_string (str | None) – If a string is given, we use this as the name of an operator
to be used inbetween the operators, excluding the sites on which any operators act. This
operator should be defined on all sites in the unit cell.

If None, auto-determine whether a Jordan-Wigner string is needed (using
op_needs_JW()) for each of the segments inbetween the operators and also on
the sites of the left operators.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to a
string of the form "{op0}_i {other_ops[0]}_j {other_ops[1]}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

Examples

A call to add_coupling() with arguments add_coupling(strength, u1, 'A', u2,
'B', dx) is equivalent to the following:

>>> dx_0 = [0] * self.lat.dim # = [0] for a 1D lattice, [0, 0] in 2D
>>> self.add_multi_coupling(strength, [('A', dx_0, u1), ('B', dx, u2)])

To explicitly add the hermitian conjugate (instead of simply using plus_hc = True), you need to take the
complex conjugate of the strength, reverse the order of the operators and take the hermitian conjugates of
the individual operator names (indicated by the hc(...), see get_hc_op_name()):

>>> self.add_multi_coupling(np.conj(strength), [(hc('B'), dx, u2), (hc('A'),
→˓dx_0, u1)])

See also:

add_onsite Add terms acting on one site only.

add_coupling Add terms acting on two sites.

add_multi_coupling_term Add a single term, not summing over the possible �⃗�.

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string, category=None, plus_hc=False)
Add a general M-site coupling term on given MPS sites.

Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

586 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Warning: This function does not handle Jordan-Wigner strings! You might want to use
add_local_term() instead.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and
that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string (list of str) – Names of the operator to be inserted between the oper-
ators, e.g., op_string[0] is inserted between i and j.

• category (str) – Descriptive name used as key for coupling_terms. Defaults to
a string of the form "{op0}_i {op1}_j {op2}_k ...".

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

add_onsite(strength, u, opname, category=None, plus_hc=False)
Add onsite terms to onsite_terms.

Adds
∑︀

�⃗� 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ[�⃗�] * 𝑂𝑃 to the represented Hamiltonian, where the operator OP=lat.
unit_cell[u].get_op(opname) acts on the site given by a lattice index (x_0, ...,
x_{dim-1}, u),

The necessary terms are just added to onsite_terms; doesn’t rebuild the MPO.

Parameters

• strength (scalar | array) – Prefactor of the onsite term. May vary spatially. If
an array of smaller size is provided, it gets tiled to the required shape.

• u (int) – Picks a Site lat.unit_cell[u] out of the unit cell.

• opname (str) – valid operator name of an onsite operator in lat.unit_cell[u].

• category (str) – Descriptive name used as key for onsite_terms. Defaults to
opname.

• plus_hc (bool) – If True, the hermitian conjugate of the terms is added automatically.

See also:

add_coupling Add a terms acting on two sites.

add_onsite_term Add a single term without summing over 𝑣𝑒𝑐𝑥.

add_onsite_term(strength, i, op, category=None, plus_hc=False)
Add an onsite term on a given MPS site.

Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

19.8. hubbard 587

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• op (str) – Name of the involved operator.

• category (str) – Descriptive name used as key for onsite_terms. Defaults to op.

• plus_hc (bool) – If True, the hermitian conjugate of the term is added automatically.

all_coupling_terms()
Sum of all coupling_terms.

all_onsite_terms()
Sum of all onsite_terms.

bond_energies(psi)
Calculate bond energies <psi|H_bond|psi>.

Parameters psi (MPS) – The MPS for which the bond energies should be calculated.

Returns E_bond – List of bond energies: for finite bc, E_Bond[i] is the energy of bond i,
i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond[i] is the
energy of bond i-1, i.

Return type 1D ndarray

calc_H_MPO(tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.

Uses onsite_terms and coupling_terms to build an MPOGraph (and then an MPO).

Parameters tol_zero (float) – Prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_MPO_from_bond(tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_MPO – MPO representation of the Hamiltonian.

Return type MPO

calc_H_bond(tol_zero=1e-15)
calculate H_bond from coupling_terms and onsite_terms.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_bond_from_MPO(tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters tol_zero (float) – Arrays with norm < tol_zero are considered to be zero.

Returns H_bond – Bond terms as required by the constructor of NearestNeighborModel.
Legs are ['p0', 'p0*', 'p1', 'p1*']

Return type list of Array

588 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

:raises ValueError : if the Hamiltonian contains longer-range terms.:

calc_H_onsite(tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this
function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self.
lat.mps_sites()). You might also want to take explicit_plus_hc into account.

Parameters tol_zero (float) – prefactors with abs(strength) < tol_zero are
considered to be zero.

Returns

• H_onsite (list of npc.Array)

• onsite terms of the Hamiltonian. If explicit_plus_hc is True, – Hermitian conju-
gates of the onsite terms will be included.

coupling_strength_add_ext_flux(strength, dx, phase)
Add an external flux to the coupling strength.

When performing DMRG on a “cylinder” geometry, it might be useful to put an “external flux” through
the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the
external flux [[resta1998]]. This is also called “twisted boundary conditions” in literature. This function
adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction
around the cylinder pick up exp(+i phase).

Warning: For the sign of phase it is important that you consistently use the creation operator as op1
and the annihilation operator as op2 in add_coupling().

Parameters

• strength (scalar | array) – The strength to be used in add_coupling(),
when no external flux would be present.

• dx (iterable of int) – Translation vector (of the unit cell) between op1 and op2 in
add_coupling().

• phase (iterable of float) – The phase of the external flux for hopping in each
direction of the lattice. E.g., if you want flux through the cylinder on which you have an
infinite MPS, you should give phase=[0, phi] souch that particles pick up a phase
phi when hopping around the cylinder.

Returns strength – The strength array to be used as strength in add_coupling() with the
given dx.

Return type complex array

Examples

Let’s say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions
with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the
cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:

(continues on next page)

19.8. hubbard 589

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

(continued from previous page)

... strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx,
→˓ [0, phi])
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

This has to be done after finishing initialization and can not be reverted.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

classmethod from_MPOModel(mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.

This is especially usefull in combination with MPOModel.group_sites().

Parameters mpo_model (MPOModel) – A model instance implementing the MPO. Does not
need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

>>> grouped_sites = nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1

Yet, TEBD will not yet work, as the model doesn’t define H_bond. However, we can initialize a Nearest-
NeighborModel from the MPO:

>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
>>> isinstance(nnn_chain_for_tebd, NearestNeighborModel)
True

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

590 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

group_sites(n=2, grouped_sites=None)
Modify self in place to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter
decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

• n (int) – Number of sites to be grouped together.

• grouped_sites (None | list of GroupedSite) – The sites grouped together.

Returns grouped_sites – The sites grouped together.

Return type list of GroupedSite

init_H_from_terms()
Initialize H_MPO (and H_bond) from the terms of the CouplingModel.

This function is called automatically during CouplingMPOModel.__init__.

If you use one of the add_* methods of the CouplingModel after initialization, you will need to call
init_H_from_terms in the end by yourself, in order to update the H_MPO (and possibly H_bond) repre-
sentations. (You should get a warning about this. . . The way to avoid it is to initialize all the terms in
init_terms by defining your own model, as outlined in Models.

init_lattice(model_params)
Initialize a lattice for the given model parameters.

This function reads out the model parameter lattice. This can be a full Lattice instance, in which case
it is just returned without further action. Alternatively, the lattice parameter can be a string giving the
name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the
lattice, this requires different model parameters.

Parameters model_params (dict) – The model parameters given to __init__.

Returns lat – An initialized lattice.

Return type Lattice

Options

option CouplingMPOModel.lattice: str | Lattice
The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, directly a subclass of
Lattice instead of the name. Alternatively, a (possibly self-defined) Lattice instance. In the
latter case, no further parameters are read out.

option CouplingMPOModel.bc_MPS: str
Boundary conditions for the MPS.

option CouplingMPOModel.order: str
The order of sites within the lattice for non-trivial lattices, e.g, 'default', 'snake', see
ordering(). Only used if lattice is a string.

19.8. hubbard 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

option CouplingMPOModel.L: int
The length in x-direction; only read out for 1D lattices. For an infinite system the length of the unit
cell.

option CouplingMPOModel.Lx: int
option CouplingMPOModel.Ly: int

The length in x- and y-direction; only read out for 2D lattices. For "infinite" bc_MPS, the system
is infinite in x-direction and Lx is the number of “rings” in the infinite MPS unit cell, while Ly gives
the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y).

option CouplingMPOModel.bc_y: str
"cylinder" | "ladder"; only read out for 2D lattices. The boundary conditions in y-direction.

option CouplingMPOModel.bc_x: str
"open" | "periodic". Can be used to force “periodic” boundaries for the lattice, i.e., for the
couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite
" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you
should probably not use “periodic” boundary conditions. (The MPS is still “open”, so this will intro-
duce long-range couplings between the first and last sites of the MPS!)

init_sites(model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.

This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept
conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

If you need to initialize more than one site, the function tenpy.networks.site.
set_common_charges() should be helpful.

Parameters model_params (dict) – The model parameters given to __init__.

Returns sites – The local sites of the lattice, defining the local basis states and operators.

Return type (tuple of) Site

init_terms(model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

trivial_like_NNModel()
Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

592 Chapter 19. models

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Module description

Bosonic and fermionic Hubbard models.

19.9 hofstadter

• full name: tenpy.models.hofstadter

• parent module: tenpy.models

• type: module

Classes

CouplingMPOModel

HofstadterBosons HofstadterFermions

CouplingModel MPOModel

Model

Hdf5Exportable

HofstadterBosons(model_params) Bosons on a square lattice with magnetic flux.
HofstadterFermions(model_params) Fermions on a square lattice with magnetic flux.

19.9. hofstadter 593

TeNPy, Release 0.8.1

Functions

gauge_hopping(model_params) Compute hopping amplitudes for the Hofstadter models
based on a gauge choice.

19.9.1 gauge_hopping

• full name: tenpy.models.hofstadter.gauge_hopping

• parent module: tenpy.models.hofstadter

• type: function

tenpy.models.hofstadter.gauge_hopping(model_params)
Compute hopping amplitudes for the Hofstadter models based on a gauge choice.

In the Hofstadter model, the magnetic field enters as an Aharonov-Bohm phase. This phase is dependent on a
choice of gauge, which simultaneously defines a ‘magnetic unit cell’ (MUC).

The magnetic unit cell is the smallest set of lattice plaquettes that encloses an integer number of flux quanta. It
can be user-defined by setting mx and my, but for common gauge choices is computed based on the flux density.

The gauge choices are:

• ‘landau_x’: Landau gauge along the x-axis. The magnetic unit cell will have shape
:math`(mathtt{mx}, 1)`. For flux densities 𝑝/𝑞, mx will default to q. Example: at a flux density
1/3, the magnetic unit cell will have shape (3, 1), so it encloses exactly 1 flux quantum.

• ‘landau_y’: Landau gauge along the y-axis. The magnetic unit cell will have shape :math`(1,
mathtt{my})`. For flux densities :math`p/q`, my will default to q. Example: at a flux density 3/7,
the magnetic unit cell will have shape (1, 7), so it encloses axactly 3 flux quanta.

• ‘symmetric’: symmetric gauge. The magnetic unit cell will have shape (mx, my), with 𝑚𝑥 = 𝑚𝑦. For
flux densities 𝑝/𝑞, mx and my will default to 𝑞 Example: at a flux density 4/9, the magnetic unit cell
will have shape (9,9).

Parameters

• gauge ('landau_x' | 'landau_y' | 'symmetric') – Choice of the gauge,
see table above.

• mx (int | None) – Dimensions of the magnetic unit cell in terms of lattice sites. None
defaults to the minimal choice compatible with gauge and phi_pq.

• my (int | None) – Dimensions of the magnetic unit cell in terms of lattice sites. None
defaults to the minimal choice compatible with gauge and phi_pq.

• Jx (float) – ‘Bare’ hopping amplitudes (without phase). Without any flux we have
hop_x = -Jx and hop_y = -Jy.

• Jy (float) – ‘Bare’ hopping amplitudes (without phase). Without any flux we have
hop_x = -Jx and hop_y = -Jy.

• phi_pq (tuple (int, int)) – Magnetic flux as a fraction p/q, defined as (p, q)

Returns hop_x, hop_y – Hopping amplitudes to be used as prefactors for 𝑐†𝑥,𝑦𝑐𝑥+1,𝑦 (hop_x) and
𝑐†𝑥,𝑦𝑐𝑥,𝑦+1 (hop_x), respectively, with the necessary phases for the gauge.

Return type float | array

594 Chapter 19. models

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Module description

Cold atomic (Harper-)Hofstadter model on a strip or cylinder.

Todo: WARNING: These models are still under development and not yet tested for correctness. Use at your own
risk! Replicate known results to confirm models work correctly. Long term: implement different lattices. Long term:
implement variable hopping strengths Jx, Jy.

19.10 haldane

• full name: tenpy.models.haldane

• parent module: tenpy.models

• type: module

Classes

BosonicHaldaneModel

CouplingMPOModel

FermionicHaldaneModel

CouplingModel MPOModel

Model

Hdf5Exportable

BosonicHaldaneModel(model_params) Hardcore bosonic Haldane model.
FermionicHaldaneModel(model_params) Spinless fermionic Haldane model.

19.10. haldane 595

TeNPy, Release 0.8.1

Module description

Bosonic and fermionic Haldane models.

19.11 toric_code

• full name: tenpy.models.toric_code

• parent module: tenpy.models

• type: module

Classes

CouplingMPOModel

ToricCode

CouplingModel MPOModel

Model DualSquare

LatticeHdf5Exportable

DualSquare(Lx, Ly, sites, **kwargs) The dual lattice of the square lattice (again square).
ToricCode(model_params) Toric code model.

596 Chapter 19. models

TeNPy, Release 0.8.1

19.11.1 DualSquare

• full name: tenpy.models.toric_code.DualSquare

• parent module: tenpy.models.toric_code

• type: class

Inheritance Diagram

DualSquare

Lattice

Methods

DualSquare.__init__(Lx, Ly, sites, **kwargs) Initialize self.
DualSquare.count_neighbors([u, key]) Count e.g.
DualSquare.coupling_shape(dx) Calculate correct shape of the strengths for a coupling.
DualSquare.distance(u1, u2, dx) Get the distance for a given coupling between two sites

in the lattice.
DualSquare.enlarge_mps_unit_cell([factor]) Repeat the unit cell for infinite MPS boundary condi-

tions; in place.
DualSquare.find_coupling_pairs([max_dx,
. . .])

Automatically find coupling pairs grouped by distances.

DualSquare.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

DualSquare.lat2mps_idx(lat_idx) Translate lattice indices (x_0, ..., x_{D-1},
u) to MPS index i.

DualSquare.mps2lat_idx(i) Translate MPS index i to lattice indices (x_0, ...,
x_{dim-1}, u).

DualSquare.mps2lat_values(A[, axes, u]) Reshape/reorder A to replace an MPS index by lattice
indices.

DualSquare.mps2lat_values_masked(A[,
axes, . . .])

Reshape/reorder an array A to replace an MPS index by
lattice indices.

DualSquare.mps_idx_fix_u([u]) return an index array of MPS indices for which the site
within the unit cell is u.

DualSquare.mps_lat_idx_fix_u([u]) Similar as mps_idx_fix_u(), but return also the
corresponding lattice indices.

DualSquare.mps_sites() Return a list of sites for all MPS indices.
continues on next page

19.11. toric_code 597

TeNPy, Release 0.8.1

Table 60 – continued from previous page
DualSquare.multi_coupling_shape(dx) Calculate correct shape of the strengths for a

multi_coupling.
DualSquare.number_nearest_neighbors([u]) Deprecated.
DualSquare.number_next_nearest_neighbors([u])Deprecated.
DualSquare.ordering(order) Provide possible orderings of the N lattice sites.
DualSquare.plot_basis(ax[, origin, shade]) Plot arrows indicating the basis vectors of the lattice.
DualSquare.plot_bc_identified(ax[, . . .]) Mark two sites indified by periodic boundary condi-

tions.
DualSquare.plot_coupling(ax[, coupling,
wrap])

Plot lines connecting nearest neighbors of the lattice.

DualSquare.plot_order(ax[, order, textk-
wargs])

Plot a line connecting sites in the specified “order” and
text labels enumerating them.

DualSquare.plot_sites(ax[, markers]) Plot the sites of the lattice with markers.
DualSquare.position(lat_idx) return ‘space’ position of one or multiple sites.
DualSquare.possible_couplings(u1, u2, dx[,
. . .])

Find possible MPS indices for two-site couplings.

DualSquare.possible_multi_couplings(ops[,
. . .])

Generalization of possible_couplings() to cou-
plings with more than 2 sites.

DualSquare.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

DualSquare.site(i) return Site instance corresponding to an MPS index i
DualSquare.test_sanity() Sanity check.

Class Attributes and Properties

DualSquare.Lu the (expected) number of sites in the unit cell,
len(unit_cell).

DualSquare.boundary_conditions Human-readable list of boundary conditions from bc
and bc_shift.

DualSquare.dim the dimension of the lattice
DualSquare.nearest_neighbors

DualSquare.next_nearest_neighbors

DualSquare.next_next_nearest_neighbors

DualSquare.order Defines an ordering of the lattice sites, thus mapping the
lattice to a 1D chain.

class tenpy.models.toric_code.DualSquare(Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice

The dual lattice of the square lattice (again square).

The sites in this lattice correspond to the vertical and horizontal (nearest neighbor) bonds of a common Square
lattice with the same dimensions Lx, Ly.

Parameters

• Lx (int) – Dimensions of the original lattice. This lattice has 2*Lx*Ly sites.

• Ly (int) – Dimensions of the original lattice. This lattice has 2*Lx*Ly sites.

598 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

1 0 1 2 3 4
1

0

1

2

3

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

19.11. toric_code 599

TeNPy, Release 0.8.1

• sites (Site) – The sites for the horizontal (first entry) and vertical (second entry) bonds.

• **kwargs – Additional keyword arguments given to the Lattice. basis, pos and pairs
are set accordingly.

dim = 2
the dimension of the lattice

ordering(order)
Provide possible orderings of the N lattice sites.

The following orders are defined in this method compared to tenpy.models.lattice.Lattice.
ordering():

order equivalent priority equivalent snake_winding
'default' (0, 2, 1) (False, False, False)

property boundary_conditions
Human-readable list of boundary conditions from bc and bc_shift.

Returns boundary_conditions – List of "open" or "periodic", one entry for each direc-
tion of the lattice.

Return type list of str

count_neighbors(u=0, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

• u (int) – Specifies the site in the unit cell, for which we should count the number of
neighbors (or whatever key specifies).

• key (str) – Key of pairs to select what to count.

Returns number – Number of nearest neighbors (or whatever key specified) for the u-th site in
the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value
at the edges of a lattice with open boundary conditions.

Return type int

coupling_shape(dx)
Calculate correct shape of the strengths for a coupling.

Parameters dx (tuple of int) – Translation vector in the lattice for a coupling of two
operators. Corresponds to dx argument of tenpy.models.model.CouplingModel.
add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx.

distance(u1, u2, dx)
Get the distance for a given coupling between two sites in the lattice.

The u1, u2, dx parameters are defined in analogy with add_coupling(), i.e., this function cal-
culates the distance between a pair of operators added with add_coupling (using the basis and
unit_cell_positions of the lattice).

600 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Warning: This function ignores “wrapping” arround the cylinder in the case of periodic boundary
conditions.

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

Returns distance – The distance between site at lattice indices [x, y, u1] and [x +
dx[0], y + dx[1], u2], ignoring any boundary effects.

Return type float

enlarge_mps_unit_cell(factor=2)
Repeat the unit cell for infinite MPS boundary conditions; in place.

Parameters factor (int) – The new number of sites in the MPS unit cell will be increased
from N_sites to factor*N_sites_per_ring. Since MPS unit cells are repeated in
the x-direction in our convetion, the lattice shape goes from (Lx, Ly, ..., Lu) to
(Lx*factor, Ly, ..., Lu).

find_coupling_pairs(max_dx=3, cutoff=None, eps=1e-10)
Automatically find coupling pairs grouped by distances.

Given the unit_cell_positions and basis, the coupling pairs of nearest_neighbors,
next_nearest_neighbors etc at a given distance are basically fixed (although not uniquely, since we take out
half of them to avoid double-counting couplings in both directions A_i B_j + B_i A_i). This func-
tion iterates through all possible couplings up to a given cutoff distance and then determines the possible
pairs at fixed distances (up to round-off errors).

Parameters

• max_dx (int) – Maximal index for each index of dx to iterate over. You need large
enough values to include every possible coupling up to the desired distance, but choosing
it too large might make this function run for a long time.

• cutoff (float) – Maximal distance (in the units in which basis and
unit_cell_positions is given).

• eps (float) – Tolerance up to which to distances are considered the same.

Returns coupling_pairs – Keys are distances of nearest-neighbors, next-nearest-neighbors etc.
Values are [(u1, u2, dx), ...] as in pairs.

Return type dict

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

19.11. toric_code 601

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Return type cls

lat2mps_idx(lat_idx)
Translate lattice indices (x_0, ..., x_{D-1}, u) to MPS index i.

Parameters lat_idx (array_like [.., dim+1]) – The last dimension corresponds to
lattice indices (x_0, ..., x_{D-1}, u). All lattice indices should be positive and
smaller than the corresponding entry in self.shape. Exception: for “infinite” bc_MPS,
an x_0 outside indicates shifts accross the boundary.

Returns i – MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without
the last dimension.

Return type array_like

mps2lat_idx(i)
Translate MPS index i to lattice indices (x_0, ..., x_{dim-1}, u).

Parameters i (int | array_like of int) – MPS index/indices.

Returns lat_idx – First dimensions like i, last dimension has len dim`+1 and contains the lattice
indices ``(x_0, . . . , x_{dim-1}, u)` corresponding to i. For i accross the MPS unit cell and
“infinite” bc_MPS, we shift x_0 accordingly.

Return type array

mps2lat_values(A, axes=0, u=None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

• A (ndarray) – Some values. Must have A.shape[axes] = self.N_sites if u
is None, or A.shape[axes] = self.N_cells if u is an int.

• axes ((iterable of) int) – chooses the axis which should be replaced.

• u (None | int) – Optionally choose a subset of MPS indices present in the axes
of A, namely the indices corresponding to self.unit_cell[u], as returned by
mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of
u.

Returns res_A – Reshaped and reordered verions of A. Such that MPS indices along the speci-
fied axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2),
then res_A[..., x0, x1, x2, ...] = A[..., j, ...].

Return type ndarray

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where
A[i] is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives
you the expectation values ordered by the lattice:

>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[tuple(lat.mps2lat_idx(5))] == A[5]
True

If you have a correlation function C[i, j], it gets just slightly more complicated:

602 Chapter 19. models

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the
sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on,
measure the operator on these sites, and use the argument u of this function.

>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True

mps2lat_values_masked(A, axes=- 1, mps_inds=None, include_u=None)
Reshape/reorder an array A to replace an MPS index by lattice indices.

This is a generalization of mps2lat_values() allowing for the case of an arbitrary set of MPS indices
present in each axis of A.

Parameters

• A (ndarray) – Some values.

• axes ((iterable of) int) – Chooses the axis of A which should be replaced. If
multiple axes are given, you also need to give multiple index arrays as mps_inds.

• mps_inds ((list of) 1D ndarray) – Specifies for each axis in axes, for which
MPS indices we have values in the corresponding axis of A. Defaults to [np.arange(A.
shape[ax]) for ax in axes]. For indices accross the MPS unit cell and “infi-
nite” bc_MPS, we shift x_0 accordingly.

• include_u ((list of) bool) – Specifies for each axis in axes, whether the u index
of the lattice should be included into the output array res_A. Defaults to len(self.
unit_cell) > 1.

Returns res_A – Reshaped and reordered copy of A. Such that MPS indices along the specified
axes are replaced by lattice indices, i.e., if MPS index j maps to lattice site (x0, x1, x2), then
res_A[..., x0, x1, x2, ...] = A[..., mps_inds[j], ...].

Return type np.ma.MaskedArray

mps_idx_fix_u(u=None)
return an index array of MPS indices for which the site within the unit cell is u.

If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites.
This functions returns an index array of the mps indices which belong to sites given by self.
unit_cell[u].

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns mps_idx – MPS indices for which self.site(i) is self.unit_cell[u].
Ordered ascending.

Return type array

19.11. toric_code 603

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

mps_lat_idx_fix_u(u=None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters u (None | int) – Selects a site of the unit cell. None (default) means all sites.

Returns

• mps_idx (array) – MPS indices i for which self.site(i) is self.
unit_cell[u].

• lat_idx (2D array) – The row j contains the lattice index (without u) corresponding to
mps_idx[j].

mps_sites()
Return a list of sites for all MPS indices.

Equivalent to [self.site(i) for i in range(self.N_sites)].

This should be used for sites of 1D tensor networks (MPS, MPO,. . .).

multi_coupling_shape(dx)
Calculate correct shape of the strengths for a multi_coupling.

Parameters dx (2D array, shape (N_ops, dim)) – dx[i, :] is the translation vector in the
lattice for the i-th operator. Corresponds to the dx of each operator given in the argument ops
of tenpy.models.model.CouplingModel.add_multi_coupling().

Returns

• coupling_shape (tuple of int) – Len dim. The correct shape for an array specifying the
coupling strength. lat_indices has only rows within this shape.

• shift_lat_indices (array) – Translation vector from origin to the lower left corner of box
spanned by dx. (Unlike for coupling_shape() it can also contain entries > 0)

number_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

number_next_nearest_neighbors(u=0)
Deprecated.

Deprecated since version 0.5.0: Use count_neighbors() instead.

property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Each row of the array contains the lattice indices for one site, the order of the rows thus specifies a path
through the lattice, along which an MPS will wind through through the lattice.

You can visualize the order with plot_order().

plot_basis(ax, origin=(0.0, 0.0), shade=None, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• **kwargs – Keyword arguments for ax.arrow.

plot_bc_identified(ax, direction=- 1, origin=None, cylinder_axis=False, **kwargs)
Mark two sites indified by periodic boundary conditions.

Works only for lattice with a 2-dimensional basis.

604 Chapter 19. models

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

TeNPy, Release 0.8.1

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• direction (int) – The direction of the lattice along which we should mark the ideni-
tified sites. If None, mark it along all directions with periodic boundary conditions.

• cylinder_axis (bool) – Whether to plot the cylinder axis as well.

• origin (None | np.ndarray) – The origin starting from where we mark the iden-
tified sites. Defaults to the first entry of unit_cell_positions.

• **kwargs – Keyword arguments for the used ax.plot.

plot_coupling(ax, coupling=None, wrap=False, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• coupling (list of (u1, u2, dx)) – By default (None), use self.
pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating
over lattice indices (i0, i1, . . .), we plot a connection from the site (i0, i1, ...,
u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the bound-
ary conditions.

• wrap (bool) – If True, plot couplings going around the boundary by directly connecting
the sites it connects. This might be hard to see, as this puts lines from one end of the lattice
to the other. If False, plot the couplings as dangling lines.

• **kwargs – Further keyword arguments given to ax.plot().

plot_order(ax, order=None, textkwargs={'color': 'r'}, **kwargs)
Plot a line connecting sites in the specified “order” and text labels enumerating them.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• order (None | 2D array (self.N_sites, self.dim+1)) – The order as
returned by ordering(); by default (None) use order.

• textkwargs (None | dict) – If not None, we add text labels enumerating the sites in
the plot. The dictionary can contain keyword arguments for ax.text().

• **kwargs – Further keyword arguments given to ax.plot().

plot_sites(ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• markers (list) – List of values for the keywork marker of ax.plot() to distin-
guish the different sites in the unit cell, a site u in the unit cell is plotted with a marker
markers[u % len(markers)].

• **kwargs – Further keyword arguments given to ax.plot().

position(lat_idx)
return ‘space’ position of one or multiple sites.

Parameters lat_idx (ndarray, (... , dim+1)) – Lattice indices.

19.11. toric_code 605

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

Returns pos – The position of the lattice sites specified by lat_idx in real-space.

Return type ndarray, (..., dim)

possible_couplings(u1, u2, dx, strength=None)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc[a] == False) the index x_a is taken modulo Ls[a] and runs
through range(Ls[a]). For open boundary conditions, x_a is limited to 0 <= x_a < Ls[a] and
0 <= x_a+dx[a] < lat.Ls[a].

Parameters

• u1 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• u2 (int) – Indices within the unit cell; the u1 and u2 of add_coupling()

• dx (array) – Length dim. The translation in terms of basis vectors for the coupling.

• strength (array_like | None) – If given, instead of returning lat_indices and
coupling_shape directly return the correct strength_12.

Returns

• mps1, mps2 (1D array) – For each possible two-site coupling the MPS indices for the u1
and u2.

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for (i,
j, s) in zip(mps1, mps2, strength_vals): iterates over all possible cou-
plings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to entries of mps1 and mps2 and contain the lattice indices of the “lower left
corner” of the box containing the coupling.

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

possible_multi_couplings(ops, strength=None)
Generalization of possible_couplings() to couplings with more than 2 sites.

Parameters ops (list of (opname, dx, u)) – Same as the argument ops of
add_multi_coupling().

Returns

• mps_ijkl (2D int array) – Each row contains MPS indices i,j,k,l,. . . ` for each of the op-
erators positions. The positions are defined by dx (j,k,l,. . . relative to i) and boundary
coundary conditions of self (how much the box for given dx can be shifted around without
hitting a boundary - these are the different rows).

• strength_vals (1D array) – (Only returend if strength is not None.) Such that for
(ijkl, s) in zip(mps_ijkl, strength_vals): iterates over all possible
couplings with s being the strength of that coupling. Couplings where strength_vals
== 0. are filtered out.

• lat_indices (2D int array) – (Only returend if strength is None.) Rows of lat_indices
correspond to rows of mps_ijkl and contain the lattice indices of the “lower left corner” of
the box containing the coupling.

606 Chapter 19. models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

• coupling_shape (tuple of int) – (Only returend if strength is None.) Len dim. The correct
shape for an array specifying the coupling strength. lat_indices has only rows within this
shape.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

Specifically, it saves unit_cell, Ls, unit_cell_positions, basis,
boundary_conditions, pairs under their name, bc_MPS as "boundary_conditions_MPS",
and order as "order_for_MPS". Moreover, it saves dim and N_sites as HDF5 attributes.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

site(i)
return Site instance corresponding to an MPS index i

test_sanity()
Sanity check.

Raises ValueErrors, if something is wrong.

Module description

Kitaev’s exactly solvable toric code model.

As we put the model on a cylinder, the name “toric code” is a bit misleading, but it is the established name for this
model. . .

19.11. toric_code 607

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

608 Chapter 19. models

CHAPTER

TWENTY

NETWORKS

• full name: tenpy.networks

• parent module: tenpy

• type: module

Module description

Definitions of tensor networks like MPS and MPO.

Here, ‘tensor network’ refers just to the (parital) contraction of tensors. For example an MPS represents the contraction
along the ‘virtual’ legs/bonds of its B.

Submodules

site Defines a class describing the local physical Hilbert
space.

mps This module contains a base class for a Matrix Product
State (MPS).

mpo Matrix product operator (MPO).
terms Classes to store a collection of operator names and sites

they act on, together with prefactors.
purification_mps This module contains an MPS class representing an den-

sity matrix by purification.

20.1 site

• full name: tenpy.networks.site

• parent module: tenpy.networks

• type: module

609

TeNPy, Release 0.8.1

Classes

BosonSite

Site

FermionSite GroupedSite SpinHalfFermionSite SpinHalfSite SpinSite

Hdf5Exportable

BosonSite([Nmax, conserve, filling]) Create a Site for up to Nmax bosons.
FermionSite([conserve, filling]) Create a Site for spin-less fermions.
GroupedSite(sites[, labels, charges]) Group two or more Site into a larger one.
Site(leg[, state_labels]) Collects necessary information about a single local site

of a lattice.
SpinHalfFermionSite([cons_N, cons_Sz, fill-
ing])

Create a Site for spinful (spin-1/2) fermions.

SpinHalfSite([conserve]) Spin-1/2 site.
SpinSite([S, conserve]) General Spin S site.

20.1.1 BosonSite

• full name: tenpy.networks.site.BosonSite

• parent module: tenpy.networks.site

• type: class

610 Chapter 20. networks

TeNPy, Release 0.8.1

Inheritance Diagram

BosonSite

Site

Hdf5Exportable

Methods

BosonSite.__init__([Nmax, conserve, filling]) Initialize self.
BosonSite.add_op(name, op[, need_JW, hc]) Add one on-site operators.
BosonSite.change_charge([new_leg_charge,
. . .])

Change the charges of the site (in place).

BosonSite.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

BosonSite.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
BosonSite.get_op(name) Return operator of given name.
BosonSite.multiply_op_names(names) Multiply operator names together.
BosonSite.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
BosonSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
BosonSite.remove_op(name) Remove an added operator.
BosonSite.rename_op(old_name, new_name) Rename an added operator.
BosonSite.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

BosonSite.state_index(label) Return index of a basis state from its label.
BosonSite.state_indices(labels) Same as state_index(), but for multiple labels.
BosonSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
BosonSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

20.1. site 611

TeNPy, Release 0.8.1

Class Attributes and Properties

BosonSite.dim Dimension of the local Hilbert space.
BosonSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.BosonSite(Nmax=1, conserve='N', filling=0.0)
Bases: tenpy.networks.site.Site

Create a Site for up to Nmax bosons.

Local states are vac, 1, 2, ... , Nc. (Exception: for parity conservation, we sort as vac, 2, 4,
..., 1, 3, 5,)

operator description
Id, JW Identity 1
B Annihilation operator 𝑏
Bd Creation operator 𝑏†

N Number operator 𝑛 = 𝑏†𝑏
NN 𝑛2

dN 𝛿𝑛 := 𝑛− 𝑓𝑖𝑙𝑙𝑖𝑛𝑔
dNdN (𝛿𝑛)2

P Parity 𝐼𝑑− 2(𝑛 mod 2).

conserve qmod excluded onsite operators
'N' [1] –
'parity' [2] –
None [] –

Parameters

• Nmax (int) – Cutoff defining the maximum number of bosons per site. The default
Nmax=1 describes hard-core bosons.

• conserve (str) – Defines what is conserved, see table above.

• filling (float) – Average filling. Used to define dN.

conserve
Defines what is conserved, see table above.

Type str

filling
Average filling. Used to define dN.

Type float

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

612 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

20.1. site 613

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

614 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__

TeNPy, Release 0.8.1

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

20.1.2 FermionSite

• full name: tenpy.networks.site.FermionSite

• parent module: tenpy.networks.site

• type: class

Inheritance Diagram

FermionSite

Site

Hdf5Exportable

20.1. site 615

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Methods

FermionSite.__init__([conserve, filling]) Initialize self.
FermionSite.add_op(name, op[, need_JW, hc]) Add one on-site operators.
FermionSite.change_charge([new_leg_charge,
. . .])

Change the charges of the site (in place).

FermionSite.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

FermionSite.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
FermionSite.get_op(name) Return operator of given name.
FermionSite.multiply_op_names(names) Multiply operator names together.
FermionSite.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
FermionSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
FermionSite.remove_op(name) Remove an added operator.
FermionSite.rename_op(old_name, new_name) Rename an added operator.
FermionSite.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

FermionSite.state_index(label) Return index of a basis state from its label.
FermionSite.state_indices(labels) Same as state_index(), but for multiple labels.
FermionSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
FermionSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

FermionSite.dim Dimension of the local Hilbert space.
FermionSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.FermionSite(conserve='N', filling=0.5)
Bases: tenpy.networks.site.Site

Create a Site for spin-less fermions.

Local states are empty and full.

Warning: Using the Jordan-Wigner string (JW) is crucial to get correct results, otherwise you just describe
hardcore bosons! Further details in Fermions and the Jordan-Wigner transformation.

operator description
Id Identity 1
JW Sign for the Jordan-Wigner string.
C Annihilation operator 𝑐 (up to ‘JW’-string left of it)
Cd Creation operator 𝑐† (up to ‘JW’-string left of it)
N Number operator 𝑛 = 𝑐†𝑐
dN 𝛿𝑛 := 𝑛− 𝑓𝑖𝑙𝑙𝑖𝑛𝑔
dNdN (𝛿𝑛)2

616 Chapter 20. networks

TeNPy, Release 0.8.1

conserve qmod exluded onsite operators
'N' [1] –
'parity' [2] –
None [] –

Parameters

• conserve (str) – Defines what is conserved, see table above.

• filling (float) – Average filling. Used to define dN.

conserve
Defines what is conserved, see table above.

Type str

filling
Average filling. Used to define dN.

Type float

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

20.1. site 617

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

618 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

20.1. site 619

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

20.1.3 GroupedSite

• full name: tenpy.networks.site.GroupedSite

• parent module: tenpy.networks.site

• type: class

Inheritance Diagram

GroupedSite

Site

Hdf5Exportable

Methods

GroupedSite.__init__(sites[, labels, charges]) Initialize self.
GroupedSite.add_op(name, op[, need_JW, hc]) Add one on-site operators.
GroupedSite.change_charge([new_leg_charge,
. . .])

Change the charges of the site (in place).

GroupedSite.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

GroupedSite.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
GroupedSite.get_op(name) Return operator of given name.
GroupedSite.kroneckerproduct(ops) Return the Kronecker product 𝑜𝑝0 ⊗ 𝑜𝑝1 of local oper-

ators.
GroupedSite.multiply_op_names(names) Multiply operator names together.
GroupedSite.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
GroupedSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
GroupedSite.remove_op(name) Remove an added operator.
GroupedSite.rename_op(old_name, new_name) Rename an added operator.
GroupedSite.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

GroupedSite.state_index(label) Return index of a basis state from its label.
continues on next page

620 Chapter 20. networks

TeNPy, Release 0.8.1

Table 7 – continued from previous page
GroupedSite.state_indices(labels) Same as state_index(), but for multiple labels.
GroupedSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
GroupedSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

GroupedSite.dim Dimension of the local Hilbert space.
GroupedSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.GroupedSite(sites, labels=None, charges='same')
Bases: tenpy.networks.site.Site

Group two or more Site into a larger one.

A typical use-case is that you want a NearestNeighborModel for TEBD although you have next-nearest neighbor
interactions: you just double your local Hilbertspace to consist of two original sites. Note that this is a ‘hack’
at the cost of other things (e.g., measurements of ‘local’ operators) getting more complicated/computationally
expensive.

If the individual sites indicate fermionic operators (with entries in need_JW_string), we construct the new on-
site oerators of site1 to include the JW string of site0, i.e., we use the Kronecker product of [JW, op] instead
of [Id, op] if necessary (but always [op, Id]). In that way the onsite operators of this DoubleSite auto-
matically fulfill the expected commutation relations. See also Fermions and the Jordan-Wigner transformation.

Parameters

• sites (list of Site) – The individual sites being grouped together. Copied before use if
charges!='same'.

• labels – Include the Kronecker product of the each onsite operator op on sites[i] and
identities on other sites with the name opname+labels[i]. Similarly, set state labels
for ' '.join(state[i]+'_'+labels[i]). Defaults to [str(i) for i in
range(n_sites)], which for example grouping two SpinSites gives operators name
like "Sz0" and sites labels like 'up_0 down_1'.

• charges ('same' | 'drop' | 'independent') – How to handle charges, de-
faults to ‘same’. 'same' means that all sites have the same ChargeInfo, and the to-
tal charge is the sum of the charges on the individual sites. 'independent' means
that the sites have possibly different ChargeInfo, and the charges are conserved sepa-
rately, i.e., we have n_sites conserved charges. For 'drop', we drop any charges,
such that the remaining legcharges are trivial. For more complex situations, you can call
multi_sites_combine_charges() beforehand.

n_sites
The number of sites grouped together, i.e. len(sites).

Type int

sites
The sites grouped together into self.

Type list of Site

labels
The labels using which the single-site operators are added during construction.

Type list of str

20.1. site 621

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

kroneckerproduct(ops)
Return the Kronecker product 𝑜𝑝0 ⊗ 𝑜𝑝1 of local operators.

Parameters ops (list of Array) – One operator (or operator name) on each of the ungrouped
sites. Each operator should have labels ['p', 'p*'].

Returns prod – Kronecker product 𝑜𝑝𝑠[0] ⊗ 𝑜𝑝𝑠[1] ⊗ · · ·, with labels ['p', 'p*'].

Return type Array

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

622 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

20.1. site 623

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

20.1.4 Site

• full name: tenpy.networks.site.Site

• parent module: tenpy.networks.site

• type: class

624 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Inheritance Diagram

Hdf5Exportable

Site

Methods

Site.__init__(leg[, state_labels]) Initialize self.
Site.add_op(name, op[, need_JW, hc]) Add one on-site operators.
Site.change_charge([new_leg_charge, per-
mute])

Change the charges of the site (in place).

Site.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
Site.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
Site.get_op(name) Return operator of given name.
Site.multiply_op_names(names) Multiply operator names together.
Site.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
Site.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
Site.remove_op(name) Remove an added operator.
Site.rename_op(old_name, new_name) Rename an added operator.
Site.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
Site.state_index(label) Return index of a basis state from its label.
Site.state_indices(labels) Same as state_index(), but for multiple labels.
Site.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
Site.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

Site.dim Dimension of the local Hilbert space.
Site.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.Site(leg, state_labels=None, **site_ops)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Collects necessary information about a single local site of a lattice.

This class defines what the local basis states are: it provides the leg defining the charges of the physical leg for
this site. Moreover, it stores (local) on-site operators, which are directly available as attribute, e.g., self.Sz

20.1. site 625

TeNPy, Release 0.8.1

is the Sz operator for the SpinSite. Alternatively, operators can be obained with get_op(). The operator
names Id and JW are reserved for the identy and Jordan-Wigner strings.

Warning: The order of the local basis can change depending on the charge conservation! This is a necessary
feature since we need to sort the basis by charges for efficiency. We use the state_labels and perm to
keep track of these permutations.

Parameters

• leg (LegCharge) – Charges of the physical states, to be used for the physical leg of MPS.

• state_labels (None | list of str) – Optionally a label for each local basis
states. None entries are ignored / not set.

• **site_ops – Additional keyword arguments of the form name=op given to
add_op(). The identity operator 'Id' is automatically included. If no 'JW' for the
Jordan-Wigner string is given, 'JW' is set as an alias to 'Id'.

leg
Charges of the local basis states.

Type LegCharge

state_labels
(Optional) labels for the local basis states.

Type {str: int}

opnames
Labels of all onsite operators (i.e. self.op exists if 'op' in self.opnames). Note that get_op()
allows arbitrary concatenations of them.

Type set

need_JW_string
Labels of all onsite operators that need a Jordan-Wigner string. Used in op_needs_JW() to determine
whether an operator anticommutes or commutes with operators on other sites.

Type set

ops
Onsite operators are added directly as attributes to self. For example after self.add_op('Sz', Sz)
you can use self.Sz for the Sz operator. All onsite operators have labels 'p', 'p*'.

Type Array

perm
Index permutation of the physical leg compared to conserve=None, i.e. OP_conserved =
OP_nonconserved[np.ix_(perm,perm)] and perm[state_labels_conserved[
"some_state"]] == state_labels_nonconserved["some_state"].

Type 1D array

JW_exponent
Exponents of the 'JW' operator, such that self.JW.to_ndarray() = np.diag(np.exp(1.
j*np.pi* JW_exponent))

Type 1D array

hc_ops
Mapping from operator names to their hermitian conjugates. Use get_hc_op_name() to obtain entries.

626 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

TeNPy, Release 0.8.1

Type dict(str->str)

Examples

The following generates a site for spin-1/2 with Sz conservation. Note that Sx = (Sp + Sm)/2 violates Sz
conservation and is thus not a valid on-site operator.

>>> chinfo = npc.ChargeInfo([1], ['Sz'])
>>> ch = npc.LegCharge.from_qflat(chinfo, [1, -1])
>>> Sp = [[0, 1.], [0, 0]]
>>> Sm = [[0, 0], [1., 0]]
>>> Sz = [[0.5, 0], [0, -0.5]]
>>> site = tenpy.networks.site.Site(ch, ['up', 'down'], Splus=Sp, Sminus=Sm,
→˓Sz=Sz)
>>> print(site.Splus.to_ndarray())
[[0. 1.]
[0. 0.]]
>>> print(site.get_op('Sminus').to_ndarray())
[[0. 0.]
[1. 0.]]
>>> print(site.get_op('Splus Sminus').to_ndarray())
[[1. 0.]
[0. 0.]]

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

property dim
Dimension of the local Hilbert space.

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

20.1. site 627

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

628 Chapter 20. networks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

20.1. site 629

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__

TeNPy, Release 0.8.1

• subpath (str) – The name of h5gr with a '/' in the end.

20.1.5 SpinHalfFermionSite

• full name: tenpy.networks.site.SpinHalfFermionSite

• parent module: tenpy.networks.site

• type: class

Inheritance Diagram

Hdf5Exportable

Site

SpinHalfFermionSite

Methods

SpinHalfFermionSite.__init__([cons_N,
. . .])

Initialize self.

SpinHalfFermionSite.add_op(name, op[, . . .]) Add one on-site operators.
SpinHalfFermionSite.
change_charge([. . .])

Change the charges of the site (in place).

SpinHalfFermionSite.
from_hdf5(hdf5_loader, . . .)

Load instance from a HDF5 file.

SpinHalfFermionSite.
get_hc_op_name(name)

Return the hermitian conjugate of a given operator.

SpinHalfFermionSite.get_op(name) Return operator of given name.
SpinHalfFermionSite.
multiply_op_names(names)

Multiply operator names together.

SpinHalfFermionSite.
multiply_operators(operators)

Multiply local operators (possibly given by their names)
together.

SpinHalfFermionSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and
needs a Jordan-Wigner string.

SpinHalfFermionSite.remove_op(name) Remove an added operator.
continues on next page

630 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Table 11 – continued from previous page
SpinHalfFermionSite.rename_op(old_name,
new_name)

Rename an added operator.

SpinHalfFermionSite.
save_hdf5(hdf5_saver, . . .)

Export self into a HDF5 file.

SpinHalfFermionSite.state_index(label) Return index of a basis state from its label.
SpinHalfFermionSite.
state_indices(labels)

Same as state_index(), but for multiple labels.

SpinHalfFermionSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
SpinHalfFermionSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

SpinHalfFermionSite.dim Dimension of the local Hilbert space.
SpinHalfFermionSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.SpinHalfFermionSite(cons_N='N', cons_Sz='Sz', filling=1.0)
Bases: tenpy.networks.site.Site

Create a Site for spinful (spin-1/2) fermions.

Local states are: empty (vacuum), up (one spin-up electron), down (one spin-down electron), and full
(both electrons)

Local operators can be built from creation operators.

Warning: Using the Jordan-Wigner string (JW) in the correct way is crucial to get correct results, otherwise
you just describe hardcore bosons!

operator description
Id Identity 1
JW Sign for the Jordan-Wigner string (−1)𝑛↑+𝑛↓

JWu Partial sign for the Jordan-Wigner string (−1)𝑛↑

JWd Partial sign for the Jordan-Wigner string (−1)𝑛↓

Cu Annihilation operator spin-up 𝑐↑ (up to ‘JW’-string on sites left of it).
Cdu Creation operator spin-up 𝑐†↑ (up to ‘JW’-string on sites left of it).
Cd Annihilation operator spin-down 𝑐↓ (up to ‘JW’-string on sites left of it). Includes JWu such

that it anti-commutes onsite with Cu, Cdu.
Cdd Creation operator spin-down 𝑐†↓ (up to ‘JW’-string on sites left of it). Includes JWu such that it

anti-commutes onsite with Cu, Cdu.
Nu Number operator 𝑛↑ = 𝑐†↑𝑐↑

Nd Number operator 𝑛↓ = 𝑐†↓𝑐↓
NuNd Dotted number operators 𝑛↑𝑛↓
Ntot Total number operator 𝑛𝑡 = 𝑛↑ + 𝑛↓
dN Total number operator compared to the filling ∆𝑛 = 𝑛𝑡 − 𝑓𝑖𝑙𝑙𝑖𝑛𝑔
Sx,
Sy, Sz

Spin operators 𝑆𝑥,𝑦,𝑧 , in particular 𝑆𝑧 = 1
2 (𝑛↑ − 𝑛↓)

Sp, Sm Spin flips 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦 , e.g. 𝑆+ = 𝑐†↑𝑐↓

20.1. site 631

TeNPy, Release 0.8.1

The spin operators are defined as 𝑆𝛾 = (𝑐†↑, 𝑐
†
↓)𝜎𝛾(𝑐↑, 𝑐↓)𝑇 , where 𝜎𝛾 are spin-1/2 matrices (i.e. half the pauli

matrices).

cons_N cons_Sz qmod excluded onsite operators
'N' 'Sz' [1, 1] Sx, Sy
'N' 'parity' [1, 2] –
'N' None [1] –
'parity' 'Sz' [2, 1] Sx, Sy
'parity' 'parity' [2, 2] –
'parity' None [2] –
None 'Sz' [1] Sx, Sy
None 'parity' [2] –
None None [] –

Parameters

• cons_N ('N' | 'parity' | None) – Whether particle number is conserved, c.f. ta-
ble above.

• cons_Sz ('Sz' | 'parity' | None) – Whether spin is conserved, c.f. table above.

• filling (float) – Average filling. Used to define dN.

cons_N
Whether particle number is conserved, c.f. table above.

Type 'N' | 'parity' | None

cons_Sz
Whether spin is conserved, c.f. table above.

Type 'Sz' | 'parity' | None

filling
Average filling. Used to define dN.

Type float

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

632 Chapter 20. networks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

20.1. site 633

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

634 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

20.1.6 SpinHalfSite

• full name: tenpy.networks.site.SpinHalfSite

• parent module: tenpy.networks.site

• type: class

Inheritance Diagram

Hdf5Exportable

Site

SpinHalfSite

Methods

SpinHalfSite.__init__([conserve]) Initialize self.
SpinHalfSite.add_op(name, op[, need_JW, hc]) Add one on-site operators.
SpinHalfSite.change_charge([new_leg_charge,
. . .])

Change the charges of the site (in place).

SpinHalfSite.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

SpinHalfSite.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
SpinHalfSite.get_op(name) Return operator of given name.
SpinHalfSite.multiply_op_names(names) Multiply operator names together.

continues on next page

20.1. site 635

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Table 13 – continued from previous page
SpinHalfSite.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
SpinHalfSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
SpinHalfSite.remove_op(name) Remove an added operator.
SpinHalfSite.rename_op(old_name,
new_name)

Rename an added operator.

SpinHalfSite.save_hdf5(hdf5_saver, h5gr,
subpath)

Export self into a HDF5 file.

SpinHalfSite.state_index(label) Return index of a basis state from its label.
SpinHalfSite.state_indices(labels) Same as state_index(), but for multiple labels.
SpinHalfSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
SpinHalfSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

SpinHalfSite.dim Dimension of the local Hilbert space.
SpinHalfSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.SpinHalfSite(conserve='Sz')
Bases: tenpy.networks.site.Site

Spin-1/2 site.

Local states are up (0) and down (1). Local operators are the usual spin-1/2 operators, e.g. Sz = [[0.5,
0.], [0., -0.5]], Sx = 0.5*sigma_x for the Pauli matrix sigma_x.

operator description
Id, JW Identity 1
Sx, Sy, Sz Spin components 𝑆𝑥,𝑦,𝑧 , equal to half the Pauli matrices.
Sigmax, Sigmay, Sigmaz Pauli matrices 𝜎𝑥,𝑦,𝑧

Sp, Sm Spin flips 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦

conserve qmod excluded onsite operators
'Sz' [1] Sx, Sy, Sigmax, Sigmay
'parity' [2] –
None [] –

Parameters conserve (str) – Defines what is conserved, see table above.

conserve
Defines what is conserved, see table above.

Type str

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

636 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

20.1. site 637

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

638 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__

TeNPy, Release 0.8.1

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

20.1.7 SpinSite

• full name: tenpy.networks.site.SpinSite

• parent module: tenpy.networks.site

• type: class

Inheritance Diagram

Hdf5Exportable

Site

SpinSite

20.1. site 639

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Methods

SpinSite.__init__([S, conserve]) Initialize self.
SpinSite.add_op(name, op[, need_JW, hc]) Add one on-site operators.
SpinSite.change_charge([new_leg_charge,
permute])

Change the charges of the site (in place).

SpinSite.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
SpinSite.get_hc_op_name(name) Return the hermitian conjugate of a given operator.
SpinSite.get_op(name) Return operator of given name.
SpinSite.multiply_op_names(names) Multiply operator names together.
SpinSite.multiply_operators(operators) Multiply local operators (possibly given by their names)

together.
SpinSite.op_needs_JW (name) Whether an (composite) onsite operator is fermionic and

needs a Jordan-Wigner string.
SpinSite.remove_op(name) Remove an added operator.
SpinSite.rename_op(old_name, new_name) Rename an added operator.
SpinSite.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
SpinSite.state_index(label) Return index of a basis state from its label.
SpinSite.state_indices(labels) Same as state_index(), but for multiple labels.
SpinSite.test_sanity() Sanity check, raises ValueErrors, if something is wrong.
SpinSite.valid_opname(name) Check whether ‘name’ labels a valid onsite-operator.

Class Attributes and Properties

SpinSite.dim Dimension of the local Hilbert space.
SpinSite.onsite_ops Dictionary of on-site operators for iteration.

class tenpy.networks.site.SpinSite(S=0.5, conserve='Sz')
Bases: tenpy.networks.site.Site

General Spin S site.

There are 2S+1 local states range from down (0) to up (2S+1), corresponding to Sz=-S, -S+1, ...,
S-1, S. Local operators are the spin-S operators, e.g. Sz = [[0.5, 0.], [0., -0.5]], Sx = 0.
5*sigma_x for the Pauli matrix sigma_x.

operator description
Id, JW Identity 1
Sx, Sy, Sz Spin components 𝑆𝑥,𝑦,𝑧 , equal to half the Pauli matrices.
Sp, Sm Spin flips 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦

conserve qmod excluded onsite operators
'Sz' [1] Sx, Sy
'parity' [2] –
None [] –

Parameters conserve (str) – Defines what is conserved, see table above.

S
The 2S+1 states range from m = -S, -S+1, . . . +S.

640 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Type {0.5, 1, 1.5, 2, ..}

conserve
Defines what is conserved, see table above.

Type str

add_op(name, op, need_JW=False, hc=None)
Add one on-site operators.

Parameters

• name (str) – A valid python variable name, used to label the operator. The name under
which op is added as attribute to self.

• op (np.ndarray | Array) – A matrix acting on the local hilbert space representing the
local operator. Dense numpy arrays are automatically converted to Array . LegCharges
have to be [leg, leg.conj()]. We set labels 'p', 'p*'.

• need_JW (bool) – Whether the operator needs a Jordan-Wigner string. If True, add
name to need_JW_string.

• hc (None | False | str) – The name for the hermitian conjugate operator, to be
used for hc_ops. By default (None), try to auto-determine it. If False, disable adding
antries to hc_ops.

change_charge(new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

• new_leg_charge (LegCharge | None) – The new charges to be used. If None, use
trivial charges.

• permute (ndarray | None) – The permuation applied to the physical leg,
which gets used to adjust state_labels and perm. If you sorted the previ-
ous leg with perm_qind, new_leg_charge = leg.sort(), use old_leg.
perm_flat_from_perm_qind(perm_qind). Ignored if None.

property dim
Dimension of the local Hilbert space.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

get_hc_op_name(name)
Return the hermitian conjugate of a given operator.

Parameters name (str) – The name of the operator to be returned. Multiple operators sepa-
rated by whitespace are interpreted as an operator product, exactly as get_op() does.

Returns hc_op_name – Operator name for the hermi such that get_op() of

20.1. site 641

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Return type str

get_op(name)
Return operator of given name.

Parameters name (str) – The name of the operator to be returned. In case of multiple operator
names separated by whitespace, we multiply them together to a single on-site operator (with
the one on the right acting first).

Returns op – The operator given by name, with labels 'p', 'p*'. If name already was an
npc Array, it’s directly returned.

Return type np_conserved

multiply_op_names(names)
Multiply operator names together.

Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters names (list of str) – List of valid operator labels.

Returns combined_opname – A valid operator name Operatorname representing the product
of operators in names.

Return type str

multiply_operators(operators)
Multiply local operators (possibly given by their names) together.

Parameters operators (list of {str | Array}) – List of valid operator names (to be translated
with get_op()) or directly on-site operators in the form of npc arrays with 'p', 'p*'
label. The operators are multiplied left-to-right.

Returns combined_operator – The product of the given operators in a left-to-right multiplica-
tion following the usual mathematical convention. For example, if operators=['Sz',
'Sp', 'Sx'], the final operator is equivalent to site.get_op('Sz Sp Sx'), with
the 'Sx' operator acting first on any physical state.

Return type Array

property onsite_ops
Dictionary of on-site operators for iteration.

Single operators are accessible as attributes.

op_needs_JW(name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters name (str) – The name of the operator, as in get_op().

Returns needs_JW – Whether the operator needs a Jordan-Wigner string, judging from
need_JW_string.

Return type bool

remove_op(name)
Remove an added operator.

Parameters name (str) – The name of the operator to be removed.

rename_op(old_name, new_name)
Rename an added operator.

Parameters

• old_name (str) – The old name of the operator.

642 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• new_name (str) – The new name of the operator.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

state_index(label)
Return index of a basis state from its label.

Parameters label (int | string) – eather the index directly or a label (string) set before.

Returns state_index – the index of the basis state associated with the label.

Return type int

state_indices(labels)
Same as state_index(), but for multiple labels.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

valid_opname(name)
Check whether ‘name’ labels a valid onsite-operator.

Parameters name (str) – Label for the operator. Can be multiple operator(labels) separated
by whitespace, indicating that they should be multiplied together.

Returns valid – True if name is a valid argument to get_op().

Return type bool

Functions

group_sites(sites[, n, labels, charges]) Given a list of sites, group each n sites together.
multi_sites_combine_charges(sites[, . . .]) Adjust the charges of the given sites (in place) such that

they can be used together.
set_common_charges(sites[, new_charges, . . .]) Adjust the charges of the given sites in place such that

they can be used together.

20.1. site 643

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

20.1.8 group_sites

• full name: tenpy.networks.site.group_sites

• parent module: tenpy.networks.site

• type: function

tenpy.networks.site.group_sites(sites, n=2, labels=None, charges='same')
Given a list of sites, group each n sites together.

Parameters

• sites (list of Site) – The sites to be grouped together.

• n (int) – We group each n consecutive sites from sites together in a GroupedSite.

• labels – See GroupedSites.

• charges – See GroupedSites.

Returns grouped_sites – The grouped sites. Has length (len(sites)-1)//n + 1.

Return type list of GroupedSite

20.1.9 multi_sites_combine_charges

• full name: tenpy.networks.site.multi_sites_combine_charges

• parent module: tenpy.networks.site

• type: function

tenpy.networks.site.multi_sites_combine_charges(sites, same_charges=[])
Adjust the charges of the given sites (in place) such that they can be used together.

When we want to contract tensors corresponding to different Site instances, these sites need to share a single
ChargeInfo. This function adjusts the charges of these sites such that they can be used together.

Deprecated since version 0.7.3: Deprecated in favore of the new, more powerful set_common_charges().
Be aware of the slightly different argument structure though, namely that this function keeps charges not
included in same_charges, whereas you need to include them explicitly into the new_charges argument of
set_common_charges.

Parameters

• sites (list of Site) – The sites to be combined. Modified in place.

• same_charges ([[(int, int|str), (int, int|str), ...], ...]) –
Defines which charges actually are the same, i.e. their quantum numbers are added up.
Each charge is specified by a tuple (s, i)= (int, int|str), where s gives the in-
dex of the site within sites and i the index or name of the charge in the ChargeInfo of
this site.

Returns perms – For each site the permutation performed on the physical leg to sort by charges.

Return type list of ndarray

Examples

644 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

>>> from tenpy.networks.site import *
>>> ferm = SpinHalfFermionSite(cons_N='N', cons_Sz='Sz')
>>> spin = SpinSite(1.0, 'Sz')
>>> ferm.leg.chinfo is spin.leg.chinfo
False
>>> print(spin.leg)
+1
0 [[-2]
1 [0]
2 [2]]
3
>>> multi_sites_combine_charges([ferm, spin], same_charges=[[(0, 1), (1, 0)]])
[array([0, 1, 2, 3]), array([0, 1, 2])]
>>> # no permutations where needed
>>> ferm.leg.chinfo is spin.leg.chinfo
True
>>> ferm.leg.chinfo.names
['N', '2*Sz']
>>> print(spin.leg)
+1

0 [[0 -2]
1 [0 0]
2 [0 2]]
3

20.1.10 set_common_charges

• full name: tenpy.networks.site.set_common_charges

• parent module: tenpy.networks.site

• type: function

tenpy.networks.site.set_common_charges(sites, new_charges='same', new_names=None,
new_mod=None)

Adjust the charges of the given sites in place such that they can be used together.

Before we can contract operators (and tensors) corresponding to different Site instances, we first need to define
the overall conserved charges, i.e., we need to merge the ChargeInfo of them to a single, global chinfo and
adjust the charges of the physical legs. That’s what this function does.

A typical place to do this would be in tenpy.models.model.CouplingMPOModel.init_sites().

(This function replaces the now deprecated mutli_sites_combine_charges().)

Parameters

• sites (list of Site) – The sites to be combined. The sites are modified in place.

• new_charges ('same' | 'drop' | 'independent' | list of list of tuple) – Defines
the new, common charges in terms of the old ones.

list of lists of tuple If a list is given, each entry new_charge of the list defines one new
charge, i.e. the new number of charges is qnumber=len(new_charges). Each en-
try new_charge of the outer list is itself a list of 3-tuples, new_charge = [(factor,
site_index, old_charge_index), ...]. where the value of the new charge
is the sum of factor times the value of the old charge, (specified by the site_index and
the old_charge_index within that site), and the sum runs over all entries in that list

20.1. site 645

TeNPy, Release 0.8.1

new_charge. old_charge_index can be an integer (=the index) or a string (=the name)
of the charge in the corresponding sites[site_index].leg.chinfo.

'same' defaults to charges with the same name to match, and charges with different names
to be independently conserved (see example below); None-set names are considered dif-
ferent.

'drop' Drop/remove all charges, equivalent to new_charges=[].

'independent' For the case that the charges of the different sites are independent and
individually conserved, even if they have the same name.

• new_names (list of str) – Names for each of the new charges. Defaults to name of
the first old charge specified.

• new_mod (list of int) – mod for the new charges, one entry for each list in
new_charges. Defaults to the mod of the old charges, if not specified otherwise.

Returns perms – For each site the permutation performed on the physical leg to sort by charges.

Return type list of ndarray

Examples

When we just initialize some sites, they will in general have different charges. For example, we could have a
SpinHalfFermionSite a spin-1 SpinSite. For reference, let’s also print the names and values of the
charges.

>>> from tenpy.networks.site import *
>>> ferm = SpinHalfFermionSite(cons_N='N', cons_Sz='Sz')
>>> ferm.leg.chinfo.names
['N', '2*Sz']
>>> print(ferm.leg.to_qflat())
[[1 -1]
[0 0]
[2 0]
[1 1]]
>>> spin = SpinSite(1.0, conserve='Sz')
>>> spin.leg.chinfo.names
['2*Sz']
>>> print(spin.leg.to_qflat())
[[-2]
[0]
[2]]

With the default new_charges='same', this function will combine charges with the same name, and hence
we will have two conserved quantities, namley the fermion particle number 'N' = N_{up_fermions}
+ N_{down-fermions}, and the total Sz spin '2*Sz' = N_{up-fermions} + N_{up-spins}
- N_{down-fermions} - N_{down-spins}. In this case, there will only appear an extra column of
zeros for the charges of the spin leg.

>>> set_common_charges([ferm, spin], new_charges='same')
[array([0, 1, 2, 3]), array([0, 1, 2])]
>>> ferm.leg.chinfo.names
['N', '2*Sz']
>>> print(ferm.leg.to_qflat()) # didn't change (except making a copy)
[[1 -1]
[0 0]
[2 0]

(continues on next page)

646 Chapter 20. networks

TeNPy, Release 0.8.1

(continued from previous page)

[1 1]]
>>> spin.leg.chinfo.names # additional 'N' chargename
['N', '2*Sz']
>>> print(spin.leg.to_qflat()) # additional column of zeros for the 'N' charge
[[0 -2]
[0 0]
[0 2]]

With new_charges='independent', we preserve the charges of the old sites individually. In this exam-
ple, we get 3 conserved quantities, namely the fermion particle number 'N_ferm' = N_{up_fermions}
+ N_{down-fermions}, and the fermionic Sz spin '2*Sz_ferm' = N_{up-fermions} -
N_{down-fermions} and the Sz spin of the spin sites, '2*Sz_spin' = N_{up-spins} -
N_{down-spins}. (We give the charges new names for clearer distinction.) Corresponding zero columns are
added to the LegCharges.

>>> ferm = SpinHalfFermionSite(cons_N='N', cons_Sz='Sz')
>>> spin = SpinSite(1.0, conserve='Sz')
>>> set_common_charges([ferm, spin], new_charges='independent',
... new_names=['N_ferm', '2*Sz_ferm', '2*Sz_spin'])
[array([0, 1, 2, 3]), array([0, 1, 2])]
>>> print(ferm.leg.to_qflat()) # didn't change (except making a copy)
[[1 -1 0]
[0 0 0]
[2 0 0]
[1 1 0]]

>>> print(spin.leg.to_qflat()) # additional column of zeros for the 'N' charge
[[0 0 -2]
[0 0 0]
[0 0 2]]

With the full specification of the new_charges through a list of list of tuples, you can create new charges as
linear combinations of the charges of the individual sites. For example, the SpinHalfFermionSite is essentially
the product of two FermionSite, one for the up electrons, and one for the down electrons. The '2*Sz' charge
of the SpinHalfFermionSite is then equivalent to the difference of individual particle numbers, '2*Sz' =
N_{up} - N_{down}.

>>> f_up = FermionSite(conserve='N')
>>> f_down = FermionSite(conserve='N')
>>> print(f_up.leg.to_qflat())
[[0]
[1]]
>>> print(f_down.leg.to_qflat())
[[0]
[1]]

>>> f_down.state_labels
{'empty': 0, 'full': 1}
>>> set_common_charges([f_up, f_down],
... new_charges=[[(1, 0, 'N'), (1, 1, 'N')],
... [(1, 0, 'N'), (-1, 1, 'N')]],
... new_names=['N_tot', '2*Sz=(N_up-N_down)'])
[array([0, 1]), array([1, 0])]
>>> f_down.state_labels # sorting charges caused permutation of local states
{'empty': 1, 'full': 0}
>>> print(f_up.leg.to_qflat())
[[0 0]
[1 1]]

(continues on next page)

20.1. site 647

TeNPy, Release 0.8.1

(continued from previous page)

>>> print(f_down.leg.to_qflat()) # top row = full, bottom row=empty
[[1 -1]
[0 0]]

Another example could be that you have both fermions and bosons, and that you have terms 𝑐𝑖𝑐𝑗𝑏
†
𝑘 + 𝑐†𝑖 𝑐

†
𝑗𝑏𝑘,

where two fermions can merge into a pair forming a boson. In this case, neither the fermion number nor
the boson number is preserved individually, but the combination N_{fermions} + 2 * N_{bosons} is
preserved.

>>> ferm = FermionSite(conserve='N')
>>> bos = BosonSite(Nmax=3, conserve='N')
>>> set_common_charges([ferm, bos], [[(1, 0, 'N'), (2, 1, 'N')]], ['N_f + 2 N_b'])
[array([0, 1]), array([0, 1, 2, 3])]

Finally, it can sometimes be convenient to change the charges of the The new_charges='drop' or
new_charges=[] option is a quick way to remove any charges.

>>> ferm = SpinHalfFermionSite(cons_N='N', cons_Sz='Sz')
>>> spin = SpinSite(1.0, conserve='Sz')
>>> set_common_charges([ferm, spin], new_charges='drop')
[array([0, 1, 2, 3]), array([0, 1, 2])]
>>> assert ferm.leg.chinfo.qnumber == spin.leg.chinfo.qnumber == 0 # trivial: no
→˓charges

Module description

Defines a class describing the local physical Hilbert space.

The Site is the prototype, read it’s docstring.

20.2 mps

• full name: tenpy.networks.mps

• parent module: tenpy.networks

• type: module

648 Chapter 20. networks

TeNPy, Release 0.8.1

Classes

InitialStateBuilder MPS MPSEnvironment NpcLinearOperator

TransferMatrix

InitialStateBuilder(lattice, options[, . . .]) Class to simplify providing common sets of intial states.
MPS(sites, Bs, SVs[, bc, form, norm]) A Matrix Product State, finite (MPS) or infinite (iMPS).
MPSEnvironment(bra, ket[, init_LP, init_RP, . . .]) Stores partial contractions of < 𝑏𝑟𝑎|𝑂𝑝|𝑘𝑒𝑡 > for local

operators Op.
TransferMatrix(bra, ket[, shift_bra, . . .]) Transfer matrix of two MPS (bra & ket).

20.2.1 MPSEnvironment

• full name: tenpy.networks.mps.MPSEnvironment

• parent module: tenpy.networks.mps

• type: class

Inheritance Diagram

MPSEnvironment

Methods

MPSEnvironment.__init__(bra, ket[, init_LP,
. . .])

Initialize self.

MPSEnvironment.del_LP(i) Delete stored part strictly to the left of site i.
MPSEnvironment.del_RP(i) Delete storde part scrictly to the right of site i.
MPSEnvironment.expectation_value(ops[,
. . .])

Expectation value <bra|ops|ket> of (n-site) opera-
tor(s).

continues on next page

20.2. mps 649

TeNPy, Release 0.8.1

Table 19 – continued from previous page
MPSEnvironment.full_contraction(i0) Calculate the overlap by a full contraction of the net-

work.
MPSEnvironment.get_LP(i[, store]) Calculate LP at given site from nearest available one.
MPSEnvironment.get_LP_age(i) Return number of physical sites in the contractions of

get_LP(i).
MPSEnvironment.get_RP(i[, store]) Calculate RP at given site from nearest available one.
MPSEnvironment.get_RP_age(i) Return number of physical sites in the contractions of

get_RP(i).
MPSEnvironment.get_initialization_data()Return data for (re-)initialization.
MPSEnvironment.init_LP(i) Build initial left part LP.
MPSEnvironment.init_RP(i) Build initial right part RP for an

MPS/MPOEnvironment.
MPSEnvironment.set_LP(i, LP, age) Store part to the left of site i.
MPSEnvironment.set_RP(i, RP, age) Store part to the right of site i.
MPSEnvironment.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

class tenpy.networks.mps.MPSEnvironment(bra, ket, init_LP=None, init_RP=None,
age_LP=0, age_RP=0)

Bases: object

Stores partial contractions of < 𝑏𝑟𝑎|𝑂𝑝|𝑘𝑒𝑡 > for local operators Op.

The network for a contraction < 𝑏𝑟𝑎|𝑂𝑝|𝑘𝑒𝑡 > of a local operator Op, say exemplary at sites i, i+1 looks like:

| .-----M[0]--- ... --M[1]---M[2]--- ... ->--.
| | | | | |
| | | |------| |
| LP[0] | | Op | RP[-1]
| | | |------| |
| | | | | |
| .-----N[0]*-- ... --N[1]*--N[2]*-- ... -<--.

Of course, we can also calculate the overlap <bra|ket> by using the special case Op = Id.

We use the following label convention (where arrows indicate qconj):

| .-->- vR vL ->-.
| | |
| LP RP
| | |
| .--<- vR* vL* -<-.

To avoid recalculations of the whole network e.g. in the DMRG sweeps, we store the contractions up to some
site index in this class. For bc='finite','segment', the very left and right part LP[0] and RP[-1] are
trivial and don’t change, but for bc='infinite' they are might be updated (by inserting another unit cell to
the left/right).

The MPS bra and ket have to be in canonical form. All the environments are constructed without the singular
values on the open bond. In other words, we contract left-canonical A to the left parts LP and right-canonical B
to the right parts RP. Thus, the special case ket=bra should yield identity matrices for LP and RP.

Parameters

• bra (MPS) – The MPS to project on. Should be given in usual ‘ket’ form; we call conj() on
the matrices directly. Stored in place, without making copies. If necessary to match charges,
we call gauge_total_charge().

650 Chapter 20. networks

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

• ket (MPO | None) – The MPS on which the local operator acts. Stored in place, without
making copies. If None, use bra.

• init_LP (None | Array) – Initial very left part LP. If None, build trivial one with
init_LP().

• init_RP (None | Array) – Initial very right part RP. If None, build trivial one with
init_RP().

• age_LP (int) – The number of physical sites involved into the contraction yielding
firstLP.

• age_RP (int) – The number of physical sites involved into the contraction yielding lastRP.

L
Number of physical sites involved into the Environment, i.e. the least common multiple of bra.L and
ket.L.

Type int

bra, ket
The two MPS for the contraction.

Type MPS

dtype
The data type.

Type type

_finite
Whether the boundary conditions of the MPS are finite.

Type bool

_LP
Left parts of the environment, len L. LP[i] contains the contraction strictly left of site i (or None, if we
don’t have it calculated).

Type list of {None | Array}

_RP
Right parts of the environment, len L. RP[i] contains the contraction strictly right of site i (or None, if
we don’t have it calculated).

Type list of {None | Array}

_LP_age
Used for book-keeping, how large the DMRG system grew: _LP_age[i] stores the number of physical
sites invovled into the contraction network which yields self._LP[i].

Type list of int | None

_RP_age
Used for book-keeping, how large the DMRG system grew: _RP_age[i] stores the number of physical
sites invovled into the contraction network which yields self._RP[i].

Type list of int | None

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

init_LP(i)
Build initial left part LP.

20.2. mps 651

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters i (int) – Build LP left of site i.

Returns init_LP – Identity contractible with the vL leg of ket.get_B(i), labels 'vR*',
'vR'.

Return type Array

init_RP(i)
Build initial right part RP for an MPS/MPOEnvironment.

Parameters i (int) – Build RP right of site i.

Returns init_RP – Identity contractible with the vR leg of ket.get_B(i), labels 'vL*',
'vL'.

Return type Array

get_LP(i, store=True)
Calculate LP at given site from nearest available one.

The returned LP_i corresponds to the following contraction, where the M’s and the N’s are in the ‘A’
form:

| .-------M[0]--- ... --M[i-1]--->- 'vR'
LP[0]		
.-------N[0]*-- ... --N[i-1]*--<- 'vR*'		

Parameters

• i (int) – The returned LP will contain the contraction strictly left of site i.

• store (bool) – Wheter to store the calculated LP in self (True) or discard them
(False).

Returns LP_i – Contraction of everything left of site i, with labels 'vR*', 'vR' for bra, ket.

Return type Array

get_RP(i, store=True)
Calculate RP at given site from nearest available one.

The returned RP_i corresponds to the following contraction, where the M’s and the N’s are in the ‘B’
form:

| 'vL' ->---M[i+1]-- ... --M[L-1]----.
| | | |
| | | RP[-1]
| | | |
| 'vL*' -<---N[i+1]*- ... --N[L-1]*---.

Parameters

• i (int) – The returned RP will contain the contraction strictly right of site i.

• store (bool) – Wheter to store the calculated RP in self (True) or discard them
(False).

Returns RP_i – Contraction of everything left of site i, with labels 'vL*', 'vL' for bra, ket.

Return type Array

652 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

get_LP_age(i)
Return number of physical sites in the contractions of get_LP(i).

Might be None.

get_RP_age(i)
Return number of physical sites in the contractions of get_RP(i).

Might be None.

set_LP(i, LP, age)
Store part to the left of site i.

set_RP(i, RP, age)
Store part to the right of site i.

del_LP(i)
Delete stored part strictly to the left of site i.

del_RP(i)
Delete storde part scrictly to the right of site i.

get_initialization_data()
Return data for (re-)initialization.

The returned parameters are collected in a dictionary with the following names.

Returns

• init_LP, init_RP (Array) – LP on the left of site 0 and RP on the right of site L-1, which
can be used as init_LP and init_RP for the initialization of a new environment.

• age_LP, age_RP (int) – The number of physical sites involved into the contraction yield-
ing init_LP and init_RP, respectively.

full_contraction(i0)
Calculate the overlap by a full contraction of the network.

The full contraction of the environments gives the overlap <bra|ket>, taking into account MPS.norm
of both bra and ket. For this purpose, this function contracts get_LP(i0+1, store=False) and
get_RP(i0, store=False) with appropriate singular values in between.

Parameters i0 (int) – Site index.

expectation_value(ops, sites=None, axes=None)
Expectation value <bra|ops|ket> of (n-site) operator(s).

Calculates n-site expectation values of operators sandwiched between bra and ket. For examples the con-
traction for a two-site operator on site i would look like:

| .--S--B[i]--B[i+1]--.
| | | | |
| | |-----| |
| LP[i] | op | RP[i+1]
| | |-----| |
| | | | |
| .--S--B*[i]-B*[i+1]-.

Here, the B are taken from ket, the B* from bra. The call structure is the same as for MPS.
expectation_value().

20.2. mps 653

https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Warning: In contrast to MPS.expectation_value(), this funciton does not normalize, thus it
also takes into account MPS.norm of both bra and ket.

Parameters

• ops ((list of) { Array | str }) – The operators, for wich the expectation value should
be taken, All operators should all have the same number of legs (namely 2 n). If less
than len(sites) operators are given, we repeat them periodically. Strings (like 'Id',
'Sz') are translated into single-site operators defined by sites.

• sites (list) – List of site indices. Expectation values are evaluated there. If None
(default), the entire chain is taken (clipping for finite b.c.)

• axes (None | (list of str, list of str)) – Two lists of each n leg labels
giving the physical legs of the operator used for contraction. The first n legs are con-
tracted with conjugated B, the second n legs with the non-conjugated B. None defaults to
(['p'], ['p*']) for single site (n=1), or (['p0', 'p1', ... 'p{n-1}'],
['p0*', 'p1*', 'p{n-1}*']) for n > 1.

Returns exp_vals – Expectation values, exp_vals[i] = <bra|ops[i]|ket>, where
ops[i] acts on site(s) j, j+1, ..., j+{n-1} with j=sites[i].

Return type 1D ndarray

20.2.2 TransferMatrix

• full name: tenpy.networks.mps.TransferMatrix

• parent module: tenpy.networks.mps

• type: class

Inheritance Diagram

NpcLinearOperator

TransferMatrix

654 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

Methods

TransferMatrix.__init__(bra, ket[, . . .]) Initialize self.
TransferMatrix.adjoint() Return the hermitian conjugate of self
TransferMatrix.eigenvectors(*args,
**kwargs)

Find (dominant) eigenvector(s) of self using scipy.
sparse.

TransferMatrix.initial_guess([diag]) Return a diagonal matrix as initial guess for the eigen-
vector.

TransferMatrix.matvec(vec) Given vec as an npc.Array, apply the transfer matrix.
TransferMatrix.to_matrix() Contract self to a matrix.

Class Attributes and Properties

TransferMatrix.acts_on

class tenpy.networks.mps.TransferMatrix(bra, ket, shift_bra=0, shift_ket=None, trans-
pose=False, charge_sector=0, form='B')

Bases: tenpy.linalg.sparse.NpcLinearOperator

Transfer matrix of two MPS (bra & ket).

For an iMPS in the thermodynamic limit, we often need to find the ‘dominant RP’ (and LP). This mean nothing
else than to take the transfer matrix of the unit cell and find the (right/left) eigenvector with the largest (magni-
tude) eigenvalue, since it will dominate (𝑇𝑀)𝑛𝑅𝑃 (or 𝐿𝑃 (𝑇𝑀)𝑛) in the limit 𝑛 → ∞ - whatever the initial
RP is. This class provides exactly that functionality with eigenvectors().

Given two MPS, we define the transfer matrix as:

| ---M[i]---M[i+1]- ... --M[i+L]---
| | | |
| ---N[j]*--N[j+1]* ... --N[j+L]*--

Here the M denotes the matrices of the bra and N the ones of the ket, respectively. To view it as a matrix, we
combine the left and right indices to pipes:

| (vL.vL*) ->-TM->- (vR.vR*) acting on (vL.vL*) ->-RP

Note that we keep all M and N as copies.

Deprecated since version 0.6.0: The default for shift_ket was the value of shift_bra, this will be changed to 0.

Parameters

• bra (MPS) – The MPS which is to be (complex) conjugated.

• ket (MPS) – The MPS which is not (complex) conjugated.

• shift_bra (int) – We start the N of the bra at site shift_bra (i.e. the j in the above
network).

• shift_ket (int | None) – We start the M of the ket at site shift_ket (i.e. the i in the
above network). None is deprecated, default will be changed to 0 in the future.

• transpose (bool) – Wheter self.matvec acts on RP (False) or LP (True).

20.2. mps 655

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• charge_sector (None | charges | 0) – Selects the charge sector of the vector onto which
the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector.
Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0.

• form ('B' | 'A' | 'C' | 'G' | 'Th' | None | tuple(float, float)) – In which
canonical form we take the M and N matrices.

L
Number of physical sites involved in the transfer matrix, i.e. the least common multiple of bra.L and ket.L.

Type int

shift_bra
We start the N of the bra at site shift_bra.

Type int

shift_ket
We start the M of the ket at site shift_ket. None defaults to shift_bra.

Type int | None

transpose
Wheter self.matvec acts on RP (True) or LP (False).

Type bool

qtotal
Total charge of the transfer matrix (which is gauged away in matvec).

Type charges

form
In which canonical form (all of) the M and N matrices are.

Type tuple(float, float) | None

flat_linop
Class lifting matvec() to ndarrays in order to use speigs().

Type FlatLinearOperator

pipe
Pipe corresponding to '(vL.vL*)' for transpose=False or to '(vR.vR*)' for
transpose=True.

Type LegPipe

label_split
['vL', 'vL*'] if tranpose=False or ['vR', 'vR*'] if transpose=True.

_bra_N
Complex conjugated matrices of the bra, transposed for fast matvec.

Type list of npc.Array

_ket_M
The matrices of the ket, transposed for fast matvec.

Type list of npc.Array

matvec(vec)
Given vec as an npc.Array, apply the transfer matrix.

656 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Parameters vec (Array) – Vector to act on with the transfermatrix. If not transposed, vec
is the right part RP of an environment, with legs '(vL.vL*)' in a pipe or splitted. If
transposed, the left part LP of an environment with legs '(vR*.vR)'.

Returns mat_vec – The tranfer matrix acted on vec, in the same form as given.

Return type Array

initial_guess(diag=1.0)
Return a diagonal matrix as initial guess for the eigenvector.

Parameters diag (float | 1D ndarray) – Should be 1. for the identity or some singu-
lar values squared.

Returns mat – A 2D array with diag on the diagonal such that matvec() can act on it.

Return type Array

eigenvectors(*args, **kwargs)
Find (dominant) eigenvector(s) of self using scipy.sparse.

For arguments see eigenvectors().

If no charge_sector was selected, we look in all charge sectors. The returned eigenvectors have
combined legs '(vL.vL*)' or (vR*.vR).

adjoint()
Return the hermitian conjugate of self

If self is hermitian, subclasses can choose to implement this to define the adjoint operator of self.

to_matrix()
Contract self to a matrix.

If self represents an operator with very small shape, e.g. because the MPS bond dimension is very small,
an algorithm might choose to contract self to a single tensor.

Returns matrix – Contraction of the represented operator.

Return type Array

Functions

build_initial_state(size, states, filling[, . . .]) Build an “initial state” list.

20.2.3 build_initial_state

• full name: tenpy.networks.mps.build_initial_state

• parent module: tenpy.networks.mps

• type: function

tenpy.networks.mps.build_initial_state(size, states, filling, mode='random', seed=None)
Build an “initial state” list.

Uses two iterables (‘states’ and ‘filling’) to determine how to fill the state. The two lists should have the same
length as every element in ‘filling’ gives the filling fraction for the corresponding state in ‘states’.

Example

20.2. mps 657

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

TeNPy, Release 0.8.1

size = 6, states = [0, 1, 2], filling = [1./3, 2./3, 0.] n_states = size * filling = [2, 4, 0] ==> Two sites will get state
0, 4 sites will get state 1, 0 sites will get state 2.

Todo: Make more general: it should be possible to specify states as strings.

Parameters

• size (int) – length of state

• states (iterable) – Containing the possible local states

• filling (iterable) – Fraction of the total number of sites to get a certain state. If
infinite fractions (e.g. 1/3) are needed, one should supply a fraction (1./3.)

• mode (str | None) – State filling pattern. Only ‘random’ is implemented

• seed (int | None) – Seed for random number generators

Returns initial_state (list)

Return type the initial state

Raises

• ValueError – If fractonal fillings are incommensurate with system size.

• AssertionError – If the total filling is not equal to 1, or the length of filling does not
equal the length of states.

Module description

This module contains a base class for a Matrix Product State (MPS).

An MPS looks roughly like this:

| -- B[0] -- B[1] -- B[2] -- ...
| | | |

We use the following label convention for the B (where arrows indicate qconj):

| vL ->- B ->- vR
| |
| ^
| p

We store one 3-leg tensor _B[i] with labels 'vL', 'vR', 'p' for each of the L sites 0 <= i < L. Additionally,
we store L+1 singular value arrays _S[ib] on each bond 0 <= ib <= L, independent of the boundary conditions.
_S[ib] gives the singlur values on the bond i-1, i. However, be aware that e.g. chi returns only the dimensions
of the nontrivial_bonds depending on the boundary conditions.

The matrices and singular values always represent a normalized state (i.e. np.linalg.norm(psi._S[ib]) ==
1 up to roundoff errors), but (for finite MPS) we keep track of the norm in norm (which is respected by overlap(),
. . .).

Valid MPS boundary conditions (not to confuse with bc_coupling of tenpy.models.model.CouplingModel)
are the following:

658 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

TeNPy, Release 0.8.1

bc description
‘fi-
nite’

Finite MPS, G0 s1 G1 ... s{L-1} G{l-1}. This is acchieved by using a trivial left and right bond
s[0] = s[-1] = np.array([1.]).

‘seg-
ment’

Generalization of ‘finite’, describes an MPS embedded in left and right environments. The left environment
is described by chi[0] orthonormal states which are weighted by the singular values s[0]. Similar,
s[L] weight some right orthonormal states. You can think of the left and right states to be generated by
additional MPS, such that the overall structure is something like ... s L s L [s0 G0 s1 G1 ...
s{L-1} G{L-1} s{L}] R s R s R ... (where we save the part in the brackets [...]).

‘in-
fi-
nite’

infinite MPS (iMPS): we save a ‘MPS unit cell’ [s0 G0 s1 G1 ... s{L-1} G{L-1}] which is
repeated periodically, identifying all indices modulo self.L. In particular, the last bond L is identified
with 0. (The MPS unit cell can differ from a lattice unit cell). bond is identified with the first one.

An MPS can be in different ‘canonical forms’ (see [[schollwoeck2011], [vidal2004]]). To take care of the different
canonical forms, algorithms should use functions like get_theta(), get_B() and set_B() instead of accessing
them directly, as they return the B in the desired form (which can be chosen as an argument). The values of the
tuples for the form correspond to the exponent of the singular values on the left and right. To keep track of a “mixed”
canonical form A A A s B B, we save the tuples for each site of the MPS in MPS.form.

form tuple description
'B' (0, 1) right canonical: _B[i] = -- Gamma[i] -- s[i+1]-- The default form, which algorithms

asssume.
'C' (0.5,

0.5)
symmetric form: _B[i] = -- s[i]**0.5 -- Gamma[i] -- s[i+1]**0.5--

'A' (1, 0) left canonical: _B[i] = -- s[i] -- Gamma[i] --.
'G' (0, 0) Save only _B[i] = -- Gamma[i] --.
'Th' (1, 1) Form of a local wave function theta with singular value on both sides. psi.get_B(i, 'Th')

is equivalent to ``psi.get_theta(i, n=1).
None None General non-canoncial form. Valid form for initialization, but you need to call

canonical_form() (or similar) before using algorithms.

20.3 mpo

• full name: tenpy.networks.mpo

• parent module: tenpy.networks

• type: module

20.3. mpo 659

TeNPy, Release 0.8.1

Classes

MPO

MPOEnvironment

MPSEnvironment MPOGraph

MPO(sites, Ws[, bc, IdL, IdR, max_range, . . .]) Matrix product operator, finite (MPO) or infinite
(iMPO).

MPOEnvironment(bra, H, ket[, init_LP, . . .]) Stores partial contractions of < 𝑏𝑟𝑎|𝐻|𝑘𝑒𝑡 > for an
MPO H.

MPOGraph(sites[, bc, max_range]) Representation of an MPO by a graph, based on a ‘finite
state machine’.

20.3.1 MPOEnvironment

• full name: tenpy.networks.mpo.MPOEnvironment

• parent module: tenpy.networks.mpo

• type: class

Inheritance Diagram

MPOEnvironment

MPSEnvironment

660 Chapter 20. networks

TeNPy, Release 0.8.1

Methods

MPOEnvironment.__init__(bra, H, ket[, . . .]) Initialize self.
MPOEnvironment.del_LP(i) Delete stored part strictly to the left of site i.
MPOEnvironment.del_RP(i) Delete storde part scrictly to the right of site i.
MPOEnvironment.expectation_value(ops[,
. . .])

(doesn’t make sense)

MPOEnvironment.full_contraction(i0) Calculate the energy by a full contraction of the net-
work.

MPOEnvironment.get_LP(i[, store]) Calculate LP at given site from nearest available one (in-
cluding i).

MPOEnvironment.get_LP_age(i) Return number of physical sites in the contractions of
get_LP(i).

MPOEnvironment.get_RP(i[, store]) Calculate RP at given site from nearest available one
(including i).

MPOEnvironment.get_RP_age(i) Return number of physical sites in the contractions of
get_RP(i).

MPOEnvironment.get_initialization_data()Return data for (re-)initialization.
MPOEnvironment.init_LP(i) Build initial left part LP.
MPOEnvironment.init_RP(i) Build initial right part RP for an

MPS/MPOEnvironment.
MPOEnvironment.set_LP(i, LP, age) Store part to the left of site i.
MPOEnvironment.set_RP(i, RP, age) Store part to the right of site i.
MPOEnvironment.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

class tenpy.networks.mpo.MPOEnvironment(bra, H, ket, init_LP=None, init_RP=None,
age_LP=0, age_RP=0)

Bases: tenpy.networks.mps.MPSEnvironment

Stores partial contractions of < 𝑏𝑟𝑎|𝐻|𝑘𝑒𝑡 > for an MPO H.

The network for a contraction < 𝑏𝑟𝑎|𝐻|𝑘𝑒𝑡 > of an MPO H bewteen two MPS looks like:

| .------>-M[0]-->-M[1]-->-M[2]-->- ... ->--.
	^ ^ ^			
LP[0] ->-W[0]-->-W[1]-->-W[2]-->- ... ->- RP[-1]				
	^ ^ ^			
.------<-N[0]*-<-N[1]*-<-N[2]*-<- ... -<--.				

We use the following label convention (where arrows indicate qconj):

| .-->- vR vL ->-.
| | |
| LP->- wR wL ->-RP
| | |
| .--<- vR* vL* -<-.

To avoid recalculations of the whole network e.g. in the DMRG sweeps, we store the contractions up to some
site index in this class. For bc='finite','segment', the very left and right part LP[0] and RP[-1] are
trivial and don’t change in the DMRG algorithm, but for iDMRG (bc='infinite') they are also updated
(by inserting another unit cell to the left/right).

20.3. mpo 661

TeNPy, Release 0.8.1

The MPS bra and ket have to be in canonical form. All the environments are constructed without the singular
values on the open bond. In other words, we contract left-canonical A to the left parts LP and right-canonical B
to the right parts RP.

Parameters

• bra (MPS) – The MPS to project on. Should be given in usual ‘ket’ form; we call conj() on
the matrices directly.

• H (MPO) – The MPO sandwiched between bra and ket. Should have ‘IdL’ and ‘IdR’ set on
the first and last bond.

• ket (MPS) – The MPS on which H acts. May be identical with bra.

• init_LP (None | Array) – Initial very left part LP. If None, build trivial one with
:meth`init_LP`.

• init_RP (None | Array) – Initial very right part RP. If None, build trivial one with
init_RP().

• age_LP (int) – The number of physical sites involved into the contraction yielding
firstLP.

• age_RP (int) – The number of physical sites involved into the contraction yielding lastRP.

H
The MPO sandwiched between bra and ket.

Type MPO

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

init_LP(i)
Build initial left part LP.

Parameters i (int) – Build LP left of site i.

Returns init_LP – Identity contractible with the vL leg of .ket.get_B(i), multiplied with
a unit vector nonzero in H.IdL[i], with labels 'vR*', 'wR', 'vR'.

Return type Array

init_RP(i)
Build initial right part RP for an MPS/MPOEnvironment.

Parameters i (int) – Build RP right of site i.

Returns init_RP – Identity contractible with the vR leg of self.get_B(i), multiplied with
a unit vector nonzero in H.IdR[i], with labels 'vL*', 'wL', 'vL'.

Return type Array

get_LP(i, store=True)
Calculate LP at given site from nearest available one (including i).

The returned LP_i corresponds to the following contraction, where the M’s and the N’s are in the ‘A’
form:

| .-------M[0]--- ... --M[i-1]--->- 'vR'
| | | |
| LP[0]---W[0]--- ... --W[i-1]--->- 'wR'
| | | |
| .-------N[0]*-- ... --N[i-1]*--<- 'vR*'

662 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters

• i (int) – The returned LP will contain the contraction strictly left of site i.

• store (bool) – Wheter to store the calculated LP in self (True) or discard them
(False).

Returns LP_i – Contraction of everything left of site i, with labels 'vR*', 'wR', 'vR' for
bra, H, ket.

Return type Array

get_RP(i, store=True)
Calculate RP at given site from nearest available one (including i).

The returned RP_i corresponds to the following contraction, where the M’s and the N’s are in the ‘B’
form:

| 'vL' ->---M[i+1]-- ... --M[L-1]----.
| | | |
| 'wL' ->---W[i+1]-- ... --W[L-1]----RP[-1]
| | | |
| 'vL*' -<---N[i+1]*- ... --N[L-1]*---.

Parameters

• i (int) – The returned RP will contain the contraction strictly rigth of site i.

• store (bool) – Wheter to store the calculated RP in self (True) or discard them
(False).

Returns RP_i – Contraction of everything right of site i, with labels 'vL*', 'wL', 'vL'
for bra, H, ket.

Return type Array

full_contraction(i0)
Calculate the energy by a full contraction of the network.

The full contraction of the environments gives the value <bra|H|ket> /
(norm(|bra>)*norm(|ket>)), i.e. if bra is ket and normalized, the total energy. For this purpose,
this function contracts get_LP(i0+1, store=False) and get_RP(i0, store=False).

Parameters i0 (int) – Site index.

expectation_value(ops, sites=None, axes=None)
(doesn’t make sense)

del_LP(i)
Delete stored part strictly to the left of site i.

del_RP(i)
Delete storde part scrictly to the right of site i.

get_LP_age(i)
Return number of physical sites in the contractions of get_LP(i).

Might be None.

get_RP_age(i)
Return number of physical sites in the contractions of get_RP(i).

Might be None.

20.3. mpo 663

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

get_initialization_data()
Return data for (re-)initialization.

The returned parameters are collected in a dictionary with the following names.

Returns

• init_LP, init_RP (Array) – LP on the left of site 0 and RP on the right of site L-1, which
can be used as init_LP and init_RP for the initialization of a new environment.

• age_LP, age_RP (int) – The number of physical sites involved into the contraction yield-
ing init_LP and init_RP, respectively.

set_LP(i, LP, age)
Store part to the left of site i.

set_RP(i, RP, age)
Store part to the right of site i.

20.3.2 MPOGraph

• full name: tenpy.networks.mpo.MPOGraph

• parent module: tenpy.networks.mpo

• type: class

Inheritance Diagram

MPOGraph

Methods

MPOGraph.__init__(sites[, bc, max_range]) Initialize self.
MPOGraph.add(i, keyL, keyR, opname, strength) Insert an edge into the graph.
MPOGraph.add_missing_IdL_IdR([insert_all_id]) Add missing identity (‘Id’) edges connecting

'IdL'->'IdL' and ``'IdR'->'IdR'.
MPOGraph.add_string(i, j, key[, opname, . . .]) Insert a bunch of edges for an ‘operator string’ into the

graph.
MPOGraph.build_MPO([Ws_qtotal]) Build the MPO represented by the graph (self).
MPOGraph.from_term_list(term_list, sites, bc) Initialize from a list of operator terms and prefactors.
MPOGraph.from_terms(terms, sites, bc[, . . .]) Initialize an MPOGraph from OnsiteTerms and Cou-

plingTerms.
MPOGraph.has_edge(i, keyL, keyR) True if there is an edge from keyL on bond (i-1, i) to

keyR on bond (i, i+1).
MPOGraph.test_sanity() Sanity check, raises ValueErrors, if something is wrong.

664 Chapter 20. networks

TeNPy, Release 0.8.1

Class Attributes and Properties

MPOGraph.L Number of physical sites; for infinite boundaries the
length of the unit cell.

class tenpy.networks.mpo.MPOGraph(sites, bc='finite', max_range=None)
Bases: object

Representation of an MPO by a graph, based on a ‘finite state machine’.

This representation is used for building H_MPO from the interactions. The idea is to view the MPO as a kind
of ‘finite state machine’. The states or keys of this finite state machine life on the MPO bonds between the Ws.
They label the indices of the virtul bonds of the MPOs, i.e., the indices on legs wL and wR. They can be anything
hash-able like a str, int or a tuple of them.

The edges of the graph are the entries W[keyL, keyR], which itself are onsite operators on the local Hilbert
space. The indices keyL and keyR correspond to the legs 'wL', 'wR' of the MPO. The entry W[keyL,
keyR] connects the state keyL on bond (i-1, i) with the state keyR on bond (i, i+1).

The keys 'IdR' (for ‘idenity left’) and 'IdR' (for ‘identity right’) are reserved to represent only 'Id'
(=identity) operators to the left and right of the bond, respectively.

Todo: might be useful to add a “cleanup” function which removes operators cancelling each other and/or
unused states. Or better use a ‘compress’ of the MPO?

Parameters

• sites (list of Site) – Local sites of the Hilbert space.

• bc ({'finite', 'infinite'}) – MPO boundary conditions.

• max_range (int | np.inf | None) – Maximum range of hopping/interactions (in
unit of sites) of the MPO. None for unknown.

sites
Defines the local Hilbert space for each site.

Type list of Site

chinfo
The nature of the charge.

Type ChargeInfo

bc
MPO boundary conditions.

Type {‘finite’, ‘infinite’}

max_range
Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.

Type int | np.inf | None

states
states[i] gives the possible keys at the virtual bond (i-1, i) of the MPO. L+1 enries.

Type list of set of keys

20.3. mpo 665

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

graph
For each site i a dictionary {keyL: {keyR: [(opname, strength)]}} with keyL in
states[i] and keyR in states[i+1].

Type list of dict of dict of list of tuples

_grid_legs
The charges for the MPO

Type None | list of LegCharge

classmethod from_terms(terms, sites, bc, insert_all_id=True)
Initialize an MPOGraph from OnsiteTerms and CouplingTerms.

Parameters

• terms (iterable of tenpy.networks.terms.*Terms classes) – En-
tries can be OnsiteTerms, CouplingTerms, MultiCouplingTerms or
ExponentialCouplingTerms. All the entries get added to the new MPOGraph.

• sites (list of Site) – Local sites of the Hilbert space.

• bc ('finite' | 'infinite') – MPO boundary conditions.

• insert_all_id (bool) – Whether to insert identities such that IdL and IdR are defined
on each bond. See add_missing_IdL_IdR().

Returns graph – Initialized with the given terms.

Return type MPOGraph

See also:

from_term_list equivalent for representation by TermList.

classmethod from_term_list(term_list, sites, bc, insert_all_id=True)
Initialize from a list of operator terms and prefactors.

Parameters

• term_list (TermList) – Terms to be added to the MPOGraph.

• sites (list of Site) – Local sites of the Hilbert space.

• bc ('finite' | 'infinite') – MPO boundary conditions.

• insert_all_id (bool) – Whether to insert identities such that IdL and IdR are defined
on each bond. See add_missing_IdL_IdR().

Returns graph – Initialized with the given terms.

Return type MPOGraph

See also:

from_terms equivalent for other representation of terms.

test_sanity()
Sanity check, raises ValueErrors, if something is wrong.

property L
Number of physical sites; for infinite boundaries the length of the unit cell.

add(i, keyL, keyR, opname, strength, check_op=True, skip_existing=False)
Insert an edge into the graph.

666 Chapter 20. networks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Parameters

• i (int) – Site index at which the edge of the graph is to be inserted.

• keyL (hashable) – The state at bond (i-1, i) to connect from.

• keyR (hashable) – The state at bond (i, i+1) to connect to.

• opname (str) – Name of the operator.

• strength (str) – Prefactor of the operator to be inserted.

• check_op (bool) – Whether to check that ‘opname’ exists on the given site.

• skip_existing (bool) – If True, skip adding the graph node if it exists (with same
keys and opname).

add_string(i, j, key, opname='Id', check_op=True, skip_existing=True)
Insert a bunch of edges for an ‘operator string’ into the graph.

Terms like 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 actually stand for 𝑆𝑧

𝑖 ⊗
∏︀

𝑖<𝑘<𝑗 1𝑘 ⊗ 𝑆𝑧
𝑗 . This function adds the 1 terms to the graph.

Parameters

• i (int) – An edge is inserted on all bonds between i and j, i < j. j can be larger than L, in
which case the operators are supposed to act on different MPS unit cells.

• j (int) – An edge is inserted on all bonds between i and j, i < j. j can be larger than L, in
which case the operators are supposed to act on different MPS unit cells.

• key (hashable) – The state at bond (i-1, i) to connect from and on bond (j-1, j) to
connect to. Also used for the intermediate states. No operator is inserted on a site i < k <
j if has_edge(k, key, key).

• opname (str) – Name of the operator to be used for the string. Useful for the Jordan-
Wigner transformation to fermions.

• skip_existing (bool) – Whether existing graph nodes should be skipped.

Returns label_j – The key on the left of site j to connect to. Usually the same as the parameter
key, except if j - i > self.L, in which case we use the additional labels (key, 1),
(key, 2), . . . to generate couplings over multiple unit cells.

Return type hashable

add_missing_IdL_IdR(insert_all_id=True)
Add missing identity (‘Id’) edges connecting 'IdL'->'IdL' and ``'IdR'->'IdR'.

This function should be called after all other operators have been inserted.

Parameters insert_all_id (bool) – If True, insert ‘Id’ edges on all bonds. If False
and boundary conditions are finite, only insert 'IdL'->'IdL' to the left of the rightmost
existing ‘IdL’ and 'IdR'->'IdR' to the right of the leftmost existing ‘IdR’. The latter
avoid “dead ends” in the MPO, but some functions (like make_WI) expect ‘IdL’/’IdR’ to
exist on all bonds.

has_edge(i, keyL, keyR)
True if there is an edge from keyL on bond (i-1, i) to keyR on bond (i, i+1).

build_MPO(Ws_qtotal=None)
Build the MPO represented by the graph (self).

Parameters Ws_qtotal (None | (list of) charges) – The qtotal for each of the Ws
to be generated, default (None) means 0 charge. A single qtotal holds for each site.

Returns mpo – the MPO which self represents.

20.3. mpo 667

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

Return type MPO

Functions

grid_insert_ops(site, grid) Replaces entries representing operators in a grid of
W[i] with npc.Arrays.

make_W_II(t, A, B, C, D) W_II approx to exp(t H) from MPO parts (A, B, C, D).

20.3.3 grid_insert_ops

• full name: tenpy.networks.mpo.grid_insert_ops

• parent module: tenpy.networks.mpo

• type: function

tenpy.networks.mpo.grid_insert_ops(site, grid)
Replaces entries representing operators in a grid of W[i] with npc.Arrays.

Parameters

• site (site) – The site on which the grid acts.

• grid (list of list of entries) – Represents a single matrix W of an MPO, i.e. the lists corre-
spond to the legs 'vL', 'vR', and entries to onsite operators acting on the given site. en-
tries may be None, Array , a single string or of the form [('opname', strength),
...], where 'opname' labels an operator in the site.

Returns grid – Copy of grid with entries [('opname', strength), ...] replaced
by sum([strength*site.get_op('opname') for opname, strength in
entry]) and entries 'opname' replaced by site.get_op('opname').

Return type list of list of {None | Array}

20.3.4 make_W_II

• full name: tenpy.networks.mpo.make_W_II

• parent module: tenpy.networks.mpo

• type: function

tenpy.networks.mpo.make_W_II(t, A, B, C, D)
W_II approx to exp(t H) from MPO parts (A, B, C, D).

Get the W_II approximation of [[zaletel2015]].

In the paper, we have two formal parameter “phi_{r/c}” which satisfies 𝜑2𝑟 = 𝑝ℎ𝑖2𝑐 = 0. To implement this, we
temporarily extend the virtual Hilbert space with two hard-core bosons “br, bl”. The components of Eqn (11)
can be computed for each index of the virtual row/column independently The matrix exponential is done in the
hard-core extended Hilbert space

Parameters

• t (float) – The time step per application of the propagator. Should be imaginary for real
time evolution!

668 Chapter 20. networks

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• A (numpy.ndarray) – Blocks of the MPO tensor to be exponentiated, as defined in
[[zaletel2015]]. Legs 'wL', 'wR', 'p', 'p*'; legs projected to a single IdL/IdR
can be dropped.

• B (numpy.ndarray) – Blocks of the MPO tensor to be exponentiated, as defined in
[[zaletel2015]]. Legs 'wL', 'wR', 'p', 'p*'; legs projected to a single IdL/IdR
can be dropped.

• C (numpy.ndarray) – Blocks of the MPO tensor to be exponentiated, as defined in
[[zaletel2015]]. Legs 'wL', 'wR', 'p', 'p*'; legs projected to a single IdL/IdR
can be dropped.

• D (numpy.ndarray) – Blocks of the MPO tensor to be exponentiated, as defined in
[[zaletel2015]]. Legs 'wL', 'wR', 'p', 'p*'; legs projected to a single IdL/IdR
can be dropped.

Module description

Matrix product operator (MPO).

An MPO is the generalization of an MPS to operators. Graphically:

| ^ ^ ^
| | | |
| ->- W[0] ->- W[1] ->- W[2] ->- ...
| | | |
| ^ ^ ^

So each ‘matrix’ has two physical legs p, p* instead of just one, i.e. the entries of the ‘matrices’ are local op-
erators. Valid boundary conditions of an MPO are the same as for an MPS (i.e. 'finite' | 'segment' |
'infinite'). (In general, you can view the MPO as an MPS with larger physical space and bring it into canoncial
form. However, unlike for an MPS, this doesn’t simplify calculations. Thus, an MPO has no form.)

We use the following label convention for the W (where arrows indicate qconj):

| p*
| ^
| |
| wL ->- W ->- wR
| |
| ^
| p

If an MPO describes a sum of local terms (e.g. most Hamiltonians), some bond indices correspond to ‘only identities
to the left/right’. We store these indices in IdL and IdR (if there are such indices).

Similar as for the MPS, a bond index i is left of site i, i.e. between sites i-1 and i.

20.3. mpo 669

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

TeNPy, Release 0.8.1

20.4 terms

• full name: tenpy.networks.terms

• parent module: tenpy.networks

• type: module

Classes

CouplingTerms

MultiCouplingTerms

Hdf5Exportable

ExponentiallyDecayingTerms OnsiteTerms TermList

CouplingTerms(L) Operator names, site indices and strengths representing
two-site coupling terms.

ExponentiallyDecayingTerms(L) Represent a sum of exponentially decaying (long-range)
couplings.

MultiCouplingTerms(L) Operator names, site indices and strengths representing
general M-site coupling terms.

OnsiteTerms(L) Operator names, site indices and strengths representing
onsite terms.

TermList(terms[, strength]) A list of terms (=operator names and sites they act on)
and associated strengths.

20.4.1 CouplingTerms

• full name: tenpy.networks.terms.CouplingTerms

• parent module: tenpy.networks.terms

• type: class

670 Chapter 20. networks

TeNPy, Release 0.8.1

Inheritance Diagram

CouplingTerms

Hdf5Exportable

Methods

CouplingTerms.__init__(L) Initialize self.
CouplingTerms.add_coupling_term(strength,
i, . . .)

Add a two-site coupling term on given MPS sites.

CouplingTerms.add_to_graph(graph) Add terms from coupling_terms to an MPOGraph.
CouplingTerms.coupling_term_handle_JW (. . . [,
. . .])

Helping function to call before
add_coupling_term().

CouplingTerms.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

CouplingTerms.max_range() Determine the maximal range in coupling_terms.
CouplingTerms.plot_coupling_terms(ax,
lat[, . . .])

“Plot coupling terms into a given lattice.

CouplingTerms.remove_zeros([tol_zero]) Remove entries close to 0 from coupling_terms.
CouplingTerms.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

CouplingTerms.to_TermList() Convert onsite_terms into a TermList.
CouplingTerms.to_nn_bond_Arrays(sites) Convert the coupling_terms into Arrays on nearest

neighbor bonds.

class tenpy.networks.terms.CouplingTerms(L)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Operator names, site indices and strengths representing two-site coupling terms.

Parameters L (int) – Number of sites.

L
Number of sites.

Type int

coupling_terms
Filled by add_coupling_term(). Nested dictionaries of the form {i: {('opname_i',
'opname_string'): {j: {'opname_j': strength}}}}. Note that always i < j, but en-
tries with j >= L are allowed for bc_MPS == 'infinite', in which case they indicate couplings
between different iMPS unit cells.

20.4. terms 671

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Type dict of dict

max_range()
Determine the maximal range in coupling_terms.

Returns max_range – The maximum of j - i for the i, j occuring in a term of
coupling_terms.

Return type int

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id')
Add a two-site coupling term on given MPS sites.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

coupling_term_handle_JW(strength, term, sites, op_string=None)
Helping function to call before add_coupling_term().

Parameters

• strength (float) – The strength of the coupling term.

• term ([(str, int), (str, int)]) – List of two tuples [(op_i, i),
(op_j, j)] where i is the MPS index of the site the operator named op_i acts on;
we require i < j.

• sites (list of Site) – Defines the local Hilbert space for each site. Used to check
whether the operators need Jordan-Wigner strings.

• op_string (None | str) – Operator name to be used as operator string between the
operators, or None if the Jordan Wigner string should be figured out.

Warning: None figures out for each segment between the operators, whether a
Jordan-Wigner string is needed. This is different from a plain 'JW', which just applies
a string on each segment!

Returns Arguments for MultiCouplingTerms.add_multi_coupling_term() such
that the added term corresponds to the parameters of this function.

Return type strength, i, j, op_i, op_j, op_string

plot_coupling_terms(ax, lat, style_map='default', common_style={'linestyle': '--'}, text=None,
text_pos=0.4)

“Plot coupling terms into a given lattice.

This function plots the coupling_terms

672 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• lat (Lattice) – The lattice for plotting the couplings, most probably the M.lat of the
corresponding model M, see lat.

• style_map (function | None) – Function which get’s called with arguments i,
j, op_i, op_string, op_j, strength for each two-site coupling and should
return a keyword-dictionary with the desired plot-style for this coupling. By default
(None), the linewidth is given by the absolute value of strength, and the linecolor depends
on the phase of strength (using the hsv colormap).

• common_style (dict) – Common style, which overwrites values of the dictionary
returned by style_map. A 'label' is only used for the first plotted line.

• text (format_string | None) – If not None, we add text labeling the couplings in
the plot. Available keywords are i, j, op_i, op_string, op_j, strength
as well as strength_abs, strength_angle, strength_real.

• text_pos (float) – Specify where to put the text on the line between i (0.0) and j
(1.0), e.g. 0.5 is exactly in the middle between i and j.

See also:

tenpy.models.lattice.Lattice.plot_sites plot the sites of the lattice.

add_to_graph(graph)
Add terms from coupling_terms to an MPOGraph.

Parameters graph (MPOGraph) – The graph into which the terms from coupling_terms
should be added.

to_nn_bond_Arrays(sites)
Convert the coupling_terms into Arrays on nearest neighbor bonds.

Parameters sites (list of Site) – Defines the local Hilbert space for each site. Used to
translate the operator names into Array .

Returns H_bond – The coupling_terms rewritten as sum_i H_bond[i] for MPS in-
dices i. H_bond[i] acts on sites (i-1, i), None represents 0. Legs of each
H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

Return type list of {Array | None}

remove_zeros(tol_zero=1e-15)
Remove entries close to 0 from coupling_terms.

Parameters tol_zero (float) – Entries in coupling_termswith strength < tol_zero are
considered to be zero and removed.

to_TermList()
Convert onsite_terms into a TermList.

Returns term_list – Representation of the terms as a list of terms.

Return type TermList

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

20.4. terms 673

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

20.4.2 ExponentiallyDecayingTerms

• full name: tenpy.networks.terms.ExponentiallyDecayingTerms

• parent module: tenpy.networks.terms

• type: class

Inheritance Diagram

ExponentiallyDecayingTerms

Hdf5Exportable

674 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Methods

ExponentiallyDecayingTerms.
__init__(L)

Initialize self.

ExponentiallyDecayingTerms.
add_exponentially_decaying_coupling(. . .)

Add an exponentially decaying long-range coupling.

ExponentiallyDecayingTerms.
add_to_graph(graph)

Add terms from onsite_terms to an MPOGraph.

ExponentiallyDecayingTerms.
from_hdf5(. . .)

Load instance from a HDF5 file.

ExponentiallyDecayingTerms.
max_range()

Maximum range of the couplings.

ExponentiallyDecayingTerms.
save_hdf5(. . .)

Export self into a HDF5 file.

ExponentiallyDecayingTerms.
to_TermList([. . .])

Convert self into a TermList.

class tenpy.networks.terms.ExponentiallyDecayingTerms(L)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Represent a sum of exponentially decaying (long-range) couplings.

MPOs can represent translation invariant, exponentially decaying long-range terms of the following form with
a single extra index of the virtual bonds:

𝑠𝑢𝑚𝑖 ̸=𝑗 𝑙𝑎𝑚𝑏𝑑𝑎
|𝑖−𝑗|𝐴𝑖𝐵𝑗

For 2D cylinders (or ladders), we need a slight generalization of this, where the operators act only on a subset
of the sites in each unit cell, given by a 1D array subsites:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠𝑢𝑚𝑖<𝑗 𝑙𝑎𝑚𝑏𝑑𝑎
|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Note that we still have |i-j|, such that this will give uniformly decaying interactions, independent of the way
the MPS winds through the 2D lattice, as long as subsites is sorted. An easy example would be a ladder, where
we want the long-range interactions on the first rung only, subsites = lat.mps_idx_fix_u(u=0),
see mps_idx_fix_u().

Parameters L (int) – Number of sites.

L
Number of sites.

Type int

exp_decaying_terms
Each tuple (strength, opname_i, opname_j, lambda, subsites,
opname_string) represents one of the terms as described above; see
add_exponentially_decaying_coupling() for more details.

Type list of tuples

add_exponentially_decaying_coupling(strength, lambda_, op_i, op_j, subsites=None,
op_string='Id')

Add an exponentially decaying long-range coupling.

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠𝑢𝑚𝑖<𝑗 𝑙𝑎𝑚𝑏𝑑𝑎
|𝑖−𝑗|𝐴𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑖]𝐵𝑠𝑢𝑏𝑠𝑖𝑡𝑒𝑠[𝑗]

Where the operator A is given by op_i, and B is given by op_j. Note that the sum over i,j is long-range, for
infinite systems beyond the MPS unit cell.

20.4. terms 675

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters

• strength (float) – Overall prefactor.

• lambda (float) – Decay-rate

• op_i (string) – Names for the operators.

• op_j (string) – Names for the operators.

• subsites (None | 1D array) – Selects a subset of sites within the MPS unit cell
on which the operators act. Needs to be sorted. None selects all sites.

• op_string (string) – The operator to be inserted between A and B; for Fermions this
should be "JW".

add_to_graph(graph, key='exp-decay')
Add terms from onsite_terms to an MPOGraph.

Parameters

• graph (MPOGraph) – The graph into which the terms from exp_decaying_terms
should be added.

• key (str) – Key to distinguish from other states in the MPOGraph. We find
integers key_nr and use (key_nr, key) as state for the different entries in
exp_decaying_terms.

to_TermList(cutoff=0.01, bc='finite')
Convert self into a TermList.

Parameters

• cutoff (float) – Drop terms where the overall prefactor is smaller then cutoff.

• bc ("finite" | "infinite") – Boundary conditions to be used.

Returns term_list – Representation of the terms as a list of terms. For “infinite” bc, only terms
starting in the first MPS unit cell are included.

Return type TermList

max_range()
Maximum range of the couplings. In this case np.inf.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

676 Chapter 20. networks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

20.4.3 MultiCouplingTerms

• full name: tenpy.networks.terms.MultiCouplingTerms

• parent module: tenpy.networks.terms

• type: class

Inheritance Diagram

CouplingTerms

MultiCouplingTerms

Hdf5Exportable

Methods

MultiCouplingTerms.__init__(L) Initialize self.
MultiCouplingTerms.
add_coupling_term(. . . [, . . .])

Add a two-site coupling term on given MPS sites.

MultiCouplingTerms.
add_multi_coupling_term(. . .)

Add a multi-site coupling term.

MultiCouplingTerms.add_to_graph(graph[,
_i, . . .])

Add terms from coupling_terms to an MPOGraph.

MultiCouplingTerms.
coupling_term_handle_JW (. . .)

Helping function to call before
add_coupling_term().

MultiCouplingTerms.from_hdf5(hdf5_loader,
. . .)

Load instance from a HDF5 file.

continues on next page

20.4. terms 677

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Table 31 – continued from previous page
MultiCouplingTerms.max_range() Determine the maximal range in coupling_terms.
MultiCouplingTerms.
multi_coupling_term_handle_JW (. . .)

Helping function to call before
add_multi_coupling_term().

MultiCouplingTerms.
plot_coupling_terms(ax, lat)

“Plot coupling terms into a given lattice.

MultiCouplingTerms.
remove_zeros([tol_zero, _d0])

Remove entries close to 0 from coupling_terms.

MultiCouplingTerms.save_hdf5(hdf5_saver,
. . .)

Export self into a HDF5 file.

MultiCouplingTerms.to_TermList() Convert onsite_terms into a TermList.
MultiCouplingTerms.
to_nn_bond_Arrays(sites)

Convert the coupling_terms into Arrays on nearest
neighbor bonds.

class tenpy.networks.terms.MultiCouplingTerms(L)
Bases: tenpy.networks.terms.CouplingTerms

Operator names, site indices and strengths representing general M-site coupling terms.

Generalizes the coupling_terms of CouplingTerms to M-site couplings. The structure of the nested
dictionary coupling_terms is similar, but we allow an arbitrary recursion depth of the dictionary.

Parameters L (int) – Number of sites.

L
Number of sites.

Type int

coupling_terms
Nested dictionaries of the following form:

{i: {('opname_i', 'opname_string_ij'):
{j: {('opname_j', 'opname_string_jk'):

{k: {('opname_k', 'opname_string_kl'):
...

{l: {'opname_l':
strength

} }
...

} }
} }

} }

For a M-site coupling, this involves a nesting depth of 2*M dictionaries. Note that always i < j < k
< ... < l, but entries with j,k,l >= L are allowed for the case of bc_MPS == 'infinite',
when they indicate couplings between different iMPS unit cells.

Type dict of dict

add_multi_coupling_term(strength, ijkl, ops_ijkl, op_string='Id')
Add a multi-site coupling term.

Parameters

• strength (float) – The strength of the coupling term.

• ijkl (list of int) – The MPS indices of the sites on which the operators acts. With
i, j, k, . . . = ijkl, we require that they are ordered ascending, i < j < k < ... and

678 Chapter 20. networks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

that 0 <= i < N_sites. Inidces >= N_sites indicate couplings between different unit
cells of an infinite MPS.

• ops_ijkl (list of str) – Names of the involved operators on sites i, j, k,

• op_string ((list of) str) – Names of the operator to be inserted between the
operators, e.g., op_string[0] is inserted between i and j. A single name holds for all in-
between segments.

multi_coupling_term_handle_JW(strength, term, sites, op_string=None)
Helping function to call before add_multi_coupling_term().

Handle/figure out Jordan-Wigner strings if needed.

Parameters

• strength (float) – The strength of the term.

• term (list of (str, int)) – List of tuples (op_i, i)where i is the MPS index
of the site the operator named op_i acts on. We require the operators to be sorted (strictly
ascending) by sites. If necessary, call order_combine_term() beforehand.

• sites (list of Site) – Defines the local Hilbert space for each site. Used to check
whether the operators need Jordan-Wigner strings.

• op_string (None | str) – Operator name to be used as operator string between the
operators, or None if the Jordan Wigner string should be figured out.

Warning: None figures out for each segment between the operators, whether a
Jordan-Wigner string is needed. This is different from a plain 'JW', which just applies
a string on each segment!

Returns Arguments for MultiCouplingTerms.add_multi_coupling_term() such
that the added term corresponds to the parameters of this function.

Return type strength, ijkl, ops_ijkl, op_string

max_range()
Determine the maximal range in coupling_terms.

Returns max_range – The maximum of j - i for the i, j occuring in a term of
coupling_terms.

Return type int

add_to_graph(graph, _i=None, _d1=None, _label_left=None)
Add terms from coupling_terms to an MPOGraph.

Parameters

• graph (MPOGraph) – The graph into which the terms from coupling_terms should
be added.

• _i (None) – Should not be given; only needed for recursion.

• _d1 (None) – Should not be given; only needed for recursion.

• _label_left (None) – Should not be given; only needed for recursion.

remove_zeros(tol_zero=1e-15, _d0=None)
Remove entries close to 0 from coupling_terms.

Parameters

20.4. terms 679

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

TeNPy, Release 0.8.1

• tol_zero (float) – Entries in coupling_terms with strength < tol_zero are con-
sidered to be zero and removed.

• _d0 (None) – Should not be given; only needed for recursion.

to_TermList()
Convert onsite_terms into a TermList.

Returns term_list – Representation of the terms as a list of terms.

Return type TermList

add_coupling_term(strength, i, j, op_i, op_j, op_string='Id')
Add a two-site coupling term on given MPS sites.

Parameters

• strength (float) – The strength of the coupling term.

• i (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• j (int) – The MPS indices of the two sites on which the operator acts. We require 0
<= i < N_sites and i < j, i.e., op_i acts “left” of op_j. If j >= N_sites, it indicates
couplings between unit cells of an infinite MPS.

• op1 (str) – Names of the involved operators.

• op2 (str) – Names of the involved operators.

• op_string (str) – The operator to be inserted between i and j.

coupling_term_handle_JW(strength, term, sites, op_string=None)
Helping function to call before add_coupling_term().

Parameters

• strength (float) – The strength of the coupling term.

• term ([(str, int), (str, int)]) – List of two tuples [(op_i, i),
(op_j, j)] where i is the MPS index of the site the operator named op_i acts on;
we require i < j.

• sites (list of Site) – Defines the local Hilbert space for each site. Used to check
whether the operators need Jordan-Wigner strings.

• op_string (None | str) – Operator name to be used as operator string between the
operators, or None if the Jordan Wigner string should be figured out.

Warning: None figures out for each segment between the operators, whether a
Jordan-Wigner string is needed. This is different from a plain 'JW', which just applies
a string on each segment!

Returns Arguments for MultiCouplingTerms.add_multi_coupling_term() such
that the added term corresponds to the parameters of this function.

Return type strength, i, j, op_i, op_j, op_string

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

680 Chapter 20. networks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

plot_coupling_terms(ax, lat, style_map='default', common_style={'linestyle': '--'}, text=None,
text_pos=0.4)

“Plot coupling terms into a given lattice.

This function plots the coupling_terms

Parameters

• ax (matplotlib.axes.Axes) – The axes on which we should plot.

• lat (Lattice) – The lattice for plotting the couplings, most probably the M.lat of the
corresponding model M, see lat.

• style_map (function | None) – Function which get’s called with arguments i,
j, op_i, op_string, op_j, strength for each two-site coupling and should
return a keyword-dictionary with the desired plot-style for this coupling. By default
(None), the linewidth is given by the absolute value of strength, and the linecolor depends
on the phase of strength (using the hsv colormap).

• common_style (dict) – Common style, which overwrites values of the dictionary
returned by style_map. A 'label' is only used for the first plotted line.

• text (format_string | None) – If not None, we add text labeling the couplings in
the plot. Available keywords are i, j, op_i, op_string, op_j, strength
as well as strength_abs, strength_angle, strength_real.

• text_pos (float) – Specify where to put the text on the line between i (0.0) and j
(1.0), e.g. 0.5 is exactly in the middle between i and j.

See also:

tenpy.models.lattice.Lattice.plot_sites plot the sites of the lattice.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

to_nn_bond_Arrays(sites)
Convert the coupling_terms into Arrays on nearest neighbor bonds.

Parameters sites (list of Site) – Defines the local Hilbert space for each site. Used to
translate the operator names into Array .

20.4. terms 681

https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Returns H_bond – The coupling_terms rewritten as sum_i H_bond[i] for MPS in-
dices i. H_bond[i] acts on sites (i-1, i), None represents 0. Legs of each
H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

Return type list of {Array | None}

20.4.4 OnsiteTerms

• full name: tenpy.networks.terms.OnsiteTerms

• parent module: tenpy.networks.terms

• type: class

Inheritance Diagram

Hdf5Exportable

OnsiteTerms

Methods

OnsiteTerms.__init__(L) Initialize self.
OnsiteTerms.add_onsite_term(strength, i,
op)

Add a onsite term on a given MPS site.

OnsiteTerms.add_to_graph(graph) Add terms from onsite_terms to an MPOGraph.
OnsiteTerms.add_to_nn_bond_Arrays(H_bond,
. . .)

Add self.onsite_terms into nearest-neighbor
bond arrays.

OnsiteTerms.from_hdf5(hdf5_loader, h5gr, sub-
path)

Load instance from a HDF5 file.

OnsiteTerms.max_range() Maximum range of the terms.
OnsiteTerms.remove_zeros([tol_zero]) Remove entries close to 0 from onsite_terms.
OnsiteTerms.save_hdf5(hdf5_saver, h5gr, sub-
path)

Export self into a HDF5 file.

OnsiteTerms.to_Arrays(sites) Convert the onsite_terms into a list of
np_conserved Arrays.

OnsiteTerms.to_TermList() Convert onsite_terms into a TermList.

class tenpy.networks.terms.OnsiteTerms(L)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

Operator names, site indices and strengths representing onsite terms.

682 Chapter 20. networks

TeNPy, Release 0.8.1

Represents a sum of onsite terms where the operators are only given by their name (in the form of a string).
What the operator represents is later given by a list of Site with get_op().

Parameters L (int) – Number of sites.

L
Number of sites.

Type int

onsite_terms
Filled by meth:add_onsite_term. For each index i a dictionary {'opname': strength} defining the
onsite terms.

Type list of dict

max_range()
Maximum range of the terms. In this case 0.

add_onsite_term(strength, i, op)
Add a onsite term on a given MPS site.

Parameters

• strength (float) – The strength of the term.

• i (int) – The MPS index of the site on which the operator acts. We require 0 <= i <
L.

• op (str) – Name of the involved operator.

add_to_graph(graph)
Add terms from onsite_terms to an MPOGraph.

Parameters graph (MPOGraph) – The graph into which the terms from onsite_terms
should be added.

to_Arrays(sites)
Convert the onsite_terms into a list of np_conserved Arrays.

Parameters sites (list of Site) – Defines the local Hilbert space for each site. Used to
translate the operator names into Array .

Returns onsite_arrays – Onsite terms represented by self. Entry i of the list lives on
sites[i].

Return type list of Array

remove_zeros(tol_zero=1e-15)
Remove entries close to 0 from onsite_terms.

Parameters tol_zero (float) – Entries in onsite_terms with strength < tol_zero are
considered to be zero and removed.

add_to_nn_bond_Arrays(H_bond, sites, finite, distribute=(0.5, 0.5))
Add self.onsite_terms into nearest-neighbor bond arrays.

Parameters

• H_bond (list of {Array | None}) – The coupling_terms rewritten as sum_i
H_bond[i] for MPS indices i. H_bond[i] acts on sites (i-1, i), None repre-
sents 0. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*']. Modified
in place.

20.4. terms 683

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

• sites (list of Site) – Defines the local Hilbert space for each site. Used to translate the
operator names into Array .

• distribute ((float, float)) – How to split the onsite terms (in the bulk) into the
bond terms to the left (distribute[0]) and right (distribute[1]).

• finite (bool) – Boundary conditions of the MPS, MPS.finite. If finite, we dis-
tribute the onsite term of the

to_TermList()
Convert onsite_terms into a TermList.

Returns term_list – Representation of the terms as a list of terms.

Return type TermList

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

20.4.5 TermList

• full name: tenpy.networks.terms.TermList

• parent module: tenpy.networks.terms

• type: class

684 Chapter 20. networks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

Hdf5Exportable

TermList

Methods

TermList.__init__(terms[, strength]) Initialize self.
TermList.from_hdf5(hdf5_loader, h5gr, subpath) Load instance from a HDF5 file.
TermList.from_lattice_locations(lattice,
terms)

Initialize from a list of terms given in lattice indices in-
stead of MPS indices.

TermList.limits() Return the left-most site and right-most site any operator
acts on.

TermList.order_combine(sites) Order and combine operators in each term.
TermList.save_hdf5(hdf5_saver, h5gr, subpath) Export self into a HDF5 file.
TermList.shift(i0) Return a copy where i0 is added to all indices i in

terms.
TermList.to_OnsiteTerms_CouplingTerms(sites)Convert to OnsiteTerms and CouplingTerms

class tenpy.networks.terms.TermList(terms, strength=1.0)
Bases: tenpy.tools.hdf5_io.Hdf5Exportable

A list of terms (=operator names and sites they act on) and associated strengths.

A representation of terms, similar as OnsiteTerms, CouplingTerms and MultiCouplingTerms.

This class does not store operator strings between the sites. Jordan-Wigner strings of fermions are added during
conversion to (Multi)CouplingTerms.

Warning: Since this class does not store the operator string between the sites, conversion from
CouplingTerms or MultiCouplingTerms to TermList is lossy!

Parameters

• terms (list of list of (str, int)) – List of terms where each term is a list of
tuples (opname, i) of an operator name and a site i it acts on. For Fermions, the order
is the order in the mathematic sense, i.e., the right-most/last operator in the list acts last.

• strength ((list of) float/complex) – For each term in terms an associated
prefactor or strength. A single number holds for all terms equally.

20.4. terms 685

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

terms
List of terms where each term is a tuple (opname, i) of an operator name and a site i it acts on.

Type list of list of (str, int)

strength
For each term in terms an associated prefactor or strength.

Type 1D ndarray

Examples

For fermions, the term 0.5(𝑐†0𝑐2 + ℎ.𝑐.) + 1.3 * 𝑛1 can be represented by:

>>> t = TermList([[('Cd', 0), ('C', 2)], [('Cd', 2), ('C', 0)], [('N', 1)]],
... [0.5, 0.5, 1.3])
>>> print(t)
0.50000 * Cd_0 C_2 +
0.50000 * Cd_2 C_0 +
1.30000 * N_1

If you have a Lattice, you might also want to specify the location of the operators by lattice indices insted of
MPS indices. For example, you can obtain the nearest-neighbor density terms without double counting each
pair) on a TriangularLattice:

>>> lat = tenpy.models.lattice.Triangular(6, 6, None, bc_MPS='infinite', bc=
→˓'periodic')
>>> t2_terms = [[('N', [0, 0, u1]), ('N', [dx[0], dx[1], u2])]
... for (u1, u2, dx) in lat.pairs['nearest_neighbors']]
>>> t2 = TermList.from_lattice_locations(lat, t2_terms)
>>> print(t2)
1.00000 * N_0 N_6 +
1.00000 * N_0 N_-5 +
1.00000 * N_0 N_5

The negative index -5 here indicates a tensor left of the current MPS unit cell.

classmethod from_lattice_locations(lattice, terms, strength=1.0, shift=None)
Initialize from a list of terms given in lattice indices instead of MPS indices.

Parameters

• lattice (Lattice) – The underlying lattice to be used for conversion, e.g. M.lat from
a Model.

• terms (list of list of (str, tuple)) – List of terms, where each term is
a tuple (opname, lat_idx) with lat_idx itself being a tuple (x, y, u) (for a 2D
lattice) of the lattice corrdinates.

• strengths ((list of) float/complex) – For each term in terms an associated
prefactor or strength. A single number holds for all terms equally.

• shift (None | tuple of int) – Overall shift added to all lattice coordinates
lat_idx in terms before conversion. None defaults to no shift.

Returns term_list – Representation of the terms.

Return type TermList

to_OnsiteTerms_CouplingTerms(sites)
Convert to OnsiteTerms and CouplingTerms

686 Chapter 20. networks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

TeNPy, Release 0.8.1

Performs Jordan-Wigner transformation for fermionic operators.

Parameters sites (list of Site) – Defines the local Hilbert space for each site. Used to
check whether the operators need Jordan-Wigner strings. The length is used as L for the
onsite_terms and coupling_terms.

Returns

• onsite_terms (OnsiteTerms) – Onsite terms.

• coupling_terms (CouplingTerms | MultiCouplingTerms) – Coupling terms. If
self contains terms involving more than two operators, a MultiCouplingTerms in-
stance, otherwise just CouplingTerms.

order_combine(sites)
Order and combine operators in each term.

Parameters sites (list of Site) – Defines the local Hilbert space for each site. Used to check
whether the operators anticommute (= whether they need Jordan-Wigner strings) and for
multiplication rules.

See also:

order_and_combine_term does it for a single term.

limits()
Return the left-most site and right-most site any operator acts on.

shift(i0)
Return a copy where i0 is added to all indices i in terms.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

20.4. terms 687

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Functions

order_combine_term(term, sites) Combine operators in a term to one terms per site.

20.4.6 order_combine_term

• full name: tenpy.networks.terms.order_combine_term

• parent module: tenpy.networks.terms

• type: function

tenpy.networks.terms.order_combine_term(term, sites)
Combine operators in a term to one terms per site.

Takes in a term of operators and sites they acts on, commutes operators to order them by site and combines
operators acting on the same site with multiply_op_names().

Parameters

• term (a list of (opname_i, i) tuples) – Represents a product of onsite op-
erators with site indices i they act on. Needs not to be ordered and can have multiple entries
acting on the same site.

• sites (list of Site) – Defines the local Hilbert space for each site. Used to check whether
the operators anticommute (= whether they need Jordan-Wigner strings) and for multiplica-
tion rules.

Returns

• combined_term – Equivalent to term but with at most one operator per site.

• overall_sign (+1 | -1 | 0) – Comes from the (anti-)commutation relations. When the opera-
tors in term are multiplied from left to right, and then multiplied by overall_sign, the result
is the same operator as the product of combined_term from left to right.

Module description

Classes to store a collection of operator names and sites they act on, together with prefactors.

This modules collects classes which are not strictly speaking tensor networks but represent “terms” acting on them.
Each term is given by a collection of (onsite) operator names and indices of the sites it acts on. Moreover, we associate
a strength to each term, which corresponds to the prefactor when specifying e.g. a Hamiltonian.

20.5 purification_mps

• full name: tenpy.networks.purification_mps

• parent module: tenpy.networks

• type: module

688 Chapter 20. networks

TeNPy, Release 0.8.1

Classes

MPS

PurificationMPS

PurificationMPS(sites, Bs, SVs[, bc, form, norm]) An MPS representing a finite-temperature ensemble us-
ing purification.

Module description

This module contains an MPS class representing an density matrix by purification.

Usually, an MPS represents a pure state, i.e. the density matrix is 𝜌 = |𝜓 >< 𝜓|, describing observables as < 𝑂 >=
𝑇𝑟(𝑂|𝜓 >< 𝜓|) =< 𝜓|𝑂|𝜓 >. Clearly, if |𝜓 > is the ground state of a Hamiltonian, this is the density matrix at
T=0.

At finite temperatures 𝑇 > 0, we want to describe a non-pure density matrix 𝜌 = exp(−𝐻/𝑇). This can be accieved
by the so-called purification: in addition to the physical space P, we introduce a second ‘auxiliar’ space Q and define
the density matrix of the physical system as 𝜌 = 𝑇𝑟𝑄(|𝜑 >< 𝜑|), where |𝜑 > is a pure state in the combined phyisical
and auxiliar system.

For 𝑇 = ∞, the density matrix 𝜌∞ is the identity matrix. In other words, expectation values are sums over all possible
states < 𝑂 >= 𝑇𝑟𝑃 (𝜌∞𝑂) = 𝑇𝑟𝑃 (𝑂). Saying that each : on top is to be connected with the corresponding : on the
bottom, the trace is simply a contraction:

| : : : : : :

	O				

: : : : : :					

Clearly, we get the same result, if we insert an identity operator, written as MPO, on the top and bottom:

| : : : : : :
| | | | | | |
| B---B---B---B---B---B

	O				

B*--B*--B*--B*--B*--B*					

(continues on next page)

20.5. purification_mps 689

TeNPy, Release 0.8.1

(continued from previous page)

| | | | | | |
| : : : : : :

We use the following label convention:

| q
| ^
| |
| vL ->- B ->- vR
| |
| ^
| p

You can view the MPO as an MPS by combining the p and q leg and defining every physical operator to act trivial on
the q leg. In expecation values, you would then sum over over the q legs, which is exactly what we need. In other
words, the choice 𝐵 = 𝛿𝑝,𝑞 with trivial (length-1) virtual bonds yields infinite temperature expectation values for
operators action only on the p legs!

Now, you go a step further and also apply imaginary time evolution (acting only on p legs) to the initial infinite
temperature state. For example, the normalized state |𝜓 >∝ exp(−𝛽/2𝐻)|𝜑 > yields expecation values

< 𝑂 >= 𝑇𝑟(exp(−𝛽𝐻)𝑂)/𝑇𝑟(exp(−𝛽𝐻)) ∝< 𝜑| exp(−𝛽/2𝐻)𝑂 exp(−𝛽/2𝐻)|𝜑 > .

An additional real-time evolution allows to calculate time correlation functions:

< 𝐴(𝑡)𝐵(0) >∝< 𝜑| exp(−𝛽𝐻/2) exp(+𝑖𝐻𝑡)𝐴 exp(−𝑖𝐻𝑡)𝐵 exp(−𝛽𝐻/2)|𝜑 >

Time evolution algorithms (TEBD and MPO application) are adjusted in the module purification.

See also [[karrasch2013]] for additional tricks! On of their crucial observations is, that one can apply arbitrary unitaries
on the auxiliar space (i.e. the q) without changing the result. This can actually be used to reduce the necessary virtual
bond dimensions: From the definition, it is easy to see that if we apply 𝑒𝑥𝑝(−𝑖𝐻𝑡) to the p legs of |𝜑 >, and
exp(+𝑖𝐻𝑡) to the q legs, they just cancel out! (They commute with exp(−𝛽𝐻/2). . .) If the state is modified (e.g.
by applying A or B to calculate correlation functions), this is not true any more. However, we still can find unitaries,
which are ‘optimal’ in the sense of reducing the entanglement of the MPS/MPO to the minimal value. For a discussion
of Disentanglers (implemented in disentanglers), see [[hauschild2018]].

Note: The classes MPSEnvironment and TransferMatrix should also work for the PurificationMPS
defined here. For example, you can use expectation_value() for the expectation value of operators between
different PurificationMPS. However, this makes only sense if the same disentangler was applied to the bra and ket
PurificationMPS.

Note: The literature (e.g. section 7.2 of [[schollwoeck2011]] or [[karrasch2013]]) suggests to use a singlet as a
maximally entangled state. Here, we use instead the identity 𝛿𝑝,𝑞 , since it is easier to generalize for p running over
more than two indices, and allows a simple use of charge conservation with the above qconj convention. Moreover,
we don’t split the physical and auxiliar space into separate sites, which makes TEBD as costly as 𝑂(𝑑6𝜒3).

690 Chapter 20. networks

CHAPTER

TWENTYONE

SIMULATIONS

• full name: tenpy.simulations

• parent module: tenpy

• type: module

Module description

Simulation setup.

The classes provided here provide a structure for the whole setup of simulations.

Submodules

simulation This module contains base classes for simulations.
measurement Functions to perform measurments.
ground_state_search Simulations for ground state searches.
time_evolution Simulations for (real) time evolution.

21.1 simulation

• full name: tenpy.simulations.simulation

• parent module: tenpy.simulations

• type: module

Classes

Simulation Skip

691

TeNPy, Release 0.8.1

Simulation(options, *[, setup_logging]) Base class for simulations.

Exceptions

Skip Error raised if simulation output already exists.

21.1.1 Skip

• full name: tenpy.simulations.simulation.Skip

• parent module: tenpy.simulations.simulation

• type: exception

exception tenpy.simulations.simulation.Skip
Error raised if simulation output already exists.

Functions

resume_from_checkpoint(*[, filename, . . .]) Resume a simulation run from a given checkpoint.
run_simulation([simulation_class_name, . . .]) Run the simulation with a simulation class.

21.1.2 resume_from_checkpoint

• full name: tenpy.simulations.simulation.resume_from_checkpoint

• parent module: tenpy.simulations.simulation

• type: function

tenpy.simulations.simulation.resume_from_checkpoint(*, filename=None, check-
point_results=None, up-
date_sim_params=None, simu-
lation_class_kwargs=None)

Resume a simulation run from a given checkpoint.

(All parameters have to be given as keyword arguments.)

Parameters

• filename (None | str) – The filename of the checkpoint to be loaded. You can either
specify the filename or the checkpoint_results.

• checkpoint_results (None | dict) – Alternatively to filename the results of the
simulation so far, i.e. directly the data dicitonary saved at a simulation checkpoint.

• update_sim_params (None | dict) – Allows to update specific Simulation pa-
rameters, ignored if None. Uses update_recursive() to update values, such that the
keys of update_sim_params can be recursive, e.g. algorithm_params/max_sweeps.

• simlation_class_kwargs (None | dict) – Further keyword arguemnts given to
the simulation class, ignored if None.

692 Chapter 21. simulations

TeNPy, Release 0.8.1

Returns The results from running the simulation, i.e., what tenpy.simulations.
Simulation.resume_run() returned.

Return type results

Notes

The checkpoint_filename should be relative to the current working directory. If you use the Simulation.
directory, the simulation class will attempt to change to that directory during initialization. Hence, either
resume the simulation from the same directory where you originally started, or update the Simulation.
directory (and :cfg:option`Simulation.output_filename`) parameter with update_sim_params.

21.1.3 run_simulation

• full name: tenpy.simulations.simulation.run_simulation

• parent module: tenpy.simulations.simulation

• type: function

tenpy.simulations.simulation.run_simulation(simulation_class_name='GroundStateSearch',
simulation_class_kwargs=None, **simula-
tion_params)

Run the simulation with a simulation class.

Parameters

• simulation_class_name (str) – The name of a (sub)class of Simulation to be
used for running the simulaiton.

• simulation_class_kwargs (dict | None) – A dictionary of keyword-arguments
to be used for the initializing the simulation.

• **simulation_params – Further keyword arguments as documented in the corre-
sponding simulation class, see :cfg:config`Simulation`.

Returns The results from running the simulation, i.e., what tenpy.simulations.
Simulation.run() returned.

Return type results

Module description

This module contains base classes for simulations.

The Simulation class tries to put everything need for a simulation in a structured form and collects task like
initializing the tensor network state, model and algorithm classes, running the actual algorithm, possibly performing
measurements and saving the results.

Todo: provide examples, give user guide

21.1. simulation 693

https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

21.2 measurement

• full name: tenpy.simulations.measurement

• parent module: tenpy.simulations

• type: module

Functions

bond_dimension(results, psi, simulation[, key]) ‘Measure’ the bond dimension of an MPS.
bond_energies(results, psi, simulation[, key]) Measure the energy of an MPS.
correlation_length(results, psi, simulation) Measure the correlaiton of an infinite MPS.
energy_MPO(results, psi, simulation[, key]) Measure the energy of an MPS by evaluating the MPS

expectation value.
entropy(results, psi, simulation[, key]) Measure the entropy at all bonds of an MPS.
evolved_time(results, psi, simulation[, key]) Measure the time evolved by the engine, engine.

evolved_time.
measurement_index(results, psi, simulation) ‘Measure’ the index of how many mearuements have

been performed so far.
onsite_expectation_value(results, psi, . . .) Measure expectation values of an onsite operator.

21.2.1 bond_dimension

• full name: tenpy.simulations.measurement.bond_dimension

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.bond_dimension(results, psi, simulation,
key='bond_dimension')

‘Measure’ the bond dimension of an MPS.

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

21.2.2 bond_energies

• full name: tenpy.simulations.measurement.bond_energies

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.bond_energies(results, psi, simulation,
key='bond_energies')

Measure the energy of an MPS.

Parameters

694 Chapter 21. simulations

TeNPy, Release 0.8.1

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

21.2.3 correlation_length

• full name: tenpy.simulations.measurement.correlation_length

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.correlation_length(results, psi, simulation,
key='correlation_length', **kwargs)

Measure the correlaiton of an infinite MPS.

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

• **kwargs – Further keywoard arguments given to correlation_length().

21.2.4 energy_MPO

• full name: tenpy.simulations.measurement.energy_MPO

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.energy_MPO(results, psi, simulation, key='energy_MPO')
Measure the energy of an MPS by evaluating the MPS expectation value.

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

21.2. measurement 695

TeNPy, Release 0.8.1

21.2.5 entropy

• full name: tenpy.simulations.measurement.entropy

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.entropy(results, psi, simulation, key='entropy')
Measure the entropy at all bonds of an MPS.

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

21.2.6 evolved_time

• full name: tenpy.simulations.measurement.evolved_time

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.evolved_time(results, psi, simulation, key='evolved_time')
Measure the time evolved by the engine, engine.evolved_time.

See e.g. tenpy.algorithms.tebd.TEBDEngine.evolved_time.

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

21.2.7 measurement_index

• full name: tenpy.simulations.measurement.measurement_index

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.measurement_index(results, psi, simulation,
key='measurement_index')

‘Measure’ the index of how many mearuements have been performed so far.

The parameter description below also documents the common interface of all measurement functions, that can
be registered to simulations.

Parameters

• results (dict) – A dictionary with measurement results performed so far. Instead of
returning the result, the output should be written into this dictionary under an appropriate
key (or multiple keys, if applicable).

696 Chapter 21. simulations

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

• psi – Tensor network state to be measured. Shorthand for simulation.psi.

• simulation (Simulation) – The simulation class. This gives also access to the model,
algorithm engine, etc.

• key (str) – (Optional.) The key under which to save in results.

• **kwargs – Other optional keyword arguments for individual measurement functions.
Those are documented inside each measurement function.

21.2.8 onsite_expectation_value

• full name: tenpy.simulations.measurement.onsite_expectation_value

• parent module: tenpy.simulations.measurement

• type: function

tenpy.simulations.measurement.onsite_expectation_value(results, psi, simulation, op-
name, key=None)

Measure expectation values of an onsite operator.

The resulting array of measurements is indexed by lattice indices (x, y, u) (possibly dropping y and/or u if
they are trivial), not by the MPS index. Note that this makes the result independent of the way the MPS winds
through the lattice.

The key defaults to f"<{opname}>".

Parameters

• results – See measurement_index().

• psi – See measurement_index().

• simulation – See measurement_index().

• key – See measurement_index().

• opname (str) – The operator to be measured. Passed on to expectation_value().

Module description

Functions to perform measurments.

All measurement functions provided in this module support the interface used by the simulation class, i.e. they take the
parameters documented in measurement_index() and write the measurement results into the results dictionary
taken as argument.

Todo: test, provide more.

21.2. measurement 697

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

21.3 ground_state_search

• full name: tenpy.simulations.ground_state_search

• parent module: tenpy.simulations

• type: module

Classes

GroundStateSearch

Simulation

GroundStateSearch(options, *[, setup_logging]) Simutions for variational ground state searches.

Module description

Simulations for ground state searches.

21.4 time_evolution

• full name: tenpy.simulations.time_evolution

• parent module: tenpy.simulations

• type: module

698 Chapter 21. simulations

TeNPy, Release 0.8.1

Classes

RealTimeEvolution

Simulation

RealTimeEvolution(options) Perform a real-time evolution on a tensor network state.

Module description

Simulations for (real) time evolution.

21.4. time_evolution 699

TeNPy, Release 0.8.1

700 Chapter 21. simulations

CHAPTER

TWENTYTWO

TOOLS

• full name: tenpy.tools

• parent module: tenpy

• type: module

Module description

A collection of tools: mostly short yet quite useful functions.

Some functions are explicitly imported in other parts of the library, others might just be useful when using the libary.
Common to all tools is that they are not just useful for a single algorithm but fairly general.

Submodules

hdf5_io Tools to save and load data (from TeNPy) to disk.
params Tools to handle config options/paramters for algorithms.
events Event handler.
misc Miscellaneous tools, somewhat random mix yet often

helpful.
math Different math functions needed at some point in the

library.
fit tools to fit to an algebraic decay.
string Tools for handling strings.
process Tools to read out total memory usage and get/set the

number of threads.
optimization Optimization options for this library.

22.1 hdf5_io

• full name: tenpy.tools.hdf5_io

• parent module: tenpy.tools

• type: module

701

TeNPy, Release 0.8.1

Classes

Hdf5ExportError

Hdf5FormatError

Hdf5ImportError

Hdf5Exportable Hdf5Ignored Hdf5Loader Hdf5Saver

Hdf5Exportable() Interface specification for a class to be exportable to our
HDF5 format.

Hdf5Ignored([name]) Placeholder for a dataset/group to be ignored during
both loading and saving.

Hdf5Loader(h5group[, ignore_unknown, exclude]) Class to load and import object from a HDF5 file.
Hdf5Saver(h5group[, format_selection]) Class to save simple enough objects into a HDF5 file.

22.1.1 Hdf5Exportable

• full name: tenpy.tools.hdf5_io.Hdf5Exportable

• parent module: tenpy.tools.hdf5_io

• type: class

Inheritance Diagram

Hdf5Exportable

Methods

Hdf5Exportable.__init__() Initialize self.
Hdf5Exportable.from_hdf5(hdf5_loader, h5gr,
. . .)

Load instance from a HDF5 file.

Hdf5Exportable.save_hdf5(hdf5_saver, h5gr,
. . .)

Export self into a HDF5 file.

class tenpy.tools.hdf5_io.Hdf5Exportable
Bases: object

702 Chapter 22. tools

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

Interface specification for a class to be exportable to our HDF5 format.

To allow a class to be exported to HDF5 with save_to_hdf5(), it only needs to implement the
save_hdf5() method as documented below. To allow import, a class should implement the classmethod
from_hdf5(). During the import, the class already needs to be defined; loading can only initialize instances,
not define classes.

The implementation given works for sufficiently simple (sub-)classes, for which all data is stored in __dict__.
In particular, this works for python-defined classes which simply store data using self.data = data in
their methods.

save_hdf5(hdf5_saver, h5gr, subpath)
Export self into a HDF5 file.

This method saves all the data it needs to reconstruct self with from_hdf5().

This implementation saves the content of __dict__with save_dict_content(), storing the format
under the attribute 'format'.

Parameters

• hdf5_saver (Hdf5Saver) – Instance of the saving engine.

• h5gr (:class`Group`) – HDF5 group which is supposed to represent self.

• subpath (str) – The name of h5gr with a '/' in the end.

classmethod from_hdf5(hdf5_loader, h5gr, subpath)
Load instance from a HDF5 file.

This method reconstructs a class instance from the data saved with save_hdf5().

Parameters

• hdf5_loader (Hdf5Loader) – Instance of the loading engine.

• h5gr (Group) – HDF5 group which is represent the object to be constructed.

• subpath (str) – The name of h5gr with a '/' in the end.

Returns obj – Newly generated class instance containing the required data.

Return type cls

22.1.2 Hdf5Ignored

• full name: tenpy.tools.hdf5_io.Hdf5Ignored

• parent module: tenpy.tools.hdf5_io

• type: class

22.1. hdf5_io 703

https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Inheritance Diagram

Hdf5Ignored

Methods

Hdf5Ignored.__init__([name]) Initialize self.

class tenpy.tools.hdf5_io.Hdf5Ignored(name='unknown')
Bases: object

Placeholder for a dataset/group to be ignored during both loading and saving.

Objects of this type are not saved. Moreover, if a saved dataset/group has the type attribute matching
REPR_IGNORED, instance of this class are returned instead of loading the data.

Parameters name (str) – The name of the dataset during loading; just for reference.

name
See above.

Type str

22.1.3 Hdf5Loader

• full name: tenpy.tools.hdf5_io.Hdf5Loader

• parent module: tenpy.tools.hdf5_io

• type: class

Inheritance Diagram

Hdf5Loader

704 Chapter 22. tools

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Methods

Hdf5Loader.__init__(h5group[, . . .]) Initialize self.
Hdf5Loader.get_attr(h5gr, attr_name) Return attribute h5gr.attrs[attr_name], if ex-

istent.
Hdf5Loader.load([path]) Load a Python object from the dataset.
Hdf5Loader.load_dataset(h5gr, type_info,
subpath)

Load a h5py Dataset and convert it into the desired
type.

Hdf5Loader.load_dict(h5gr, type_info, sub-
path)

Load a dictionary in the format according to type_info.

Hdf5Loader.load_dtype(h5gr, type_info, sub-
path)

Load a numpy.dtype.

Hdf5Loader.load_general_dict(h5gr, . . .) Load a dictionary with general keys.
Hdf5Loader.load_global(h5gr, type_info, sub-
path)

Load a global object like a class or function from its
qualified name and module.

Hdf5Loader.load_hdf5exportable(h5gr, . . .) Load an instance of a userdefined class.
Hdf5Loader.load_ignored(h5gr, type_info,
subpath)

Ignore the group to be loaded.

Hdf5Loader.load_list(h5gr, type_info, sub-
path)

Load a list.

Hdf5Loader.load_none(h5gr, type_info, sub-
path)

Load the None object from a dataset.

Hdf5Loader.load_range(h5gr, type_info, sub-
path)

Load a range.

Hdf5Loader.load_reduce(h5gr, type_info, sub-
path)

Load an object where the return values of obj.
__reduce__ has been exported.

Hdf5Loader.load_set(h5gr, type_info, subpath) Load a set.
Hdf5Loader.load_simple_dict(h5gr,
type_info, . . .)

Load a dictionary with simple keys.

Hdf5Loader.load_str(h5gr, type_info, subpath) Load a string from a h5py Dataset.
Hdf5Loader.load_tuple(h5gr, type_info, sub-
path)

Load a tuple.

Hdf5Loader.memorize_load(h5gr, obj) Store objects already loaded in the memo_load.

Class Attributes and Properties

Hdf5Loader.dispatch_load

class tenpy.tools.hdf5_io.Hdf5Loader(h5group, ignore_unknown=True, exclude=None)
Bases: object

Class to load and import object from a HDF5 file.

The intended use of this class is through load_from_hdf5(), which is simply an alias for
Hdf5Loader(h5group).load(path).

It can load data exported with save_to_hdf5() or the Hdf5Saver, respectively.

The basic structure of this class is similar as the Unpickler from pickle.

See Saving to disk: input/output for a specification of what can be saved and what the resulting datastructure is.

Parameters

22.1. hdf5_io 705

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/pickle.html#module-pickle

TeNPy, Release 0.8.1

• h5group (Group) – The HDF5 group (or file) where to save the data.

• ignore_unknown (bool) – Whether to just warn (True) or raise an Error (False) if a
class to be loaded is not found.

• exclude (list of str) – List of paths (possibly relative to h5group) for objects to
be excluded from loading. References to the corresponding object are replaced by an in-
stance of Hdf5Ignored. Of course, this might break other functions expecting cor-
rectly loaded data.

h5group
The HDF5 group (or HDF5 File) where to save the data.

Type Group

ignore_unknown
Whether to just warn (True) or raise an Error (False) if a class to be loaded is not found.

Type bool

dispatch_load
Mapping from one of the global REPR_* variables to (unbound) methods f of this class. The method is
called as f(self, h5gr, type_info, subpath). The call to f should load and return an object
obj from the h5py Group or Dataset h5gr; and memorize the loaded obj with memorize_load().
subpath is just the name of h5gr with a guaranteed '/' in the end. type_info is often the REPR_* variable
of the type or some other information about the type, which allows to use a single dispatch_load function
for different datatypes.

Type dict

memo_load
A dictionary to remember all the objects which we already loaded from h5group. The dictionary key is
a h5py group- or dataset id; the value is the loaded object. See memorize_load().

Type dict

load(path=None)
Load a Python object from the dataset.

See load_from_hdf5() for more details.

Parameters path (None | str | Reference) – Path within h5group to be used for loading.
Defaults to the name of h5group itself.

Returns obj – The Python object loaded from h5group (specified by path).

Return type object

memorize_load(h5gr, obj)
Store objects already loaded in the memo_load.

This allows to avoid copies, if the same dataset appears multiple times in the hdf5 group of obj. Examples
can be shared LegCharge objects or even shared Array .

To handle cyclic references correctly, this function should be called before loading data from subgroups
with new calls of load().

static get_attr(h5gr, attr_name)
Return attribute h5gr.attrs[attr_name], if existent.

Raises Hdf5ImportError – If the attribute does not exist.

load_none(h5gr, type_info, subpath)
Load the None object from a dataset.

706 Chapter 22. tools

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

load_dataset(h5gr, type_info, subpath)
Load a h5py Dataset and convert it into the desired type.

load_str(h5gr, type_info, subpath)
Load a string from a h5py Dataset.

load_list(h5gr, type_info, subpath)
Load a list.

load_set(h5gr, type_info, subpath)
Load a set.

load_tuple(h5gr, type_info, subpath)
Load a tuple.

load_dict(h5gr, type_info, subpath)
Load a dictionary in the format according to type_info.

load_general_dict(h5gr, type_info, subpath)
Load a dictionary with general keys.

load_simple_dict(h5gr, type_info, subpath)
Load a dictionary with simple keys.

load_range(h5gr, type_info, subpath)
Load a range.

load_dtype(h5gr, type_info, subpath)
Load a numpy.dtype.

load_hdf5exportable(h5gr, type_info, subpath)
Load an instance of a userdefined class.

load_ignored(h5gr, type_info, subpath)
Ignore the group to be loaded.

load_global(h5gr, type_info, subpath)
Load a global object like a class or function from its qualified name and module.

load_reduce(h5gr, type_info, subpath)
Load an object where the return values of obj.__reduce__ has been exported.

22.1.4 Hdf5Saver

• full name: tenpy.tools.hdf5_io.Hdf5Saver

• parent module: tenpy.tools.hdf5_io

• type: class

22.1. hdf5_io 707

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

TeNPy, Release 0.8.1

Inheritance Diagram

Hdf5Saver

Methods

Hdf5Saver.__init__(h5group[, for-
mat_selection])

Initialize self.

Hdf5Saver.create_group_for_obj(path, obj) Create an HDF5 group self.h5group[path] to
store obj.

Hdf5Saver.memorize_save(h5gr, obj) Store objects already saved in the memo_save.
Hdf5Saver.save(obj[, path]) Save obj in self.h5group[path].
Hdf5Saver.save_dataset(obj, path, type_repr) Save obj as a hdf5 dataset; in dispatch table.
Hdf5Saver.save_dict(obj, path, type_repr) Save the dictionary obj; in dispatch table.
Hdf5Saver.save_dict_content(obj, h5gr,
subpath)

Save contents of a dictionary obj in the existing h5gr.

Hdf5Saver.save_dtype(obj, path, type_repr) Save a dtype object; in dispatch table.
Hdf5Saver.save_global(obj, path, type_repr) Save a global object like a function or class.
Hdf5Saver.save_ignored(obj, path, type_repr) Don’t save the Hdf5Ignored object; just return None.
Hdf5Saver.save_iterable(obj, path, type_repr) Save an iterable obj like a list, tuple or set; in dispatch

table.
Hdf5Saver.save_iterable_content(obj,
h5gr, . . .)

Save contents of an iterable obj in the existing h5gr.

Hdf5Saver.save_none(obj, path, type_repr) Save the None object as a string (dataset); in dispatch
table.

Hdf5Saver.save_range(obj, path, type_repr) Save a range object; in dispatch table.
Hdf5Saver.save_reduce(func, args[, state, . . .]) Save the return values of obj.__reduce__ follow-

ing the pickle protocol.

Class Attributes and Properties

Hdf5Saver.dispatch_save

class tenpy.tools.hdf5_io.Hdf5Saver(h5group, format_selection=None)
Bases: object

Class to save simple enough objects into a HDF5 file.

The intended use of this class is through save_to_hdf5(), which is simply an alias for
Hdf5Saver(h5group).save(obj, path).

It exports python objects to a HDF5 file such that they can be loaded with the Hdf5Loader, or a call to
load_from_hdf5(), respectively.

708 Chapter 22. tools

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

The basic structure of this class is similar as the Pickler from pickle.

See Saving to disk: input/output for a specification of what can be saved and what the resulting datastructure is.

Parameters

• h5group (Group) – The HDF5 group (or HDF5 File) where to save the data.

• format_selection (dict) – This dictionary allows to set a output format selec-
tion for user-defined Hdf5Exportable.save_hdf5() implementations. For example,
LegCharge checks it for the key "LegCharge".

h5group
The HDF5 group (or HDF5 File) where to save the data.

Type Group

dispatch_save
Mapping from a type keytype to methods f of this class. The method is called as f(self, obj,
path, type_repr). The call to f should save the object obj in self.h5group[path], call
memorize_save(), and set h5gr.attr[ATTR_TYPE] = type_repr to a string type_repr in
order to allow loading with the dispatcher in Hdf5Loader.dispatch_save[type_repr].

Type dict

memo_save
A dictionary to remember all the objects which we already stored to h5group. The dictionary key is the
object id; the value is a two-tuple of the hdf5 group or dataset where an object was stored, and the object
itself. See memorize_save().

Type dict

format_selection
This dictionary allows to set a output format selection for user-defined Hdf5Exportable.
save_hdf5() implementations. For example, LegCharge checks it for the key "LegCharge".

Type dict

save(obj, path='/')
Save obj in self.h5group[path].

Parameters

• obj (object) – The object (=data) to be saved.

• path (str) – Path within h5group under which the obj should be saved. To avoid un-
wanted overwriting of important data, the group/object should not yet exist, except if path
is the default '/'.

Returns h5gr – The h5py group or dataset in which obj was saved.

Return type Group | Dataset

create_group_for_obj(path, obj)
Create an HDF5 group self.h5group[path] to store obj.

Also handle ending of path with '/', and memorize obj in memo_save.

Parameters

• path (str) – Path within h5group under which the obj should be saved. To avoid un-
wanted overwriting of important data, the group/object should not yet exist, except if path
is the default '/'.

• obj (object) – The object (=data) to be saved.

22.1. hdf5_io 709

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

Returns

• h5group (Group) – Newly created h5py (sub)group self.h5group[path], unless
path is '/', in which case it is simply the existing self.h5group['/'].

• subpath (str) – The group.name ending with '/', such that other names can be appended
to get the path for subgroups or datasets in the group.

:raises ValueError : if self.h5group[path]` already existed and path is not '/'.:

memorize_save(h5gr, obj)
Store objects already saved in the memo_save.

This allows to avoid copies, if the same python object appears multiple times in the data of obj. Examples
can be shared LegCharge objects or even shared Array . Using the memo also avoids crashes from
cyclic references, e.g., when a list contains a reference to itself.

Parameters

• h5gr (Group | Dataset) – The h5py group or dataset in which obj was saved.

• obj (object) – The object saved.

save_reduce(func, args, state=None, listitems=None, dictitems=None, state_setter=None,
obj=None, path=None)

Save the return values of obj.__reduce__ following the pickle protocol.

save_none(obj, path, type_repr)
Save the None object as a string (dataset); in dispatch table.

save_dataset(obj, path, type_repr)
Save obj as a hdf5 dataset; in dispatch table.

save_iterable(obj, path, type_repr)
Save an iterable obj like a list, tuple or set; in dispatch table.

save_iterable_content(obj, h5gr, subpath)
Save contents of an iterable obj in the existing h5gr.

Parameters

• obj (dict) – The data to be saved

• h5gr (Group) – h5py Group under which the keys and values of obj should be saved.

• subpath (str) – Name of h5gr with '/' in the end.

save_dict(obj, path, type_repr)
Save the dictionary obj; in dispatch table.

save_dict_content(obj, h5gr, subpath)
Save contents of a dictionary obj in the existing h5gr.

The format depends on whether the dictionary obj has simple keys valid for hdf5 path components (see
valid_hdf5_path_component()) or not. For simple keys: directly use the keys as path. For non-
simple keys: save list of keys und "keys" and list of values und "values".

Parameters

• obj (dict) – The data to be saved

• h5gr (Group) – h5py Group under which the keys and values of obj should be saved.

• subpath (str) – Name of h5gr with '/' in the end.

Returns type_repr – Indicates whether the data was saved in the format for a dictionary with
simple keys or general keys, see comment above.

710 Chapter 22. tools

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Return type REPR_DICT_SIMPLE | REPR_DICT_GENERAL

save_range(obj, path, type_repr)
Save a range object; in dispatch table.

save_dtype(obj, path, type_repr)
Save a dtype object; in dispatch table.

save_ignored(obj, path, type_repr)
Don’t save the Hdf5Ignored object; just return None.

save_global(obj, path, type_repr)
Save a global object like a function or class.

Exceptions

Hdf5ExportError This exception is raised when something went wrong
during export to hdf5.

Hdf5FormatError Common base class for errors regarding our HDF5 for-
mat.

Hdf5ImportError This exception is raised when something went wrong
during import from hdf5.

22.1.5 Hdf5ExportError

• full name: tenpy.tools.hdf5_io.Hdf5ExportError

• parent module: tenpy.tools.hdf5_io

• type: exception

exception tenpy.tools.hdf5_io.Hdf5ExportError
This exception is raised when something went wrong during export to hdf5.

22.1.6 Hdf5FormatError

• full name: tenpy.tools.hdf5_io.Hdf5FormatError

• parent module: tenpy.tools.hdf5_io

• type: exception

exception tenpy.tools.hdf5_io.Hdf5FormatError
Common base class for errors regarding our HDF5 format.

22.1. hdf5_io 711

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

TeNPy, Release 0.8.1

22.1.7 Hdf5ImportError

• full name: tenpy.tools.hdf5_io.Hdf5ImportError

• parent module: tenpy.tools.hdf5_io

• type: exception

exception tenpy.tools.hdf5_io.Hdf5ImportError
This exception is raised when something went wrong during import from hdf5.

Functions

find_global(module, qualified_name) Get the object of the qualified_name in a given python
module.

load(filename) Load data from file with given filename.
load_from_hdf5(h5group[, path, . . .]) Load an object from hdf5 file or group.
save(data, filename[, mode]) Save data to file with given filename.
save_to_hdf5(h5group, obj[, path]) Save an object obj into a hdf5 file or group.
valid_hdf5_path_component(name) Determine if name is a valid HDF5 path component.

22.1.8 find_global

• full name: tenpy.tools.hdf5_io.find_global

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.find_global(module, qualified_name)
Get the object of the qualified_name in a given python module.

Parameters

• module (str) – Name of the module containing the object. The module gets imported.

• qualified_name (str) – Name of the object to be retrieved. May contain dots if the
object is part of a class etc.

22.1.9 load

• full name: tenpy.tools.hdf5_io.load

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.load(filename)
Load data from file with given filename.

Guess the type of the file from the filename ending, see save() for possible endings.

Parameters filename (str) – The name of the file to load.

Returns data – The object loaded from the file.

Return type obj

712 Chapter 22. tools

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

22.1.10 load_from_hdf5

• full name: tenpy.tools.hdf5_io.load_from_hdf5

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.load_from_hdf5(h5group, path=None, ignore_unknown=True, ex-
clude=None)

Load an object from hdf5 file or group.

Roughly equivalent to obj = h5group[path][...], but handle more complicated objects saved as hdf5
groups and/or datasets with save_to_hdf5(). For example, dictionaries are handled recursively. See Saving
to disk: input/output for a specification of what can be saved/loaded and what the corresponding datastructure
is.

Parameters

• h5group (Group) – The HDF5 group (or h5py File) to be loaded.

• path (None | str | Reference) – Path within h5group to be used for loading. Defaults to
the h5group itself specified.

• ignore_unknown (bool) – Whether to just warn (True) or raise an Error (False) if a
class to be loaded is not found.

• exclude (list of str) – List of paths (possibly relative to h5group) for objects to be
excluded from loading. References to the corresponding object are replaced by an instance
of Hdf5Ignored. For example, you could load a saved dictionary {'big_data':
[...], 'small_data': small_data} with exclude=['/big_data']
to get {'big_data': Hdf5Ignored('/big_data'), 'small_data':
small_data}. Of course, this might break other functions expecting correctly loaded
data.

Returns obj – The Python object loaded from h5group (specified by path).

Return type object

22.1.11 save

• full name: tenpy.tools.hdf5_io.save

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.save(data, filename, mode='w')
Save data to file with given filename.

This function guesses the type of the file from the filename ending. Supported endings:

ending description
.pkl Pickle without compression
.pklz Pickle with gzip compression.
.hdf5, .h5 HDF5 file (using h5py).

Parameters

• filename (str) – The name of the file where to save the data.

22.1. hdf5_io 713

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• mode (str) – File mode for opening the file. 'w' for write (discard existing file), 'a' for
append (add data to exisiting file). See open() for more details.

22.1.12 save_to_hdf5

• full name: tenpy.tools.hdf5_io.save_to_hdf5

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.save_to_hdf5(h5group, obj, path='/')
Save an object obj into a hdf5 file or group.

Roughly equivalent to h5group[path] = obj, but handle different types of obj. For example, dictionaries
are handled recursively. See Saving to disk: input/output for a specification of what can be saved and what the
resulting datastructure is.

Parameters

• h5group (Group) – The HDF5 group (or h5py File) to which obj should be saved.

• obj (object) – The object (=data) to be saved.

• path (str) – Path within h5group under which the obj should be saved. To avoid unwanted
overwriting of important data, the group/object should not yet exist, except if path is the
default '/'.

Returns h5obj – The h5py group or dataset under which obj was saved.

Return type Group | Dataset

22.1.13 valid_hdf5_path_component

• full name: tenpy.tools.hdf5_io.valid_hdf5_path_component

• parent module: tenpy.tools.hdf5_io

• type: function

tenpy.tools.hdf5_io.valid_hdf5_path_component(name)
Determine if name is a valid HDF5 path component.

Conditions: String, no '/', and overall name != '.'.

Module description

Tools to save and load data (from TeNPy) to disk.

Note: This module is maintained in the repository https://github.com/tenpy/hdf5_io.git

See Saving to disk: input/output for a motivation and specification of the HDF5 format implemented below. .. online
at https://tenpy.readthedocs.io/en/latest/intro/input_output.html

The functions save() and load() are convenience functions for saving and loading quite general python objects
(like dictionaries) to/from files, guessing the file type (and hence protocol for reading/writing) from the file ending.

On top of that, this function provides support for saving python objects to [HDF5] files with the Hdf5Saver and
Hdf5Loader classes and the wrapper functions save_to_hdf5(), load_from_hdf5().

714 Chapter 22. tools

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/tenpy/hdf5_io.git
https://tenpy.readthedocs.io/en/latest/intro/input_output.html

TeNPy, Release 0.8.1

Note: To use the export/import features to HDF5, you need to install the h5py python package (and hence some
version of the HDF5 library).

Warning: Like loading a pickle file, loading data from a manipulated HDF5 file with the functions provided
below has the potential to cause arbitrary code execution. Only load data from trusted sources!

Global module constants used for our HDF5 format

Names of HDF5 attributes:

tenpy.tools.hdf5_io.ATTR_TYPE = 'type'
Attribute name for type of the saved object, should be one of the REPR_*

tenpy.tools.hdf5_io.ATTR_CLASS = 'class'
Attribute name for the class name of an HDF5Exportable

tenpy.tools.hdf5_io.ATTR_MODULE = 'module'
Attribute name for the module where ATTR_CLASS can be retrieved

tenpy.tools.hdf5_io.ATTR_LEN = 'len'
Attribute name for the length of iterables, e.g, list, tuple

tenpy.tools.hdf5_io.ATTR_FORMAT = 'format'
indicates the ATTR_TYPE format used by Hdf5Exportable

Names for the ATTR_TYPE attribute:

tenpy.tools.hdf5_io.REPR_HDF5EXPORTABLE = 'instance'
saved object is instance of a user-defined class following the Hdf5Exportable style.

tenpy.tools.hdf5_io.REPR_ARRAY = 'array'
saved object represents a numpy array

tenpy.tools.hdf5_io.REPR_INT = 'int'
saved object represents a (python) int

tenpy.tools.hdf5_io.REPR_FLOAT = 'float'
saved object represents a (python) float

tenpy.tools.hdf5_io.REPR_STR = 'str'
saved object represents a (python unicode) string

tenpy.tools.hdf5_io.REPR_COMPLEX = 'complex'
saved object represents a complex number

tenpy.tools.hdf5_io.REPR_INT64 = 'np.int64'
saved object represents a np.int64

tenpy.tools.hdf5_io.REPR_FLOAT64 = 'np.float64'
saved object represents a np.float64

tenpy.tools.hdf5_io.REPR_INT32 = 'np.int32'
saved object represents a np.int32

tenpy.tools.hdf5_io.REPR_FLOAT32 = 'np.float32'
saved object represents a np.float32

22.1. hdf5_io 715

http://docs.h5py.org

TeNPy, Release 0.8.1

tenpy.tools.hdf5_io.REPR_BOOL = 'bool'
saved object represents a boolean

tenpy.tools.hdf5_io.REPR_NONE = 'None'
saved object is None

tenpy.tools.hdf5_io.REPR_RANGE = 'range'
saved object is a range

tenpy.tools.hdf5_io.REPR_LIST = 'list'
saved object represents a list

tenpy.tools.hdf5_io.REPR_TUPLE = 'tuple'
saved object represents a tuple

tenpy.tools.hdf5_io.REPR_SET = 'set'
saved object represents a set

tenpy.tools.hdf5_io.REPR_DICT_GENERAL = 'dict'
saved object represents a dict with complicated keys

tenpy.tools.hdf5_io.REPR_DICT_SIMPLE = 'simple_dict'
saved object represents a dict with simple keys

tenpy.tools.hdf5_io.REPR_DTYPE = 'dtype'
saved object represents a np.dtype

tenpy.tools.hdf5_io.REPR_IGNORED = 'ignore'
ignore the object/dataset during loading and saving

tenpy.tools.hdf5_io.TYPES_FOR_HDF5_DATASETS = ((<class 'numpy.ndarray'>, 'array'), (<class 'int'>, 'int'), (<class 'float'>, 'float'), (<class 'str'>, 'str'), (<class 'complex'>, 'complex'), (<class 'numpy.int64'>, 'np.int64'), (<class 'numpy.float64'>, 'np.float64'), (<class 'numpy.complex128'>, 'np.complex128'), (<class 'numpy.int32'>, 'np.int32'), (<class 'numpy.float32'>, 'np.float32'), (<class 'numpy.complex64'>, 'np.complex64'), (<class 'numpy.bool_'>, 'bool'), (<class 'bool'>, 'bool'))
tuple of (type, type_repr) which h5py can save as datasets; one entry for each type.

Todo: For memory caching with big MPO environments, we need a Hdf5Cacher clearing the memo’s every now and
then (triggered by what?).

22.2 params

• full name: tenpy.tools.params

• parent module: tenpy.tools

• type: module

716 Chapter 22. tools

TeNPy, Release 0.8.1

Classes

Collection

Mapping

Sized Iterable Container

Config

MutableMapping

Config(config, name) Dict-like wrapper class for parameter/configuration dic-
tionaries.

Functions

asConfig(config, name) Convert a dict-like config to a Config.
get_parameter(params, key, default, descr[, . . .]) Read out a parameter from the dictionary and/or provide

default values.
unused_parameters(params[, warn]) Returns a set of the parameters which have not been read

out with get_parameters.

22.2. params 717

TeNPy, Release 0.8.1

22.2.1 asConfig

• full name: tenpy.tools.params.asConfig

• parent module: tenpy.tools.params

• type: function

tenpy.tools.params.asConfig(config, name)
Convert a dict-like config to a Config.

Parameters

• config (dict | Config) – If this is a Config, just return it. Otherwise, create a Config
from it and return that.

• name (str) – Name to be used for the Config.

Returns config – Either directly config or Config(config, name).

Return type Config

22.2.2 get_parameter

• full name: tenpy.tools.params.get_parameter

• parent module: tenpy.tools.params

• type: function

tenpy.tools.params.get_parameter(params, key, default, descr, asarray=False)
Read out a parameter from the dictionary and/or provide default values.

Deprecated since version 0.6.0: Use the Config instead.

This function provides a similar functionality as params.get(key, default). Unlike dict.get this
function writes the default value into the dictionary (i.e. in other words it’s more similar to params.
setdefault(key, default)).

This allows the user to save the modified dictionary as meta-data, which gives a concrete record of the actually
used parameters and simplifies reproducing the results and restarting simulations.

Moreover, a special entry with the key 'verbose' in the params can trigger this function to also print the
used value. A higer verbose level implies more output. If verbose >= 100, it is printed every time it’s used. If
verbose >= 2., its printed for the first time time its used. and for verbose >= 1, non-default values are printed the
first time they are used. otherwise only for the first use.

Internally, whether a parameter was used is saved in the set params['_used_param']. This is used in
unused_parameters() to print a warning if the key wasn’t used at the end of the algorithm, to detect
mis-spelled parameters.

Parameters

• params (dict) – A dicionary of the parameters as provided by the user. If key is not a
valid key, params[key] is set to default.

• key (string) – The key for the parameter which should be read out from the dictionary.

• default – The default value for the parameter.

• descr (str) – A short description for verbose output, like ‘TEBD’, ‘XXZ_model’, ‘trun-
cation’.

718 Chapter 22. tools

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

• asarray (bool) – If True, convert the result to a numpy array with np.asarray(...)
before returning.

Returns params[key] if the key is in params, otherwise default. Converted to a numpy array, if
asarray.

Return type value

Examples

In the algorithm TEBDEngine gets a dictionary of parameters. Beside doing other stuff, it calls tenpy.
models.model.NearestNeighborModel.calc_U_bond() with the dictionary as argument, which
looks similar like:

>>> from tenpy.tools.params import get_parameter
>>> def model_calc_U(params):
... dt = get_parameter(params, 'dt', 0.01, 'TEBD')
... order = get_parameter(params, 'order', 1, 'TEBD')
... print("calc U with dt =", dt, "and order =", order)
... # ... calculate exp(-i * dt* H)

Then, when you call it without any parameters, it just uses the default value:

>>> model_calc_U(dict())
calc U with dt = 0.01 and order = 1

Of course you can also provide the parameter to use a non-default value:

>>> model_calc_U(dict(dt=0.02))
calc U with dt = 0.02 and order = 1

Increasing the special keyword 'verbose' generally prints more:

>>> model_calc_U(dict(dt=0.02, verbose=1))
parameter 'dt'=0.02 for TEBD
calc U with dt = 0.02 and order = 1
>>> model_calc_U(dict(dt=0.02, verbose=2))
parameter 'dt'=0.02 for TEBD
parameter 'order'=1 (default) for TEBD
calc U with dt = 0.02 and order = 1

22.2.3 unused_parameters

• full name: tenpy.tools.params.unused_parameters

• parent module: tenpy.tools.params

• type: function

tenpy.tools.params.unused_parameters(params, warn=None)
Returns a set of the parameters which have not been read out with get_parameters.

This function might be useful to check for typos in the parameter keys.

Deprecated since version 0.6.0: Use the Config instead.

Parameters

22.2. params 719

https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

• params (dict) – A dictionary of parameters which was given to (functions using)
get_parameter()

• warn (None | str) – If given, print a warning “unused parameter for {warn!s}: {un-
used_keys!s}”.

Returns unused_keys – The set of keys of the params which was not used

Return type set

Module description

Tools to handle config options/paramters for algorithms.

See the doc-string of Config for details.

22.3 events

• full name: tenpy.tools.events

• parent module: tenpy.tools

• type: module

Classes

EventHandler Listener

EventHandler([arg_descr]) Handler for an event represented by an instance of this
class.

Listener(listener_id, callback, priority)

22.3.1 EventHandler

• full name: tenpy.tools.events.EventHandler

• parent module: tenpy.tools.events

• type: class

720 Chapter 22. tools

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set

TeNPy, Release 0.8.1

Inheritance Diagram

EventHandler

Methods

EventHandler.__init__([arg_descr]) Initialize self.
EventHandler.connect([callback, priority]) Register a callback function as a listener to the event.
EventHandler.connect_by_name(module_name,
. . .)

Connect to a function given by the name in a module,
optionally inserting arguments.

EventHandler.copy() Make a (shallow) copy.
EventHandler.disconnect(listener_id) De-register a listener.
EventHandler.emit(*args, **kwargs) Call the callback functions of all listeners.
EventHandler.emit_until_result(*args,
**kwargs)

Call the listeners callback until one returns not None.

Class Attributes and Properties

EventHandler.id_of_last_connected

class tenpy.tools.events.EventHandler(arg_descr=None)
Bases: object

Handler for an event represented by an instance of this class.

All in all, events provide a flexible extension mechanism for classes to define “checkpoints” in the code where
the user of a class might want to run something else, for example doing some measurements or saving interme-
diate results.

Parameters arg_descr (str) – An informative description how the callback function is called.
An empty string indicates no arguments.

arg_descr
An informative description how the callback function is called.

Type str

listeners
Entries are tuples (listener_id, callback, priority).

Type list of (int, function, int)

Examples

22.3. events 721

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Instances of this class typically get defined during class initialization and define an event. The event “happens”
each time emit() or emit_until_result() is called, typically inside a method of the class defining the
event. Example:

>>> class MyAlgorithm:
... def __init__(self):
... self.checkpoint = EventHandler("algorithm, iteration")
... self.data = 0
... def run(self):
... for i in range(4):
... self.data += i # do some complicated stuff
... self.checkpoint.emit(self, i)

Other code with access to the event can then connect a listener to the event, i.e., give a function to the event that
should be called each time the event is emit()-ed.

>>> my_alg = MyAlgorithm()
>>> def my_listener(algorithm, iteration):
... print("my_listener called: iteration", iteration, "with data", algorithm.
→˓data)
>>> my_alg.checkpoint.connect(my_listener)
<function my_listener at 0x...>
>>> my_alg.run()
my_listener called: iteration 0 with data 0
my_listener called: iteration 1 with data 1
my_listener called: iteration 2 with data 3
my_listener called: iteration 3 with data 6

As you can see, the function my_listener has been called during the MyAlgorithm.run() and had full access
to the current status of the algorithm class. This is convenient to e.g. perform measurements of the state so far,
print a status message of the progress or save intermediate results.

If the EventHandler is already initialized when you define the function, you can also use connect() as a
function property like this:

>>> @my_alg.checkpoint.connect
... def another_one(algorithm, iteration):
... print("another_one called: iteration", iteration)
>>> @my_alg.checkpoint.connect(priority=5)
... def high_priority(algorithm, iteration):
... print("high_priority call: iteration", iteration)
>>> my_alg.run()
high_priority call: iteration 0
my_listener called: iteration 0 with data 6
another_one called: iteration 0
high_priority call: iteration 1
my_listener called: iteration 1 with data 7
another_one called: iteration 1
high_priority call: iteration 2
my_listener called: iteration 2 with data 9
another_one called: iteration 2
high_priority call: iteration 3
my_listener called: iteration 3 with data 12
another_one called: iteration 3

copy()
Make a (shallow) copy.

722 Chapter 22. tools

TeNPy, Release 0.8.1

connect(callback=None, priority=0)
Register a callback function as a listener to the event.

You can either call this function directly or use it as a function decorator, see the example in
EventHandler.

If you ever plan to disconnect() again, you can read it out with id_of_last_connected right
after connecting, i.e., right after calling this method.

Parameters

• callback (callable) – A function to be called during each emit() of the event.

• priority (int) – Higher priority indicates that the callback function should be called
before other possibly registered callback functions.

Returns callback – The callback function exactly as given.

Return type callable

connect_by_name(module_name, func_name, kwargs=None, priority=0)
Connect to a function given by the name in a module, optionally inserting arguments.

Parameters

• module_name (str) – The name of the module containing the function to be used. Gets
imported.

• func_name (str) – The (qualified) name of the function inside the module.

• kwargs (dict) – Optional extra keyword-arguments to be given to the function.

• priority (int) – Higher priority indicates that the callback function should be called
before other possibly registered callback functions.

disconnect(listener_id)
De-register a listener.

Parameters listener_id (int) – The id of the listener, as given by
id_of_last_connected right after calling connect().

emit(*args, **kwargs)
Call the callback functions of all listeners.

Returns results – List of results returned by the individual callback functions.

Return type list

emit_until_result(*args, **kwargs)
Call the listeners callback until one returns not None.

22.3.2 Listener

• full name: tenpy.tools.events.Listener

• parent module: tenpy.tools.events

• type: class

22.3. events 723

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

TeNPy, Release 0.8.1

Inheritance Diagram

Listener

Methods

Listener.__init__() Initialize self.
Listener.count(value, /) Return number of occurrences of value.
Listener.index(value[, start, stop]) Return first index of value.

Class Attributes and Properties

Listener.callback Alias for field number 1
Listener.listener_id Alias for field number 0
Listener.priority Alias for field number 2

class tenpy.tools.events.Listener(listener_id, callback, priority)
Bases: tuple

property callback
Alias for field number 1

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property listener_id
Alias for field number 0

property priority
Alias for field number 2

724 Chapter 22. tools

https://docs.python.org/3/library/stdtypes.html#tuple

TeNPy, Release 0.8.1

Module description

Event handler.

The EventHandler is basically just holds a list of functions which can get called once a certain “event” happens.
Examples are given in the class doc-string.

22.4 misc

• full name: tenpy.tools.misc

• parent module: tenpy.tools

• type: module

Functions

add_with_None_0(a, b) Return a + b, treating None as zero.
any_nonzero(params, keys[, verbose_msg]) Check for any non-zero or non-equal entries in some

parameters.
anynan(a) check whether any entry of a ndarray a is ‘NaN’.
argsort(a[, sort]) wrapper around np.argsort to allow sorting ascend-

ing/descending and by magnitude.
atleast_2d_pad(a[, pad_item]) Transform a into a 2D array, filling missing places with

pad_item.
build_initial_state(size, states, filling[, . . .])

chi_list(chi_max[, dchi, nsweeps, verbose])

find_subclass(base_class, subclass_name) For a given base class, recursively find the subclass with
the given name.

flatten(mapping[, separator]) Obtain a flat dictionary with all key/value pairs of a
nested data structure.

get_close(values, target[, default, eps]) Iterate through values and return first entry closer than
eps.

get_recursive(nested_data, recursive_key[, . . .]) Extract specific value from a nested data structure.
group_by_degeneracy(E, *args[, subset, cutoff]) Find groups of indices for which (energy) values are de-

generate.
inverse_permutation(perm) reverse sorting indices.
lexsort(a[, axis]) wrapper around np.lexsort: allow for trivial case

a.shape[0] = 0 without sorting
list_to_dict_list(l) Given a list l of objects, construct a lookup table.
pad(a[, w_l, v_l, w_r, v_r, axis]) Pad an array along a given axis.
set_recursive(nested_data, recursive_key, value) Same as get_recursive(), but set the data entry to

value.
setup_executable(mod, run_defaults[, . . .]) Read command line arguments and turn into useable

dicts.
setup_logging([options, output_filename]) Configure the logging module.
to_array(a[, shape, dtype]) Convert a to an numpy array and tile to matching di-

mension/shape.
continues on next page

22.4. misc 725

https://docs.python.org/3/library/logging.html#module-logging

TeNPy, Release 0.8.1

Table 18 – continued from previous page
to_iterable(a) If a is a not iterable or a string, return [a], else return

a.
to_iterable_of_len(a, L) If a is a non-string iterable of length L, return a, other-

wise return [a]*L.
transpose_list_list(D[, pad]) Returns a list of lists T, such that T[i][j] =

D[j][i].
update_recursive(nested_data, update_data[,
. . .])

Wrapper around set_recursive() to allow updat-
ing multiple values at once.

zero_if_close(a[, tol]) set real and/or imaginary part to 0 if their absolute value
is smaller than tol.

22.4.1 add_with_None_0

• full name: tenpy.tools.misc.add_with_None_0

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.add_with_None_0(a, b)
Return a + b, treating None as zero.

Parameters

• a – The two things to be added, or None.

• b – The two things to be added, or None.

Returns a + b, except if a or b is None, in which case the other variable is returned.

Return type sum

22.4.2 any_nonzero

• full name: tenpy.tools.misc.any_nonzero

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.any_nonzero(params, keys, verbose_msg=None)
Check for any non-zero or non-equal entries in some parameters.

Deprecated since version 0.8.0: This method will be removed in version 1.0.0. Use tenpy.toosl.params.
Config.any_nonzero() instead.

Parameters

• params (dict | Config) – A dictionary of parameters, or a Config instance.

• keys (list of {key | tuple of keys}) – For a single key, check
params[key] for non-zero entries. For a tuple of keys, all the params[key]
have to be equal (as numpy arrays).

• verbose_msg (None | str) – If params[‘verbose’] >= 1, we print verbose_msg before
checking, and a short notice with the key, if a non-zero entry is found.

Returns match – False, if all params[key] are zero or None and True, if any of the params[key] for
single key in keys, or if any of the entries for a tuple of keys

726 Chapter 22. tools

TeNPy, Release 0.8.1

Return type bool

22.4.3 anynan

• full name: tenpy.tools.misc.anynan

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.anynan(a)
check whether any entry of a ndarray a is ‘NaN’.

22.4.4 argsort

• full name: tenpy.tools.misc.argsort

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.argsort(a, sort=None, **kwargs)
wrapper around np.argsort to allow sorting ascending/descending and by magnitude.

Parameters

• a (array_like) – The array to sort.

• sort ('m>', 'm<', '>', '<', None) – Specify how the arguments should be
sorted.

sort order
'm>', 'LM' Largest magnitude first
'm<', 'SM' Smallest magnitude first
'>', 'LR', 'LA' Largest real part first
'<', 'SR', 'SA' Smallest real part first
'LI' Largest imaginary part first
'SI' Smallest imaginary part first
None numpy default: same as ‘<’

• **kwargs – Further keyword arguments given directly to numpy.argsort().

Returns index_array – Same shape as a, such that a[index_array] is sorted in the specified
way.

Return type ndarray, int

22.4. misc 727

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

22.4.5 atleast_2d_pad

• full name: tenpy.tools.misc.atleast_2d_pad

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.atleast_2d_pad(a, pad_item=0)
Transform a into a 2D array, filling missing places with pad_item.

Given a list of lists, turn it to a 2D array (pad with 0), or turn a 1D list to 2D.

Parameters a (list of lists) – to be converted into ad 2D array.

Returns a_2D – a converted into a numpy array.

Return type 2D ndarray

Examples

>>> atleast_2d_pad([3, 4, 0])
array([[3, 4, 0]])

>>> atleast_2d_pad([[3, 4], [1, 6, 7]])
array([[3., 4., 0.],

[1., 6., 7.]])

22.4.6 build_initial_state

• full name: tenpy.tools.misc.build_initial_state

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.build_initial_state(size, states, filling, mode='random', seed=None)

22.4.7 chi_list

• full name: tenpy.tools.misc.chi_list

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.chi_list(chi_max, dchi=20, nsweeps=20, verbose=0)

728 Chapter 22. tools

TeNPy, Release 0.8.1

22.4.8 find_subclass

• full name: tenpy.tools.misc.find_subclass

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.find_subclass(base_class, subclass_name)
For a given base class, recursively find the subclass with the given name.

Parameters

• base_class (class) – The base class of which subclass_name is supposed to be a
subclass.

• subclass_name (str) – Name of the class to be found.

Returns subclass – Class with name subclass_name which is a subclass of the base_class. None, if
no subclass of the given name is found.

Return type None | class

22.4.9 flatten

• full name: tenpy.tools.misc.flatten

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.flatten(mapping, separator='/')
Obtain a flat dictionary with all key/value pairs of a nested data structure.

Parameters separator (str) – Separator for merging keys to a single string.

Returns flat_config – A single dictionary with all key-value pairs.

Return type dict

Examples

>>> sample_data = {'some': {'nested': {'entry': 100, 'structure': 200},
... 'subkey': 10},
... 'topentry': 1}
>>> flat = flatten(sample_data)
>>> for k in sorted(flat):
... print(repr(k), ':', flat[k])
'some/nested/entry' : 100
'some/nested/structure' : 200
'some/subkey' : 10
'topentry' : 1

See also:

get_recursive Useful to obtain a single entry from a nested data structure.

22.4. misc 729

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

22.4.10 get_close

• full name: tenpy.tools.misc.get_close

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.get_close(values, target, default=None, eps=1e-13)
Iterate through values and return first entry closer than eps.

Parameters

• values (interable of float) – Values to compare to.

• target (float) – Value to find.

• default – Returned if no value close to target is found.

• eps (float) – Tolerance what counts as “close”, namely everything with
abs(val-target) < eps.

Returns value – An entry of values, if one close to target is found, otherwise default.

Return type float

22.4.11 get_recursive

• full name: tenpy.tools.misc.get_recursive

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.get_recursive(nested_data, recursive_key, separator='/')
Extract specific value from a nested data structure.

Parameters

• nested_data (dict of dict (-like)) – Some nested data structure supporting a
dict-like interface.

• recursive_key (str) – The key(-parts) to be extracted, separated by separator. A
leading separator is ignored.

• separator (str) – Separator for splitting recursive_key into subkeys.

Returns For example, recursive_key="/some/sub/key" will result in extracing
nested_data["some"]["sub"]["key"].

Return type entry

See also:

set_recursive same for changing/setting a value.

flatten Get a completely flat structure.

730 Chapter 22. tools

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

22.4.12 group_by_degeneracy

• full name: tenpy.tools.misc.group_by_degeneracy

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.group_by_degeneracy(E, *args, subset=None, cutoff=1e-12)
Find groups of indices for which (energy) values are degenerate.

Parameters

• values (1D array) – Values (e.g. energies) which need to be close to count as degener-
ate.

• *args (1D array) – Additional vectors (with same length as values), which also need to
be close (up to cutoff) to count as degenerate.

• subset (1D array) – Optionally selects a subset of the indices

• cutoff (float) – Precision up to which values still count as degenerate.

Returns

• idx_groups (list of tuple of int) – Each tuple group contains indices i, j, k, ... for
which the values are closer than cutoff, i.e., |E[j, k, ...] - E[i]| <= cutoff.
Each index appears exactly once (if it is containted in subset).

• .. testsetup :: – from tenpy.tools.misc import *

• >>> E = [2., 2.4, 1.9999, 1.8, 2.3999, 5, 1.8]

• . . . # -> 0 1 2 3 4 5 6

• >>> k = [0, 1, 2, 2, 1, 2, 1]

• >>> group_by_degeneracy(E, cutoff=0.001)

• [(0, 2), (1, 4), (3, 6), (5,)]

• >>> group_by_degeneracy(E, k, cutoff=0.001) # k and E need to be close

• [(0,), (1, 4), (2,), (3,), (5,), (6,)]

22.4.13 inverse_permutation

• full name: tenpy.tools.misc.inverse_permutation

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.inverse_permutation(perm)
reverse sorting indices.

Sort functions (as LegCharge.sort()) return a (1D) permutation perm array, such that sorted_array
= old_array[perm]. This function inverts the permutation perm, such that old_array =
sorted_array[inverse_permutation(perm)].

Parameters perm (1D array_like) – The permutation to be reversed.
Assumes that it is a permutation with unique indices. If it is,
inverse_permutation(inverse_permutation(perm)) == perm.

22.4. misc 731

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Returns inv_perm – The inverse permutation of perm such that inv_perm[perm[j]] = j =
perm[inv_perm[j]].

Return type 1D array (int)

22.4.14 lexsort

• full name: tenpy.tools.misc.lexsort

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.lexsort(a, axis=- 1)
wrapper around np.lexsort: allow for trivial case a.shape[0] = 0 without sorting

22.4.15 list_to_dict_list

• full name: tenpy.tools.misc.list_to_dict_list

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.list_to_dict_list(l)
Given a list l of objects, construct a lookup table.

This function will handle duplicate entries in l.

Parameters l (iterable of iterabele of immutable) – A list of objects that can be
converted to tuples to be used as keys for a dictionary.

Returns lookup – A dictionary with (key, value) pairs (key):[i1,i2,...] where i1,
i2, ... are the indices where key is found in l: i.e. key == tuple(l[i1]) ==
tuple(l[i2]) == ...

Return type dict

22.4.16 pad

• full name: tenpy.tools.misc.pad

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.pad(a, w_l=0, v_l=0, w_r=0, v_r=0, axis=0)
Pad an array along a given axis.

Parameters

• a (ndarray) – the array to be padded

• w_l (int) – the width to be padded in the front

• v_l (dtype) – the value to be inserted before a

• w_r (int) – the width to be padded after the last index

• v_r (dtype) – the value to be inserted after a

• axis (int) – the axis along which to pad

732 Chapter 22. tools

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Returns padded – a copy of a with enlarged axis, padded with the given values.

Return type ndarray

22.4.17 set_recursive

• full name: tenpy.tools.misc.set_recursive

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.set_recursive(nested_data, recursive_key, value, separator='/', in-
sert_dicts=False)

Same as get_recursive(), but set the data entry to value.

22.4.18 setup_executable

• full name: tenpy.tools.misc.setup_executable

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.setup_executable(mod, run_defaults, identifier_list=None)
Read command line arguments and turn into useable dicts.

Warning: this is a deprecated interface. Use the Simulation interface in combination with
console_main() instead. You can invoce that from the command line as python -m tenpy ..
..

Uses default values defined at: - model class for model_par - here for sim_par - executable file for run_par
Alternatively, a model_defaults dictionary and identifier_list can be supplied without the model

NB: for setup_executable to work with a model class, the model class needs to define two things:

• defaults, a static (class level) dictionary with (key, value) pairs that have the name of the parameter
(as string) as key, and the default value as value.

• identifier, a static (class level) list or other iterable with the names of the parameters to be used in
filename identifiers.

Parameters

• mod (model | dict) – Model class (or instance) OR a dictionary containing model
defaults

• run_defaults (dict) – default values for executable file parameters

• identifier_list (ieterable) – Used only if mod is a dict. Contains the identifier
variables

Returns

• model_par, sim_par, run_par (dict) – containing all parameters.

• args – namespace with raw arguments for some backwards compatibility with executables.

22.4. misc 733

https://docs.python.org/3/library/stdtypes.html#dict

TeNPy, Release 0.8.1

22.4.19 to_array

• full name: tenpy.tools.misc.to_array

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.to_array(a, shape=(None), dtype=None)
Convert a to an numpy array and tile to matching dimension/shape.

This function provides similar functionality as numpys broadcast, but not quite the same: Only scalars are
broadcasted to higher dimensions, for a non-scalar, we require the number of dimension to match. If the shape
does not match, we repeat periodically, e.g. we tile (3, 4) -> (6, 16), but (4, 4) -> (6, 16) will
raise an error.

Parameters

• a (scalar | array_like) – The input to be converted to an array. A scalar is reshaped
to the desired dimension.

• shape (tuple of {None | int}) – The desired shape of the array. An entry None
indicates arbitrary len >=1. For int entries, tile the array periodically to fit the len.

• dtype – Optionally specifies the data type.

Returns a_array – A copy of a converted to a numpy ndarray of desired dimension and shape.

Return type ndarray

22.4.20 to_iterable

• full name: tenpy.tools.misc.to_iterable

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.to_iterable(a)
If a is a not iterable or a string, return [a], else return a.

22.4.21 to_iterable_of_len

• full name: tenpy.tools.misc.to_iterable_of_len

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.to_iterable_of_len(a, L)
If a is a non-string iterable of length L, return a, otherwise return [a]*L.

Raises ValueError if a is already an iterable of different length.

734 Chapter 22. tools

TeNPy, Release 0.8.1

22.4.22 transpose_list_list

• full name: tenpy.tools.misc.transpose_list_list

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.transpose_list_list(D, pad=None)
Returns a list of lists T, such that T[i][j] = D[j][i].

Parameters

• D (list of list) – to be transposed

• pad – Used to fill missing places, if D is not rectangular.

Returns T – transposed, rectangular version of D. constructed such that T[i][j] = D[j][i]
if i < len(D[j]) else pad

Return type list of lists

22.4.23 update_recursive

• full name: tenpy.tools.misc.update_recursive

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.update_recursive(nested_data, update_data, separator='/', in-
sert_dicts=True)

Wrapper around set_recursive() to allow updating multiple values at once.

It simply calls set_recursive() for each recursive_key, value in update_data.items().

22.4.24 zero_if_close

• full name: tenpy.tools.misc.zero_if_close

• parent module: tenpy.tools.misc

• type: function

tenpy.tools.misc.zero_if_close(a, tol=1e-15)
set real and/or imaginary part to 0 if their absolute value is smaller than tol.

Parameters

• a (ndarray) – numpy array to be rounded

• tol (float) – the threashold which values to consider as ‘0’.

22.4. misc 735

https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

Module description

Miscellaneous tools, somewhat random mix yet often helpful.

22.5 math

• full name: tenpy.tools.math

• parent module: tenpy.tools

• type: module

Functions

entropy(p[, n]) Calculate the entropy of a distribution.
gcd(a, b) Computes the greatest common divisor (GCD) of two

numbers.
gcd_array(a) Return the greatest common divisor of all of entries in a
lcm(a, b) Returns the least common multiple (LCM) of two posi-

tive numbers.
matvec_to_array(H) transform an linear operator with a matvec method into

a dense numpy array.
perm_sign(p) Given a permutation p of numbers, returns its sign.
qr_li(A[, cutoff]) QR decomposition with cutoff to discard nearly linear

dependent columns in Q.
rq_li(A[, cutoff]) RQ decomposition with cutoff to discard nearly linear

dependent columns in Q.
speigs(A, k, *args, **kwargs) Wrapper around scipy.sparse.linalg.

eigs(), lifting the restriction k < rank(A)-1.
speigsh(A, k, *args, **kwargs) Wrapper around scipy.sparse.linalg.

eigsh(), lifting the restriction k < rank(A)-1.

22.5.1 entropy

• full name: tenpy.tools.math.entropy

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.entropy(p, n=1)
Calculate the entropy of a distribution.

Assumes that p is a normalized distribution (np.sum(p)==1.).

Parameters

• p (1D array) – A normalized distribution.

• n (1 | float | np.inf) – Selects the entropy, see below.

Returns entropy – Shannon-entropy −
∑︀

𝑖 𝑝𝑖 log(𝑝𝑖) (n=1) or Renyi-entropy 1
1−𝑛 log(

∑︀
𝑖 𝑝

𝑛
𝑖) (n !=

1) of the distribution p.

Return type float

736 Chapter 22. tools

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

22.5.2 gcd

• full name: tenpy.tools.math.gcd

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.gcd(a, b)
Computes the greatest common divisor (GCD) of two numbers.

Return 0 if both a, b are zero, otherwise always return a non-negative number.

22.5.3 gcd_array

• full name: tenpy.tools.math.gcd_array

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.gcd_array(a)
Return the greatest common divisor of all of entries in a

22.5.4 lcm

• full name: tenpy.tools.math.lcm

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.lcm(a, b)
Returns the least common multiple (LCM) of two positive numbers.

22.5.5 matvec_to_array

• full name: tenpy.tools.math.matvec_to_array

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.matvec_to_array(H)
transform an linear operator with a matvec method into a dense numpy array.

Parameters H (linear operator) – should have shape, dtype attributes and a matvec method.

Returns H_dense – a dense array version of H.

Return type ndarray, shape (H.dim, H.dim)

22.5. math 737

TeNPy, Release 0.8.1

22.5.6 perm_sign

• full name: tenpy.tools.math.perm_sign

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.perm_sign(p)
Given a permutation p of numbers, returns its sign. (+1 or -1)

Assumes that all the elements are distinct, if not, you get crap.

Examples

>>> import itertools
>>> for p in itertools.permutations(range(3)):
... print('{p!s}: {sign!s}'.format(p=p, sign=tenpy.tools.math.perm_sign(p)))
(0, 1, 2): 1
(0, 2, 1): -1
(1, 0, 2): -1
(1, 2, 0): 1
(2, 0, 1): 1
(2, 1, 0): -1

22.5.7 qr_li

• full name: tenpy.tools.math.qr_li

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.qr_li(A, cutoff=1e-15)
QR decomposition with cutoff to discard nearly linear dependent columns in Q.

Perform a QR decomposition with pivoting, discard columns where R[i,i] < cuttoff, reverse the per-
mututation from pivoting and perform another QR decomposition to ensure that R is upper right.

Parameters A (numpy.ndarray) – Matrix to be decomposed as A = Q.R

Returns Q, R – Decomposition of A into isometry Q^d Q = 1 and upper right R with diagonal entries
larger than cutoff.

Return type numpy.ndarray

22.5.8 rq_li

• full name: tenpy.tools.math.rq_li

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.rq_li(A, cutoff=1e-15)
RQ decomposition with cutoff to discard nearly linear dependent columns in Q.

Uses qr_li() on tranpose of A. Note that R is nonzero in the lowest left corner; R has entries below the
diagonal for non-square R.

738 Chapter 22. tools

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

TeNPy, Release 0.8.1

Parameters A (numpy.ndarray) – Matrix to be decomposed as A = Q.R

Returns R, Q – Decomposition of A into isometry Q Q^d = 1 and upper right R with diagonal entries
larger than cutoff. If M, N = A.shape, then R.shape = M, K and Q.shape = K, N
with K <= min(M, N).

Return type numpy.ndarray

22.5.9 speigs

• full name: tenpy.tools.math.speigs

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.speigs(A, k, *args, **kwargs)
Wrapper around scipy.sparse.linalg.eigs(), lifting the restriction k < rank(A)-1.

Parameters

• A (MxM ndarray or like scipy.sparse.linalg.LinearOperator) – the (square)
linear operator for which the eigenvalues should be computed.

• k (int) – the number of eigenvalues to be computed.

• *args – Further arguments directly given to scipy.sparse.linalg.eigs()

• **kwargs – Further keyword arguments directly given to scipy.sparse.linalg.
eigs()

Returns

• w (ndarray) – array of min(k, A.shape[0]) eigenvalues

• v (ndarray) – array of min(k, A.shape[0]) eigenvectors, v[:, i] is the i-th eigenvector.
Only returned if kwargs['return_eigenvectors'] == True.

22.5.10 speigsh

• full name: tenpy.tools.math.speigsh

• parent module: tenpy.tools.math

• type: function

tenpy.tools.math.speigsh(A, k, *args, **kwargs)
Wrapper around scipy.sparse.linalg.eigsh(), lifting the restriction k < rank(A)-1.

Parameters

• A (MxM ndarray or like scipy.sparse.linalg.LinearOperator) – The (square)
hermitian linear operator for which the eigenvalues should be computed.

• k (int) – The number of eigenvalues to be computed.

• *args – Further arguments directly given to scipy.sparse.linalg.eigsh().

• **kwargs – Further keyword arguments directly given to scipy.sparse.linalg.
eigsh().

Returns

• w (ndarray) – Array of min(k, A.shape[0]) eigenvalues.

22.5. math 739

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh

TeNPy, Release 0.8.1

• v (ndarray) – Array of min(k, A.shape[0]) eigenvectors, v[:, i] is the i-th eigenvector.
Only returned if kwargs['return_eigenvectors'] == True.

Module description

Different math functions needed at some point in the library.

tenpy.tools.math.LeviCivita3 = array([[[0, 0, 0], [0, 0, 1], [0, -1, 0]], [[0, 0, -1], [0, 0, 0], [1, 0, 0]], [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Levi-Civita Symbol of int type

22.6 fit

• full name: tenpy.tools.fit

• parent module: tenpy.tools

• type: module

Functions

alg_decay(x, a, b, c) define the algebraic decay.
alg_decay_fit(x, y[, npts, power_range, . . .]) Fit y to the form a*x**(-b) + c.
alg_decay_fit_res(log_b, x, y) Returns the residue of an algebraic decay fit of the form

x**(-np.exp(log_b)).
alg_decay_fits(x, ys[, npts, power_range, . . .]) Fit arrays of y’s to the form a * x**(-b) + c.
central_charge_from_S_profile(psi[,
exclude])

Fit the entanglement entropy of a finite MPS to the ex-
pected profile for critical models.

entropy_profile_from_CFT(size_A, L, . . .) Expected profile for the entanglement entropy at a criti-
cal point.

fit_with_sum_of_exp(f, n[, N]) Approximate a decaying function f with a sum of expo-
nentials.

lin_fit_res(x, y) Returns the least-square residue of a linear fit y vs x.
linear_fit(x, y) Perform a linear fit of y to ax + b.
plot_alg_decay_fit(plot_module, x, y, fit_par) Given x, y, and fit_par (output from alg_decay_fit), pro-

duces a plot of the algebraic decay fit.
sum_of_exp(lambdas, prefactors, x) Evaluate sum_i prefactor[i] *

lambda[i]**x for different x.

22.6.1 alg_decay

• full name: tenpy.tools.fit.alg_decay

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.alg_decay(x, a, b, c)
define the algebraic decay.

740 Chapter 22. tools

TeNPy, Release 0.8.1

22.6.2 alg_decay_fit

• full name: tenpy.tools.fit.alg_decay_fit

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.alg_decay_fit(x, y, npts=5, power_range=(0.01, 4.0), power_mesh=[60, 10])
Fit y to the form a*x**(-b) + c.

Returns a triplet [a, b, c].

npts specifies the maximum number of points to fit. If npts < len(x), then alg_decay_fit() will only fit to the
last npts points. power_range is a tuple that gives that restricts the possible ranges for b. power_mesh is a list
of numbers, which specifies how fine to search for the optimal b. E.g., if power_mesh = [60,10], then it’ll first
divide the power_range into 60 intervals, and then divide those intervals by 10.

22.6.3 alg_decay_fit_res

• full name: tenpy.tools.fit.alg_decay_fit_res

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.alg_decay_fit_res(log_b, x, y)
Returns the residue of an algebraic decay fit of the form x**(-np.exp(log_b)).

22.6.4 alg_decay_fits

• full name: tenpy.tools.fit.alg_decay_fits

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.alg_decay_fits(x, ys, npts=5, power_range=(0.01, 4.0), power_mesh=[60, 10])
Fit arrays of y’s to the form a * x**(-b) + c.

Returns arrays of [a, b, c].

22.6.5 central_charge_from_S_profile

• full name: tenpy.tools.fit.central_charge_from_S_profile

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.central_charge_from_S_profile(psi, exclude=None)
Fit the entanglement entropy of a finite MPS to the expected profile for critical models.

See entropy_profile_from_CFT() for the function we fit to.

Parameters

• psi (MPS) – Ground state of a finite system at a critical point (i.e. gapless!). The bond
dimension should be large enough to be converged!

22.6. fit 741

TeNPy, Release 0.8.1

• exclude (int) – How many sites at the left (and at the right) boundary to exclude from
the fit (to avoid boundary effects). Defaults to psi.L // 4

Returns

• central_charge, const (float) – Central charge and constant offset as in
entropy_profile_from_CFT().

• res (float) – Residuum of the error.

22.6.6 entropy_profile_from_CFT

• full name: tenpy.tools.fit.entropy_profile_from_CFT

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.entropy_profile_from_CFT(size_A, L, central_charge, const)
Expected profile for the entanglement entropy at a critical point.

Conformal field theory predicts the entanglement entropy for cutting a ground state of a finite, critical (i.e.
gapless) system of length L into the left l and right L-l sites to be (eq. 2 of [[calabrese2004]]):

𝑆(𝑙, 𝐿) =
𝑐

6
log

(︂
2𝐿

𝜋𝑎
sin

(︂
𝜋𝑙

𝐿

)︂)︂
+ const

Here, c is the central charge of the system, and a is the lattice spacing, which we set to 1, and const is a
non-universal constant.

Returns exactly that formula.

22.6.7 fit_with_sum_of_exp

• full name: tenpy.tools.fit.fit_with_sum_of_exp

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.fit_with_sum_of_exp(f, n, N=50)
Approximate a decaying function f with a sum of exponentials.

MPOs can naturally represent long-range interactions with an exponential decay. A common technique for other
(e.g. powerlaw) long-range interactions is to approximate them by sums of exponentials and to include them
into the MPOs. This funciton allows to do that.

The algorithm/implementation follows the appendix of [[murg2010]].

Parameters

• f (function) – Decaying function to be approximated. Needs to accept a 1D numpy array
x

• n (int) – Number of exponentials to be used.

• N (int) – Number of points at which to evaluate/fit f ; we evaluate and fit f at the points x
= np.arange(1, N+1).

Returns lambdas, prefactors – Such that 𝑓(𝑘) ≈
∑︀

𝑖 𝑥𝑖𝜆
𝑘
𝑖 for (integer) 1 <= k <= N. The function

sum_of_exp() evaluates this for given x.

Return type 1D arrays

742 Chapter 22. tools

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

22.6.8 lin_fit_res

• full name: tenpy.tools.fit.lin_fit_res

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.lin_fit_res(x, y)
Returns the least-square residue of a linear fit y vs x.

22.6.9 linear_fit

• full name: tenpy.tools.fit.linear_fit

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.linear_fit(x, y)
Perform a linear fit of y to ax + b.

Returns a, b, res.

22.6.10 plot_alg_decay_fit

• full name: tenpy.tools.fit.plot_alg_decay_fit

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.plot_alg_decay_fit(plot_module, x, y, fit_par, xfunc=None, kwargs={},
plot_fit_args={})

Given x, y, and fit_par (output from alg_decay_fit), produces a plot of the algebraic decay fit.

plot_module is matplotlib.pyplot, or a subplot. x, y are the data (real, 1-dimensional np.ndarray) fit_par is a
triplet of numbers [a, b, c] that describes and algebraic decay (see alg_decay()). xfunc is an optional parameter
that scales the x-axis in the resulting plot. kwargs is a dictionary, whoses key/items are passed to the plot
function. plot_fit_args is a dictionary that controls how the fit is shown.

22.6.11 sum_of_exp

• full name: tenpy.tools.fit.sum_of_exp

• parent module: tenpy.tools.fit

• type: function

tenpy.tools.fit.sum_of_exp(lambdas, prefactors, x)
Evaluate sum_i prefactor[i] * lambda[i]**x for different x.

See fit_sum_of_exp() for more details.

22.6. fit 743

TeNPy, Release 0.8.1

Module description

tools to fit to an algebraic decay.

22.7 string

• full name: tenpy.tools.string

• parent module: tenpy.tools

• type: module

Functions

is_non_string_iterable(x) Check if x is a non-string iterable, (e.g., list, tuple, dic-
tionary, np.ndarray)

to_mathematica_lists(a) convert nested a to string readable by mathematica us-
ing curly brackets ‘{. . . }’.

vert_join(strlist[, valign, halign, delim]) Join strings with multilines vertically such that they ap-
pear next to each other.

22.7.1 is_non_string_iterable

• full name: tenpy.tools.string.is_non_string_iterable

• parent module: tenpy.tools.string

• type: function

tenpy.tools.string.is_non_string_iterable(x)
Check if x is a non-string iterable, (e.g., list, tuple, dictionary, np.ndarray)

22.7.2 to_mathematica_lists

• full name: tenpy.tools.string.to_mathematica_lists

• parent module: tenpy.tools.string

• type: function

tenpy.tools.string.to_mathematica_lists(a)
convert nested a to string readable by mathematica using curly brackets ‘{. . . }’.

744 Chapter 22. tools

TeNPy, Release 0.8.1

22.7.3 vert_join

• full name: tenpy.tools.string.vert_join

• parent module: tenpy.tools.string

• type: function

tenpy.tools.string.vert_join(strlist, valign='t', halign='l', delim=' ')
Join strings with multilines vertically such that they appear next to each other.

Parameters

• strlist (list of str) – the strings to be joined vertically

• valing ('t', 'c', 'b') – vertical alignment of the strings: top, center, or bottom

• halign ('l', 'c', 'r') – horizontal alignment of the strings: left, center, or right

• delim (str) – field separator between the strings

Returns joined – a string where the strings of strlist are aligned vertically

Return type str

Examples

>>> from tenpy.tools.string import vert_join
>>> print(vert_join(['a\nsample\nmultiline\nstring', str(np.arange(9).reshape(3,
→˓3))],
... delim=' | '))
a | [[0 1 2]
sample | [3 4 5]
multiline | [6 7 8]]
string |

Module description

Tools for handling strings.

22.8 process

• full name: tenpy.tools.process

• parent module: tenpy.tools

• type: module

22.8. process 745

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TeNPy, Release 0.8.1

Functions

load_omp_library([libs, verbose]) Tries to load openMP library.
memory_usage() Return memory usage of the running python process.
mkl_get_nthreads() wrapper around MKL get_max_threads.
mkl_set_nthreads(n) wrapper around MKL set_num_threads.
omp_get_nthreads() wrapper around OpenMP get_max_threads.
omp_set_nthreads(n) wrapper around OpenMP set_nthreads.

22.8.1 load_omp_library

• full name: tenpy.tools.process.load_omp_library

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.load_omp_library(libs=['libiomp5.so', None, 'libgomp.so.1'], ver-
bose=True)

Tries to load openMP library.

Parameters

• libs – list of possible library names we should try to load (with ctypes.CDLL).

• verbose (bool) – wheter to print the name of the loaded library.

Returns omp – OpenMP shared libary if found, otherwise None. Once it was sucessfully imported,
no re-imports are tried.

Return type CDLL | None

22.8.2 memory_usage

• full name: tenpy.tools.process.memory_usage

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.memory_usage()
Return memory usage of the running python process.

You can pip install psutil if you get only -1..

Returns mem – Currently used memory in megabytes. -1. if no way to read out.

Return type float

746 Chapter 22. tools

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

TeNPy, Release 0.8.1

22.8.3 mkl_get_nthreads

• full name: tenpy.tools.process.mkl_get_nthreads

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.mkl_get_nthreads()
wrapper around MKL get_max_threads.

Returns max_threads – The maximum number of threads used by MKL. -1 if unable to read out.

Return type int

22.8.4 mkl_set_nthreads

• full name: tenpy.tools.process.mkl_set_nthreads

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.mkl_set_nthreads(n)
wrapper around MKL set_num_threads.

Parameters n (int) – the number of threads to use

Returns success – whether the shared library was found and set.

Return type bool

22.8.5 omp_get_nthreads

• full name: tenpy.tools.process.omp_get_nthreads

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.omp_get_nthreads()
wrapper around OpenMP get_max_threads.

Returns max_threads – The maximum number of threads used by OpenMP (and thus MKL). -1
if unable to read out.

Return type int

22.8.6 omp_set_nthreads

• full name: tenpy.tools.process.omp_set_nthreads

• parent module: tenpy.tools.process

• type: function

tenpy.tools.process.omp_set_nthreads(n)
wrapper around OpenMP set_nthreads.

Parameters n (int) – the number of threads to use

Returns success – whether the shared library was found and set.

22.8. process 747

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

TeNPy, Release 0.8.1

Return type bool

Module description

Tools to read out total memory usage and get/set the number of threads.

If your python is compiled against MKL (e.g. if you use anaconda as recommended in INSTALL), it will by default
use as many threads as CPU cores are available. If you run a job on a cluster, you should limit this to the number of
cores you reserved – otherwise your colleagues might get angry. . . A simple way to achieve this is to set a suitable
enviornment variable before calling your python program, e.g. on the linux bash export OMP_NUM_THREADS=4
for 4 threads. (MKL used OpenMP and thus respects its settings.)

Alternatively, this module provides omp_get_nthreads() and omp_set_nthreads(), which give their best
to get and set the number of threads at runtime, while still being failsave if the shared OpenMP library is not found. In
the latter case, you might also try the equivalent mkl_get_nthreads() and mkl_set_nthreads().

22.9 optimization

• full name: tenpy.tools.optimization

• parent module: tenpy.tools

• type: module

Classes

Enum

IntEnum

OptimizationFlag

temporary_level

OptimizationFlag(value) Options for the global ‘optimization level’ used for dy-
namical optimizations.

temporary_level(temporary_level) Context manager to temporarily set the optimization
level to a different value.

748 Chapter 22. tools

https://docs.python.org/3/library/functions.html#bool

TeNPy, Release 0.8.1

22.9.1 OptimizationFlag

• full name: tenpy.tools.optimization.OptimizationFlag

• parent module: tenpy.tools.optimization

• type: class

Inheritance Diagram

Enum

IntEnum

OptimizationFlag

Class Attributes and Properties

OptimizationFlag.default

OptimizationFlag.none

OptimizationFlag.safe

OptimizationFlag.skip_arg_checks

class tenpy.tools.optimization.OptimizationFlag(value)
Bases: enum.IntEnum

Options for the global ‘optimization level’ used for dynamical optimizations.

Whether we optimize dynamically is decided by comparison of the global “optimization level” with one of the
following flags. A higher level includes all the previous optimizations.

22.9. optimization 749

https://docs.python.org/3/library/enum.html#enum.IntEnum

TeNPy, Release 0.8.1

Level Flag Description
0 none Don’t do any optimizations, i.e., run many sanity checks. Used for testing.
1 default Skip really unnecessary sanity checks, but also don’t try any optional optimizations if

they might give an overhead.
2 safe Activate safe optimizations in algorithms, even if they might give a small overhead. Ex-

ample: Try to compress the MPO representing the hamiltonian.
3 skip_arg_checksUnsafe! Skip (some) class sanity tests and (function) argument checks.

Warning: When unsafe optimizations are enabled, errors will not be detected that easily, debugging is much
harder, and you might even get segmentation faults in the compiled parts. Use this kind of optimization only
for code which you succesfully ran before with (very) similar parmeters and disabled optimiztions! Enable
this optimization only during the parts of the code where it is really necessary. Check whether it actually
helps - if it doesn’t, keep the optimization disabled!

22.9.2 temporary_level

• full name: tenpy.tools.optimization.temporary_level

• parent module: tenpy.tools.optimization

• type: class

Inheritance Diagram

temporary_level

Methods

temporary_level.__init__(temporary_level) Initialize self.

class tenpy.tools.optimization.temporary_level(temporary_level)
Bases: object

Context manager to temporarily set the optimization level to a different value.

Parameters temporary_level (int | OptimizationFlag | str | None) – The
optimization level to be set during the context. None defaults to the current value of the op-
timization level.

temporary_level
The optimization level to be set during the context.

Type None | OptimizationFlag

750 Chapter 22. tools

https://docs.python.org/3/library/functions.html#object

TeNPy, Release 0.8.1

_old_level
Optimization level to be restored at the end of the context manager.

Type OptimizationFlag

Examples

It is recommended to use this context manager in a with statement:

optimization level default
with temporary_level(OptimizationFlag.safe):

do_some_stuff() # temporarily have Optimization level `safe`
you can even change the optimization level to something else:
set_level(OptimizationFlag.skip_args_check)
do_some_really_heavy_stuff()

here we are back to the optimization level as before the ``with ...`` statement

Functions

get_level() Return the global optimization level.
optimize([level_compare]) Called by algorithms to check whether it should (try to)

do some optimizations.
set_level([level]) Set the global optimization level.
to_OptimizationFlag(level) Convert strings and int to a valid OptimizationFlag.
use_cython([func, replacement, check_doc]) Decorator to replace a function with a Cython-

equivalent from _npc_helper.pyx.

22.9.3 get_level

• full name: tenpy.tools.optimization.get_level

• parent module: tenpy.tools.optimization

• type: function

tenpy.tools.optimization.get_level()
Return the global optimization level.

22.9.4 optimize

• full name: tenpy.tools.optimization.optimize

• parent module: tenpy.tools.optimization

• type: function

tenpy.tools.optimization.optimize(level_compare=<OptimizationFlag.default: 1>)
Called by algorithms to check whether it should (try to) do some optimizations.

Parameters level_compare (OptimizationFlag) – At which level to start optimization,
i.e., how safe the suggested optimization is.

Returns optimize – True if the algorithms should try to optimize, i.e., whether the global “optimiza-
tion level” is equal or higher than the level to compare to.

22.9. optimization 751

TeNPy, Release 0.8.1

Return type bool

22.9.5 set_level

• full name: tenpy.tools.optimization.set_level

• parent module: tenpy.tools.optimization

• type: function

tenpy.tools.optimization.set_level(level=1)
Set the global optimization level.

Parameters level (int | OptimizationFlag | str | None) – The new global opti-
mization level to be set. None defaults to keeping the current level.

22.9.6 to_OptimizationFlag

• full name: tenpy.tools.optimization.to_OptimizationFlag

• parent module: tenpy.tools.optimization

• type: function

tenpy.tools.optimization.to_OptimizationFlag(level)
Convert strings and int to a valid OptimizationFlag.

None defaults to the current level.

22.9.7 use_cython

• full name: tenpy.tools.optimization.use_cython

• parent module: tenpy.tools.optimization

• type: function

tenpy.tools.optimization.use_cython(func=None, replacement=None, check_doc=True)
Decorator to replace a function with a Cython-equivalent from _npc_helper.pyx.

This is a decorator, which is supposed to be used in front of function definitions with an @ sign, for example:

@use_cython
def my_slow_function(a):

"some example function with slow python loops"
result = 0.
for i in range(a.shape[0]):

for j in range(a.shape[1]):
#... heavy calculations ...
result += np.cos(a[i, j]**2) * (i + j)

return result

This decorator indicates that there is a Cython implementation in the file tenpy/linalg/_npc_helper.
pyx, which should have the same signature (i.e. same arguments and return values) as the decorated function,
and can be used as a replacement for the decorated function. However, if the cython code could not be compiled
on your system (or if the environment variable TENPY_OPTIMIZE is set to negative values, or the environment
variable TENPY_NO_CYTHON is “true”), we just pass the previous function.

752 Chapter 22. tools

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3.7/glossary.html#term-decorator
https://cython.org

TeNPy, Release 0.8.1

Note: In case that the decorator is used for a class method, the corresponding Cython version needs to have an
@cython.binding(True).

Parameters

• func (function) – The defined function

• replacement (string | None) – The name of the function defined in tenpy/
linalg/_npc_helper.pyx which should replace the decorated function. None de-
faults to the name of the decorated function, e.g., in the above example my_slow_function.

• check_doc (bool) – If True, we check that the cython version of the function has the
exact same doc string (up to a possible first line containing the function signature) to exclude
typos and inconsistent versions.

Returns replacement_func – The function replacing the decorated function func. If the cython code
can not be loaded, this is just func, otherwise it’s the cython version specified by replacement.

Return type function

Module description

Optimization options for this library.

Let me start with a quote of “Micheal Jackson” (a programmer, not the musician):

First rule of optimization: "Don't do it."
Second rule of optimization (for experts only): "Don't do it yet."
Third rule of optimization: "Profile before optimizing."

Luckily, following the third optimization rule, namely profiling code, is fairly simple in python, see the documenta-
tion. If you have a python skript running your code, you can simply call it with python -m "cProfile" -s
"tottime" your_skript.py. Alternatively, save the profiling statistics with python -m "cProfile" -o
"profile_data.stat" your_skript.py and run these few lines of python code:

import pstats
p = pstats.Pstats("profile_data.stat")
p.sort_stats('cumtime') # sort by 'cumtime' column
p.print_stats(30) # prints first 30 entries

That being said, I actually did profile and optimize (parts of) the library; and there are a few knobs you can turn to
tweak the most out of this library, explained in the following.

1) Simply install the ‘bottleneck’ python package, which allows to optimize slow parts of numpy, most notably
‘NaN’ checking.

2) Figure out which numpy/scipy/python you are using. As explained in Installation instructions, we recommend
to use the Python distributed provided by Intel or Anaconda. They ship with numpy and scipy which use Intels
MKL library, such that e.g. np.tensordot is parallelized to use multiple cores.

3) In case you didn’t do that yet: some parts of the library are written in both python and Cython with the same
interface, so you can simply compile the Cython code, as explained in Installation instructions. Then everything
should work the same way from a user perspective, while internally the faster, pre-compiled cython code from
tenpy/linalg/_npc_helper.pyx is used. This should also be a safe thing to do. The replacement of
the optimized functions is done by the decorator use_cython().

22.9. optimization 753

https://docs.python.org/3/library/functions.html#bool
http://wiki.c2.com/?RulesOfOptimization
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html

TeNPy, Release 0.8.1

Note: By default, the compilation will link against the BLAS functions provided by scipy.linalg.
cython_blas. Whether they use MKL depends on the scipy version you installed. However, you can explic-
itly link against a given MKL by providing the path during compilation, as explained in Compile linking agains
MKL.

4) One of the great things about python is its dynamical nature - anything can be done at runtime. In that spirit,
this module allows to set a global “optimization level” which can be changed dynamically (i.e., during runtime)
with set_level(). The library will then try some extra optimiztion, most notably skip sanity checks of
arguments. The possible choices for this global level are given by the OptimizationFlag. The default
initial value for the global optimization level can be adjusted by the environment variable TENPY_OPTIMIZE.

Warning: When this optimizing is enabled, we skip (some) sanity checks. Thus, errors will not be detected
that easily, and debugging is much harder! We recommend to use this kind of optimization only for code
which you succesfully have run before with (very) similar parmeters! Enable this optimization only during
the parts of the code where it is really necessary. The context manager temporary_level can help with
that. Check whether it actually helps - if it doesn’t, keep the optimization disabled! Some parts of the library
already do that as well (e.g. DMRG after the first sweep).

5) You might want to try some different compile time options for the cython code, set in the setup.py in the top
directory of the repository. Since the setup.py reads out the TENPY_OPTIMIZE environment variable, you can
simple use an export TENPY_OPTIMIZE=3 (in your bash/terminal) right before compilation. An export
TENPY_OPTIMIZE=0 activates profiling hooks instead.

Warning: This increases the probability of getting segmentation faults and anyway might not help that
much; in the crucial parts of the cython code, these optimizations are already applied. We do not recommend
using this!

tenpy.tools.optimization.bottleneck = None

tenpy.tools.optimization.have_cython_functions = False
bool whether the import of the cython file tenpy/linalg/_npc_helper.pyx succeeded.

The value is set in the first call of use_cython().

tenpy.tools.optimization.compiled_with_MKL = False
bool whether the cython file was compiled with HAVE_MKL.

The value is set in the first call of use_cython().

754 Chapter 22. tools

https://docs.scipy.org/doc/scipy/reference/linalg.cython_blas.html#module-scipy.linalg.cython_blas
https://docs.scipy.org/doc/scipy/reference/linalg.cython_blas.html#module-scipy.linalg.cython_blas

CHAPTER

TWENTYTHREE

VERSION

• full name: tenpy.version

• parent module: tenpy

• type: module

Module description

Access to version of this library.

The version is provided in the standard python format major.minor.revision as string. Use
pkg_resources.parse_version before comparing versions.

tenpy.version.version = '0.8.1'
current release version as a string

tenpy.version.released = True
whether this is a released version or modified

tenpy.version.short_version = 'v0.8.1'
same as version, but with ‘v’ in front

tenpy.version.git_revision = '9edd6658969a848ccd4f067cf24272174047d046'
the hash of the last git commit (if available)

tenpy.version.full_version = '0.8.1'
if not released additional info with part of git revision

tenpy.version.version_summary = 'tenpy 0.8.1 (not compiled),\ngit revision 9edd6658969a848ccd4f067cf24272174047d046 using\npython 3.7.9 (default, Oct 19 2020, 15:13:17) \n[GCC 7.5.0]\nnumpy 1.20.1, scipy 1.6.1'
summary of the tenpy, python, numpy and scipy versions used

755

TeNPy, Release 0.8.1

756 Chapter 23. version

BIBLIOGRAPHY

[TeNPyNotes] “Efficient numerical simulations with Tensor Networks: Tensor Network Python
(TeNPy)” J. Hauschild, F. Pollmann, SciPost Phys. Lect. Notes 5 (2018), arXiv:1805.00055,
doi:10.21468/SciPostPhysLectNotes.5 also below as [[hauschild2018a]].

[TeNPySource] https://github.com/tenpy/tenpy

[TeNPyNotebooks] Collection of example [jupyter] notebooks using TeNPy: https://github.com/tenpy/tenpy_
notebooks

[TeNPyDoc] Online documentation, https://tenpy.readthedocs.io/

[TeNPyForum] Community forum for discussions, FAQ and announcements, https://tenpy.johannes-hauschild.de

[git] “git version control system”, https://git-scm.com A software which we use to keep track of changes in the
source code.

[conda] “conda package manger”, https://docs.conda.io/en/latest/ A package and environment management system
that allows to easily install (multiple version of) various software, and in particular python packages like
TeNPy.

[pip] “pip - the Python Package installer”, https://pip.pypa.io/en/stable/ Traditional way to handle installed
python packages with pip install ... and pip uninstall ... on the command line.

[matplotlib] “Matplotlib”, https://matplotlib.org/ A Python 2D plotting library. Some TeNPy functions expect
matplotlib.axes.Axes as arguments to plot into.

[HDF5] “Hierarchical Data Format 5 (R)”, https://portal.hdfgroup.org/display/HDF5/HDF5 A file format and li-
brary for saving data (including metadata). We use it through the python interface of the h5py library, see
Saving to disk: input/output.

[yaml] “YAML Ain’t Markup Language”, https://yaml.org A human-readable file format for configuration files.
TeNpy (optionally) uses it through pyyaml for reading in simulation parameters, and in some places in the
documentation to keep things more readable.

[jupyter] Jupyter notebooks, https://jupyter.org/ An amazing interface for (python) notebooks which can contain
both source code, text and outputs in a single file. They provide a good way to get started with python, we
use them for examples.

[barthel2016] Thomas Barthel. Matrix product purifications for canonical ensembles and quantum num-
ber distributions. Physical Review B, 94(11):115157, September 2016. arXiv:1607.01696,
doi:10.1103/PhysRevB.94.115157.

[barthel2020] Thomas Barthel and Yikang Zhang. Optimized Lie-Trotter-Suzuki decompositions for two
and three non-commuting terms. Annals of Physics, 418:168165, July 2020. arXiv:1901.04974,
doi:10.1016/j.aop.2020.168165.

757

https://arxiv.org/abs/1805.00055
https://dx.doi.org/10.21468/SciPostPhysLectNotes.5
https://github.com/tenpy/tenpy
https://github.com/tenpy/tenpy_notebooks
https://github.com/tenpy/tenpy_notebooks
https://tenpy.readthedocs.io/
https://tenpy.johannes-hauschild.de
https://git-scm.com
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://matplotlib.org/
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://portal.hdfgroup.org/display/HDF5/HDF5
https://docs.h5py.org/en/stable/
https://yaml.org
https://pyyaml.org/
https://jupyter.org/
https://arxiv.org/abs/1607.01696
https://doi.org/10.1103/PhysRevB.94.115157
https://arxiv.org/abs/1901.04974
https://doi.org/10.1016/j.aop.2020.168165

TeNPy, Release 0.8.1

[calabrese2004] Pasquale Calabrese and John Cardy. Entanglement Entropy and Quantum Field Theory. Journal
of Statistical Mechanics: Theory and Experiment, 2004(06):P06002, June 2004. arXiv:hep-th/0405152,
doi:10.1088/1742-5468/2004/06/P06002.

[cincio2013] Lukasz Cincio and Guifre Vidal. Characterizing topological order by studying the ground states
of an infinite cylinder. Physical Review Letters, 110(6):067208, February 2013. arXiv:1208.2623,
doi:10.1103/PhysRevLett.110.067208.

[cirac2009] J. I. Cirac and F. Verstraete. Renormalization and tensor product states in spin chains and lattices.
Journal of Physics A: Mathematical and Theoretical, 42(50):504004, December 2009. arXiv:0910.1130,
doi:10.1088/1751-8113/42/50/504004.

[eisert2013] J. Eisert. Entanglement and tensor network states. arXiv:1308.3318 [cond-mat, physics:quant-ph],
September 2013. arXiv:1308.3318.

[grushin2015] Adolfo G. Grushin, Johannes Motruk, Michael P. Zaletel, and Frank Pollmann. Characterization and
stability of a fermionic \nu=1/3 fractional Chern insulator. Physical Review B, 91(3):035136, January 2015.
arXiv:1407.6985, doi:10.1103/PhysRevB.91.035136.

[haegeman2011] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pizorn, Henri Verschelde, and
Frank Verstraete. Time-dependent variational principle for quantum lattices. Physical Review Letters,
107(7):070601, August 2011. arXiv:1103.0936, doi:10.1103/PhysRevLett.107.070601.

[haegeman2016] Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Verstraete. Uni-
fying time evolution and optimization with matrix product states. Physical Review B, 94(16):165116, Oc-
tober 2016. arXiv:1408.5056, doi:10.1103/PhysRevB.94.165116.

[hauschild2018] Johannes Hauschild, Eyal Leviatan, Jens H. Bardarson, Ehud Altman, Michael P. Zaletel, and Frank
Pollmann. Finding purifications with minimal entanglement. Physical Review B, 98(23):235163, Decem-
ber 2018. arXiv:1711.01288, doi:10.1103/PhysRevB.98.235163.

[hauschild2018a] Johannes Hauschild and Frank Pollmann. Efficient numerical simulations with Tensor Net-
works: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes, pages 5, October 2018.
arXiv:1805.00055, doi:10.21468/SciPostPhysLectNotes.5.

[hubig2015] Claudius Hubig, Ian P. McCulloch, Ulrich Schollwöck, and F. Alexander Wolf. A Strictly Single-
Site DMRG Algorithm with Subspace Expansion. Physical Review B, 91(15):155115, April 2015.
arXiv:1501.05504, doi:10.1103/PhysRevB.91.155115.

[karrasch2013] C. Karrasch, J. H. Bardarson, and J. E. Moore. Reducing the numerical effort of finite-temperature
density matrix renormalization group transport calculations. New Journal of Physics, 15(8):083031, Au-
gust 2013. arXiv:1303.3942, doi:10.1088/1367-2630/15/8/083031.

[mcculloch2008] I. P. McCulloch. Infinite size density matrix renormalization group, revisited. arXiv:0804.2509
[cond-mat], April 2008. arXiv:0804.2509.

[murg2010] V. Murg, J. I. Cirac, B. Pirvu, and F. Verstraete. Matrix product operator representations. New Journal of
Physics, 12(2):025012, February 2010. arXiv:0804.3976, doi:10.1088/1367-2630/12/2/025012.

[neupert2011] Titus Neupert, Luiz Santos, Claudio Chamon, and Christopher Mudry. Fractional quantum Hall
states at zero magnetic field. Physical Review Letters, 106(23):236804, June 2011. arXiv:1012.4723,
doi:10.1103/PhysRevLett.106.236804.

[orus2014] Roman Orus. A Practical Introduction to Tensor Networks: Matrix Product States and Pro-
jected Entangled Pair States. Annals of Physics, 349:117–158, October 2014. arXiv:1306.2164,
doi:10.1016/j.aop.2014.06.013.

[paeckel2019] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana, Ulrich Schollwöck,
and Claudius Hubig. Time-evolution methods for matrix-product states. Annals of Physics, 411:167998,
December 2019. arXiv:1901.05824, doi:10.1016/j.aop.2019.167998.

758 Bibliography

https://arxiv.org/abs/hep-th/0405152
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/1208.2623
https://doi.org/10.1103/PhysRevLett.110.067208
https://arxiv.org/abs/0910.1130
https://doi.org/10.1088/1751-8113/42/50/504004
https://arxiv.org/abs/1308.3318
https://arxiv.org/abs/1407.6985
https://doi.org/10.1103/PhysRevB.91.035136
https://arxiv.org/abs/1103.0936
https://doi.org/10.1103/PhysRevLett.107.070601
https://arxiv.org/abs/1408.5056
https://doi.org/10.1103/PhysRevB.94.165116
https://arxiv.org/abs/1711.01288
https://doi.org/10.1103/PhysRevB.98.235163
https://arxiv.org/abs/1805.00055
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://arxiv.org/abs/1501.05504
https://doi.org/10.1103/PhysRevB.91.155115
https://arxiv.org/abs/1303.3942
https://doi.org/10.1088/1367-2630/15/8/083031
https://arxiv.org/abs/0804.2509
https://arxiv.org/abs/0804.3976
https://doi.org/10.1088/1367-2630/12/2/025012
https://arxiv.org/abs/1012.4723
https://doi.org/10.1103/PhysRevLett.106.236804
https://arxiv.org/abs/1306.2164
https://doi.org/10.1016/j.aop.2014.06.013
https://arxiv.org/abs/1901.05824
https://doi.org/10.1016/j.aop.2019.167998

TeNPy, Release 0.8.1

[pollmann2009] Frank Pollmann, Subroto Mukerjee, Ari Turner, and Joel E. Moore. Theory of finite-entanglement
scaling at one-dimensional quantum critical points. Physical Review Letters, 102(25):255701, June 2009.
arXiv:0812.2903, doi:10.1103/PhysRevLett.102.255701.

[pollmann2012] Frank Pollmann and Ari M. Turner. Detection of Symmetry Protected Topologi-
cal Phases in 1D. Physical Review B, 86(12):125441, September 2012. arXiv:1204.0704,
doi:10.1103/PhysRevB.86.125441.

[resta1998] Raffaele Resta. Quantum-Mechanical Position Operator in Extended Systems. Physical Review Letters,
80(9):1800–1803, March 1998. doi:10.1103/PhysRevLett.80.1800.

[schollwoeck2011] Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states.
Annals of Physics, 326(1):96–192, January 2011. arXiv:1008.3477, doi:10.1016/j.aop.2010.09.012.

[schuch2013] Norbert Schuch. Condensed Matter Applications of Entanglement Theory. arXiv:1306.5551 [cond-mat,
physics:quant-ph], June 2013. arXiv:1306.5551.

[shapourian2017] Hassan Shapourian, Ken Shiozaki, and Shinsei Ryu. Many-body topological invariants for
fermionic symmetry-protected topological phases. Physical Review Letters, 118(21):216402, May 2017.
arXiv:1607.03896, doi:10.1103/PhysRevLett.118.216402.

[singh2010] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifre Vidal. Tensor network decompositions in the
presence of a global symmetry. Physical Review A, 82(5):050301, November 2010. arXiv:0907.2994,
doi:10.1103/PhysRevA.82.050301.

[singh2011] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifre Vidal. Tensor network states and algorithms in the
presence of a global U(1) symmetry. Physical Review B, 83(11):115125, March 2011. arXiv:1008.4774,
doi:10.1103/PhysRevB.83.115125.

[stoudenmire2010] E. M. Stoudenmire and Steven R. White. Minimally Entangled Typical Thermal State Al-
gorithms. New Journal of Physics, 12(5):055026, May 2010. arXiv:1002.1305, doi:10.1088/1367-
2630/12/5/055026.

[stoudenmire2012] E. M. Stoudenmire and Steven R. White. Studying Two Dimensional Systems With the Density
Matrix Renormalization Group. Annual Review of Condensed Matter Physics, 3(1):111–128, March 2012.
arXiv:1105.1374, doi:10.1146/annurev-conmatphys-020911-125018.

[suzuki1991] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and sta-
tistical physics. Journal of Mathematical Physics, 32(2):400–407, February 1991. doi:10.1063/1.529425.

[verstraete2008] F. Verstraete, J. I. Cirac, and V. Murg. Matrix Product States, Projected Entangled Pair States,
and variational renormalization group methods for quantum spin systems. Advances in Physics,
57(2):143–224, March 2008. arXiv:0907.2796, doi:10.1080/14789940801912366.

[vidal2004] G. Vidal. Efficient simulation of one-dimensional quantum many-body systems. Physical Review Letters,
93(4):040502, July 2004. arXiv:quant-ph/0310089, doi:10.1103/PhysRevLett.93.040502.

[vidal2007] G. Vidal. Entanglement Renormalization. Physical Review Letters, 99(22):220405, November 2007.
doi:10.1103/PhysRevLett.99.220405.

[white1992] Steven R. White. Density matrix formulation for quantum renormalization groups. Physical Review Let-
ters, 69(19):2863–2866, November 1992. doi:10.1103/PhysRevLett.69.2863.

[white1993] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Physical Review B,
48(14):10345–10356, October 1993. doi:10.1103/PhysRevB.48.10345.

[white2005] Steven R. White. Density matrix renormalization group algorithms with a single center site. Physical
Review B, 72(18):180403, November 2005. arXiv:cond-mat/0508709, doi:10.1103/PhysRevB.72.180403.

[yang2012] Shuo Yang, Zheng-Cheng Gu, Kai Sun, and S. Das Sarma. Topological flat band models with
arbitrary Chern numbers. Physical Review B, 86(24):241112, December 2012. arXiv:1205.5792,
doi:10.1103/PhysRevB.86.241112.

Bibliography 759

https://arxiv.org/abs/0812.2903
https://doi.org/10.1103/PhysRevLett.102.255701
https://arxiv.org/abs/1204.0704
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevLett.80.1800
https://arxiv.org/abs/1008.3477
https://doi.org/10.1016/j.aop.2010.09.012
https://arxiv.org/abs/1306.5551
https://arxiv.org/abs/1607.03896
https://doi.org/10.1103/PhysRevLett.118.216402
https://arxiv.org/abs/0907.2994
https://doi.org/10.1103/PhysRevA.82.050301
https://arxiv.org/abs/1008.4774
https://doi.org/10.1103/PhysRevB.83.115125
https://arxiv.org/abs/1002.1305
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1088/1367-2630/12/5/055026
https://arxiv.org/abs/1105.1374
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1063/1.529425
https://arxiv.org/abs/0907.2796
https://doi.org/10.1080/14789940801912366
https://arxiv.org/abs/quant-ph/0310089
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://arxiv.org/abs/cond-mat/0508709
https://doi.org/10.1103/PhysRevB.72.180403
https://arxiv.org/abs/1205.5792
https://doi.org/10.1103/PhysRevB.86.241112

TeNPy, Release 0.8.1

[zaletel2015] Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, Joel E. Moore, and Frank Pollmann. Time-
evolving a matrix product state with long-ranged interactions. Physical Review B, 91(16):165112, April
2015. arXiv:1407.1832, doi:10.1103/PhysRevB.91.165112.

760 Bibliography

https://arxiv.org/abs/1407.1832
https://doi.org/10.1103/PhysRevB.91.165112

PYTHON MODULE INDEX

t
tenpy, 189
tenpy.algorithms, 193
tenpy.algorithms.algorithm, 194
tenpy.algorithms.dmrg, 240
tenpy.algorithms.exact_diag, 267
tenpy.algorithms.mpo_evolution, 261
tenpy.algorithms.mps_common, 213
tenpy.algorithms.network_contractor, 263
tenpy.algorithms.purification, 261
tenpy.algorithms.tdvp, 248
tenpy.algorithms.tebd, 204
tenpy.algorithms.truncation, 198
tenpy.linalg, 269
tenpy.linalg.charges, 324
tenpy.linalg.lanczos, 351
tenpy.linalg.np_conserved, 302
tenpy.linalg.random_matrix, 329
tenpy.linalg.sparse, 348
tenpy.linalg.svd_robust, 326
tenpy.models, 353
tenpy.models.fermions_spinless, 565
tenpy.models.haldane, 596
tenpy.models.hofstadter, 595
tenpy.models.hubbard, 593
tenpy.models.lattice, 476
tenpy.models.model, 506
tenpy.models.spins, 549
tenpy.models.spins_nnn, 550
tenpy.models.tf_ising, 521
tenpy.models.toric_code, 607
tenpy.models.xxz_chain, 535
tenpy.networks, 609
tenpy.networks.mpo, 669
tenpy.networks.mps, 658
tenpy.networks.purification_mps, 689
tenpy.networks.site, 648
tenpy.networks.terms, 688
tenpy.simulations, 691
tenpy.simulations.ground_state_search,

698
tenpy.simulations.measurement, 697

tenpy.simulations.simulation, 693
tenpy.simulations.time_evolution, 699
tenpy.tools, 701
tenpy.tools.events, 725
tenpy.tools.fit, 744
tenpy.tools.hdf5_io, 714
tenpy.tools.math, 740
tenpy.tools.misc, 736
tenpy.tools.optimization, 753
tenpy.tools.params, 720
tenpy.tools.process, 748
tenpy.tools.string, 745
tenpy.version, 755

761

TeNPy, Release 0.8.1

762 Python Module Index

CONFIG OPTION INDEX

Algorithm
trunc_params (Algorithm), ??

ApplyMPO
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
compression_method (MPO.apply), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
m_temp (MPO.apply_zipup), ??
N_sweeps (VariationalCompression), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252

trunc_params (mulitple definitions), ??
trunc_params (MPO.apply), ??
trunc_params (MPO.apply_zipup), ??
trunc_params (VariationalCompression), ??
trunc_params (Algorithm), ??
trunc_weight (MPO.apply_zipup), ??

BoseHubbardModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??

763

TeNPy, Release 0.8.1

bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (BoseHubbardModel), ??
explicit_plus_hc (CouplingMPOModel), ??
filling (BoseHubbardModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??

lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??

764 Config Option Index

TeNPy, Release 0.8.1

Ly (XXZChain2.init_lattice), 535
mu (BoseHubbardModel), ??
n_max (BoseHubbardModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??
t (BoseHubbardModel), ??
U (BoseHubbardModel), ??
V (BoseHubbardModel), ??

BosonicHaldaneModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??

bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (BosonicHaldaneModel), ??
explicit_plus_hc (CouplingMPOModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520

Config Option Index 765

TeNPy, Release 0.8.1

L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??

Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (BosonicHaldaneModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??
t1 (BosonicHaldaneModel), ??
t2 (BosonicHaldaneModel), ??
V (BosonicHaldaneModel), ??

Config

CouplingMPOModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??

766 Config Option Index

TeNPy, Release 0.8.1

bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
explicit_plus_hc (CouplingMPOModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??

L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??

Config Option Index 767

TeNPy, Release 0.8.1

Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??

DMRG
active_sites (run), ??
chi_list (mulitple definitions), ??
chi_list (DMRGEngine.reset_stats), ??
chi_list (EngineCombine.reset_stats), 223
chi_list (EngineFracture.reset_stats), 232
chi_list (SingleSiteDMRGEngine.reset_stats), ??
chi_list (TwoSiteDMRGEngine.reset_stats), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
diag_method (mulitple definitions), ??
diag_method (DMRGEngine.run), ??

diag_method (DMRGEngine.diag), ??
diag_method (EngineCombine.diag), 220
diag_method (EngineCombine.run), 224
diag_method (EngineFracture.diag), 228
diag_method (EngineFracture.run), 233
diag_method (SingleSiteDMRGEngine.diag), ??
diag_method (SingleSiteDMRGEngine.run), ??
diag_method (TwoSiteDMRGEngine.diag), ??
diag_method (TwoSiteDMRGEngine.run), ??
E_tol_max (mulitple definitions), ??
E_tol_max (DMRGEngine.run), ??
E_tol_max (EngineCombine.run), 224
E_tol_max (EngineFracture.run), 233
E_tol_max (SingleSiteDMRGEngine.run), ??
E_tol_max (TwoSiteDMRGEngine.run), ??
E_tol_min (mulitple definitions), ??
E_tol_min (DMRGEngine.run), ??
E_tol_min (EngineCombine.run), 224
E_tol_min (EngineFracture.run), 233
E_tol_min (SingleSiteDMRGEngine.run), ??
E_tol_min (TwoSiteDMRGEngine.run), ??
E_tol_to_trunc (mulitple definitions), ??
E_tol_to_trunc (DMRGEngine.run), ??
E_tol_to_trunc (EngineCombine.run), 224
E_tol_to_trunc (EngineFracture.run), 233
E_tol_to_trunc (SingleSiteDMRGEngine.run), ??
E_tol_to_trunc (TwoSiteDMRGEngine.run), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
max_E_err (mulitple definitions), ??
max_E_err (DMRGEngine.run), ??
max_E_err (EngineCombine.run), 224
max_E_err (EngineFracture.run), 233
max_E_err (SingleSiteDMRGEngine.run), ??
max_E_err (TwoSiteDMRGEngine.run), ??
max_hours (mulitple definitions), ??
max_hours (DMRGEngine.run), ??
max_hours (EngineCombine.run), 224
max_hours (EngineFracture.run), 233
max_hours (SingleSiteDMRGEngine.run), ??
max_hours (TwoSiteDMRGEngine.run), ??
max_N_for_ED (mulitple definitions), ??
max_N_for_ED (DMRGEngine.diag), ??
max_N_for_ED (EngineCombine.diag), 220
max_N_for_ED (EngineFracture.diag), 228
max_N_for_ED (SingleSiteDMRGEngine.diag), ??
max_N_for_ED (TwoSiteDMRGEngine.diag), ??

768 Config Option Index

TeNPy, Release 0.8.1

max_S_err (mulitple definitions), ??
max_S_err (DMRGEngine.run), ??
max_S_err (EngineCombine.run), 224
max_S_err (EngineFracture.run), 233
max_S_err (SingleSiteDMRGEngine.run), ??
max_S_err (TwoSiteDMRGEngine.run), ??
max_sweeps (mulitple definitions), ??
max_sweeps (DMRGEngine.run), ??
max_sweeps (EngineCombine.run), 224
max_sweeps (EngineFracture.run), 233
max_sweeps (SingleSiteDMRGEngine.run), ??
max_sweeps (TwoSiteDMRGEngine.run), ??
min_sweeps (mulitple definitions), ??
min_sweeps (DMRGEngine.run), ??
min_sweeps (EngineCombine.run), 224
min_sweeps (EngineFracture.run), 233
min_sweeps (SingleSiteDMRGEngine.run), ??
min_sweeps (TwoSiteDMRGEngine.run), ??
mixer (mulitple definitions), ??
mixer (DMRGEngine.mixer_activate), ??
mixer (EngineCombine.mixer_activate), 222
mixer (EngineFracture.mixer_activate), 231
mixer (SingleSiteDMRGEngine.mixer_activate), ??
mixer (TwoSiteDMRGEngine.mixer_activate), ??
mixer_params (mulitple definitions), ??
mixer_params (DMRGEngine.mixer_activate), ??
mixer_params (EngineCombine.mixer_activate), 222
mixer_params (EngineFracture.mixer_activate), 231
mixer_params (SingleSiteDMR-

GEngine.mixer_activate), ??
mixer_params (TwoSiteDMR-

GEngine.mixer_activate), ??
N_sweeps_check (mulitple definitions), ??
N_sweeps_check (DMRGEngine.run), ??
N_sweeps_check (EngineCombine.run), 224
N_sweeps_check (EngineFracture.run), 233
N_sweeps_check (SingleSiteDMRGEngine.run), ??
N_sweeps_check (TwoSiteDMRGEngine.run), ??
norm_tol (mulitple definitions), ??
norm_tol (DMRGEngine.run), ??
norm_tol (EngineCombine.run), 225
norm_tol (EngineFracture.run), 233
norm_tol (SingleSiteDMRGEngine.run), ??
norm_tol (TwoSiteDMRGEngine.run), ??
norm_tol_iter (mulitple definitions), ??
norm_tol_iter (DMRGEngine.run), ??
norm_tol_iter (EngineCombine.run), 225
norm_tol_iter (EngineFracture.run), 233
norm_tol_iter (SingleSiteDMRGEngine.run), ??
norm_tol_iter (TwoSiteDMRGEngine.run), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230

orthogonal_to (SingleSiteDMRGEngine.init_env),
??

orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
P_tol_max (mulitple definitions), ??
P_tol_max (DMRGEngine.run), ??
P_tol_max (EngineCombine.run), 225
P_tol_max (EngineFracture.run), 233
P_tol_max (SingleSiteDMRGEngine.run), ??
P_tol_max (TwoSiteDMRGEngine.run), ??
P_tol_min (mulitple definitions), ??
P_tol_min (DMRGEngine.run), ??
P_tol_min (EngineCombine.run), 225
P_tol_min (EngineFracture.run), 233
P_tol_min (SingleSiteDMRGEngine.run), ??
P_tol_min (TwoSiteDMRGEngine.run), ??
P_tol_to_trunc (mulitple definitions), ??
P_tol_to_trunc (DMRGEngine.run), ??
P_tol_to_trunc (EngineCombine.run), 225
P_tol_to_trunc (EngineFracture.run), 233
P_tol_to_trunc (SingleSiteDMRGEngine.run), ??
P_tol_to_trunc (TwoSiteDMRGEngine.run), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (DMRGEngine.reset_stats), ??
sweep_0 (EngineCombine.reset_stats), 224
sweep_0 (EngineFracture.reset_stats), 232
sweep_0 (SingleSiteDMRGEngine.reset_stats), ??
sweep_0 (TwoSiteDMRGEngine.reset_stats), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (Algorithm), ??
update_env (mulitple definitions), ??
update_env (DMRGEngine.run), ??
update_env (EngineCombine.run), 225
update_env (EngineFracture.run), 233
update_env (SingleSiteDMRGEngine.run), ??
update_env (TwoSiteDMRGEngine.run), ??

DMRGEngine
chi_list (mulitple definitions), ??
chi_list (DMRGEngine.reset_stats), ??
chi_list (EngineCombine.reset_stats), 223
chi_list (EngineFracture.reset_stats), 232
chi_list (SingleSiteDMRGEngine.reset_stats), ??
chi_list (TwoSiteDMRGEngine.reset_stats), ??

Config Option Index 769

TeNPy, Release 0.8.1

chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
diag_method (mulitple definitions), ??
diag_method (DMRGEngine.run), ??
diag_method (DMRGEngine.diag), ??
diag_method (EngineCombine.diag), 220
diag_method (EngineCombine.run), 224
diag_method (EngineFracture.diag), 228
diag_method (EngineFracture.run), 233
diag_method (SingleSiteDMRGEngine.diag), ??
diag_method (SingleSiteDMRGEngine.run), ??
diag_method (TwoSiteDMRGEngine.diag), ??
diag_method (TwoSiteDMRGEngine.run), ??
E_tol_max (mulitple definitions), ??
E_tol_max (DMRGEngine.run), ??
E_tol_max (EngineCombine.run), 224
E_tol_max (EngineFracture.run), 233
E_tol_max (SingleSiteDMRGEngine.run), ??
E_tol_max (TwoSiteDMRGEngine.run), ??
E_tol_min (mulitple definitions), ??
E_tol_min (DMRGEngine.run), ??
E_tol_min (EngineCombine.run), 224
E_tol_min (EngineFracture.run), 233
E_tol_min (SingleSiteDMRGEngine.run), ??
E_tol_min (TwoSiteDMRGEngine.run), ??
E_tol_to_trunc (mulitple definitions), ??
E_tol_to_trunc (DMRGEngine.run), ??
E_tol_to_trunc (EngineCombine.run), 224
E_tol_to_trunc (EngineFracture.run), 233
E_tol_to_trunc (SingleSiteDMRGEngine.run), ??
E_tol_to_trunc (TwoSiteDMRGEngine.run), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
max_E_err (mulitple definitions), ??
max_E_err (DMRGEngine.run), ??
max_E_err (EngineCombine.run), 224
max_E_err (EngineFracture.run), 233
max_E_err (SingleSiteDMRGEngine.run), ??
max_E_err (TwoSiteDMRGEngine.run), ??
max_hours (mulitple definitions), ??
max_hours (DMRGEngine.run), ??
max_hours (EngineCombine.run), 224
max_hours (EngineFracture.run), 233
max_hours (SingleSiteDMRGEngine.run), ??

max_hours (TwoSiteDMRGEngine.run), ??
max_N_for_ED (mulitple definitions), ??
max_N_for_ED (DMRGEngine.diag), ??
max_N_for_ED (EngineCombine.diag), 220
max_N_for_ED (EngineFracture.diag), 228
max_N_for_ED (SingleSiteDMRGEngine.diag), ??
max_N_for_ED (TwoSiteDMRGEngine.diag), ??
max_S_err (mulitple definitions), ??
max_S_err (DMRGEngine.run), ??
max_S_err (EngineCombine.run), 224
max_S_err (EngineFracture.run), 233
max_S_err (SingleSiteDMRGEngine.run), ??
max_S_err (TwoSiteDMRGEngine.run), ??
max_sweeps (mulitple definitions), ??
max_sweeps (DMRGEngine.run), ??
max_sweeps (EngineCombine.run), 224
max_sweeps (EngineFracture.run), 233
max_sweeps (SingleSiteDMRGEngine.run), ??
max_sweeps (TwoSiteDMRGEngine.run), ??
min_sweeps (mulitple definitions), ??
min_sweeps (DMRGEngine.run), ??
min_sweeps (EngineCombine.run), 224
min_sweeps (EngineFracture.run), 233
min_sweeps (SingleSiteDMRGEngine.run), ??
min_sweeps (TwoSiteDMRGEngine.run), ??
N_sweeps_check (mulitple definitions), ??
N_sweeps_check (DMRGEngine.run), ??
N_sweeps_check (EngineCombine.run), 224
N_sweeps_check (EngineFracture.run), 233
N_sweeps_check (SingleSiteDMRGEngine.run), ??
N_sweeps_check (TwoSiteDMRGEngine.run), ??
norm_tol (mulitple definitions), ??
norm_tol (DMRGEngine.run), ??
norm_tol (EngineCombine.run), 225
norm_tol (EngineFracture.run), 233
norm_tol (SingleSiteDMRGEngine.run), ??
norm_tol (TwoSiteDMRGEngine.run), ??
norm_tol_iter (mulitple definitions), ??
norm_tol_iter (DMRGEngine.run), ??
norm_tol_iter (EngineCombine.run), 225
norm_tol_iter (EngineFracture.run), 233
norm_tol_iter (SingleSiteDMRGEngine.run), ??
norm_tol_iter (TwoSiteDMRGEngine.run), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
P_tol_max (mulitple definitions), ??
P_tol_max (DMRGEngine.run), ??
P_tol_max (EngineCombine.run), 225

770 Config Option Index

TeNPy, Release 0.8.1

P_tol_max (EngineFracture.run), 233
P_tol_max (SingleSiteDMRGEngine.run), ??
P_tol_max (TwoSiteDMRGEngine.run), ??
P_tol_min (mulitple definitions), ??
P_tol_min (DMRGEngine.run), ??
P_tol_min (EngineCombine.run), 225
P_tol_min (EngineFracture.run), 233
P_tol_min (SingleSiteDMRGEngine.run), ??
P_tol_min (TwoSiteDMRGEngine.run), ??
P_tol_to_trunc (mulitple definitions), ??
P_tol_to_trunc (DMRGEngine.run), ??
P_tol_to_trunc (EngineCombine.run), 225
P_tol_to_trunc (EngineFracture.run), 233
P_tol_to_trunc (SingleSiteDMRGEngine.run), ??
P_tol_to_trunc (TwoSiteDMRGEngine.run), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (DMRGEngine.reset_stats), ??
sweep_0 (EngineCombine.reset_stats), 224
sweep_0 (EngineFracture.reset_stats), 232
sweep_0 (SingleSiteDMRGEngine.reset_stats), ??
sweep_0 (TwoSiteDMRGEngine.reset_stats), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (Algorithm), ??
update_env (mulitple definitions), ??
update_env (DMRGEngine.run), ??
update_env (EngineCombine.run), 225
update_env (EngineFracture.run), 233
update_env (SingleSiteDMRGEngine.run), ??
update_env (TwoSiteDMRGEngine.run), ??

ExpMPOEvolution
approximation (ExpMPOEvolution), ??
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
compression_method (MPO.apply), ??
dt (TimeEvolutionAlgorithm), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230

init_env_data (SingleSiteDMRGEngine.init_env),
??

init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
m_temp (MPO.apply_zipup), ??
N_steps (TimeEvolutionAlgorithm), ??
N_sweeps (VariationalCompression), ??
order (ExpMPOEvolution), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
start_time (TimeEvolutionAlgorithm), ??
start_trunc_err (ExpMPOEvolution), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (mulitple definitions), ??
trunc_params (MPO.apply), ??
trunc_params (MPO.apply_zipup), ??
trunc_params (VariationalCompression), ??
trunc_params (Algorithm), ??
trunc_weight (MPO.apply_zipup), ??

FermiHubbardModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??

Config Option Index 771

TeNPy, Release 0.8.1

bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
cons_N (FermiHubbardModel), ??
cons_Sz (FermiHubbardModel), ??
explicit_plus_hc (CouplingMPOModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??

L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535

772 Config Option Index

TeNPy, Release 0.8.1

Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (FermiHubbardModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??
t (FermiHubbardModel), ??
U (FermiHubbardModel), ??

FermionicHaldaneModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578

bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (FermionicHaldaneModel), ??
explicit_plus_hc (CouplingMPOModel), ??

Config Option Index 773

TeNPy, Release 0.8.1

L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??

Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (FermionicHaldaneModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??
t1 (FermionicHaldaneModel), ??
t2 (FermionicHaldaneModel), ??
V (FermionicHaldaneModel), ??

FermionModel
bc_MPS (mulitple definitions), 563

774 Config Option Index

TeNPy, Release 0.8.1

bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??

bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (FermionModel), ??
explicit_plus_hc (CouplingMPOModel), ??
J (FermionModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??

Config Option Index 775

TeNPy, Release 0.8.1

Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (FermionModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??

order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??
V (FermionModel), ??

GroundStateSearch
algorithm_class (mulitple definitions), ??
algorithm_class (Simulation.init_algorithm), ??
algorithm_class (RealTimeEvolu-

tion.init_algorithm), ??
algorithm_params (mulitple definitions), ??
algorithm_params (Simulation.init_algorithm), ??
algorithm_params (RealTimeEvolu-

tion.init_algorithm), ??
connect_algorithm_checkpoint (mulitple defi-

nitions), ??
connect_algorithm_checkpoint (Simula-

tion.init_algorithm), ??
connect_algorithm_checkpoint (Real-

TimeEvolution.init_algorithm), ??
connect_measurements (mulitple definitions), ??
connect_measurements (GroundState-

Search.init_measurements), ??
connect_measurements (Simula-

tion.init_measurements), ??
connect_measurements (RealTimeEvolu-

tion.init_measurements), ??
directory (Simulation), ??
initial_state_builder_class (mulitple defini-

tions), ??
initial_state_builder_class (GroundState-

Search.init_state), ??
initial_state_builder_class (Simula-

tion.init_state), ??
initial_state_builder_class (RealTimeEvo-

lution.init_state), ??
initial_state_params (mulitple definitions), ??
initial_state_params (GroundState-

Search.init_state), ??
initial_state_params (Simulation.init_state), ??
initial_state_params (RealTimeEvolu-

tion.init_state), ??
logging_params (Simulation), ??
model_class (mulitple definitions), ??
model_class (GroundStateSearch.init_model), ??
model_class (Simulation.init_model), ??
model_class (RealTimeEvolution.init_model), ??
model_params (mulitple definitions), ??
model_params (GroundStateSearch.init_model), ??
model_params (Simulation.init_model), ??
model_params (RealTimeEvolution.init_model), ??
output_filename (mulitple definitions), ??
output_filename (GroundState-

Search.fix_output_filenames), ??
output_filename (Simulation), ??

776 Config Option Index

TeNPy, Release 0.8.1

output_filename (Simulation.fix_output_filenames),
??

output_filename (RealTimeEvolu-
tion.fix_output_filenames), ??

overwrite_output (mulitple definitions), ??
overwrite_output (GroundState-

Search.fix_output_filenames), ??
overwrite_output (Simulation), ??
overwrite_output (Simula-

tion.fix_output_filenames), ??
overwrite_output (RealTimeEvolu-

tion.fix_output_filenames), ??
random_seed (Simulation), ??
safe_write (mulitple definitions), ??
safe_write (GroundState-

Search.fix_output_filenames), ??
safe_write (Simulation.fix_output_filenames), ??
safe_write (RealTimeEvolu-

tion.fix_output_filenames), ??
save_every_x_seconds (mulitple definitions), ??
save_every_x_seconds (GroundState-

Search.save_at_checkpoint), ??
save_every_x_seconds (Simula-

tion.save_at_checkpoint), ??
save_every_x_seconds (RealTimeEvolu-

tion.save_at_checkpoint), ??
save_psi (mulitple definitions), ??
save_psi (GroundStateSearch.init_state), ??
save_psi (Simulation.init_state), ??
save_psi (RealTimeEvolution.init_state), ??
save_stats (GroundStateSearch.init_algorithm), ??
skip_if_output_exists (mulitple definitions), ??
skip_if_output_exists (GroundState-

Search.fix_output_filenames), ??
skip_if_output_exists (Simula-

tion.fix_output_filenames), ??
skip_if_output_exists (RealTimeEvolu-

tion.fix_output_filenames), ??
use_default_measurements (mulitple defini-

tions), ??
use_default_measurements (GroundState-

Search.init_measurements), ??
use_default_measurements (Simula-

tion.init_measurements), ??
use_default_measurements (RealTimeEvolu-

tion.init_measurements), ??

HofstadterBosons
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??

bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535

Config Option Index 777

TeNPy, Release 0.8.1

conserve (HofstadterBosons), ??
explicit_plus_hc (CouplingMPOModel), ??
filling (HofstadterBosons), ??
gauge (HofstadterBosons), ??
Jx (HofstadterBosons), ??
Jy (HofstadterBosons), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), ??
Lx (HofstadterBosons), ??
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??

Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), ??
Ly (HofstadterBosons), ??
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (HofstadterBosons), ??
mx (HofstadterBosons), ??
my (HofstadterBosons), ??
Nmax (HofstadterBosons), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??

778 Config Option Index

TeNPy, Release 0.8.1

order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
phi (HofstadterBosons), ??
phi_ext (HofstadterBosons), ??
sort_mpo_legs (CouplingMPOModel), ??
U (HofstadterBosons), ??

HofstadterFermions
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??

bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (HofstadterFermions), ??
explicit_plus_hc (CouplingMPOModel), ??
filling (HofstadterFermions), ??
gauge (HofstadterFermions), ??
Jx (HofstadterFermions), ??
Jy (HofstadterFermions), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??

Config Option Index 779

TeNPy, Release 0.8.1

lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), ??
Lx (HofstadterFermions), ??
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), ??
Ly (HofstadterFermions), ??
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
mu (HofstadterFermions), ??
mx (HofstadterFermions), ??
my (HofstadterFermions), ??
order (mulitple definitions), 563

order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
phi (HofstadterFermions), ??
phi_ext (HofstadterFermions), ??
sort_mpo_legs (CouplingMPOModel), ??
v (HofstadterFermions), ??

InitialStateBuilder
check_filling (InitialStateBuilder.check_filling), ??
data_key (InitialStateBuilder.from_file), ??
filename (InitialStateBuilder.from_file), ??
fill_where (InitialStateBuilder.fill_where), ??
full_empty (mulitple definitions), ??
full_empty (InitialStateBuilder.check_filling), ??
full_empty (InitialStateBuilder.fill_where), ??
method (InitialStateBuilder), ??
product_state (mulitple definitions), ??
product_state (InitialState-

Builder.lat_product_state), ??
product_state (InitialState-

Builder.mps_product_state), ??
randomize_canonicalize (InitialState-

Builder.randomized), ??
randomize_params (InitialState-

Builder.randomized), ??
randomized_from_method (InitialState-

Builder.randomized), ??

Lanczos
cutoff (LanczosGroundState), ??
E_shift (LanczosGroundState), ??
E_tol (LanczosGroundState), ??
min_gap (LanczosGroundState), ??
N_cache (LanczosGroundState), ??
N_max (LanczosGroundState), ??
N_min (LanczosGroundState), ??
P_tol (LanczosGroundState), ??

780 Config Option Index

TeNPy, Release 0.8.1

reortho (LanczosGroundState), ??

LanczosEvolution
cutoff (LanczosGroundState), ??
E_shift (LanczosGroundState), ??
E_tol (mulitple definitions), ??
E_tol (LanczosEvolution), ??
E_tol (LanczosGroundState), ??
min_gap (mulitple definitions), ??
min_gap (LanczosEvolution), ??
min_gap (LanczosGroundState), ??
N_cache (LanczosGroundState), ??
N_max (LanczosGroundState), ??
N_min (LanczosGroundState), ??
P_tol (LanczosGroundState), ??
reortho (LanczosGroundState), ??

logging
capture_warnings (setup_logging), ??
dict_config (setup_logging), ??
filename (setup_logging), ??
format (setup_logging), ??
logger_levels (setup_logging), ??
skip_setup (setup_logging), ??
to_file (setup_logging), ??
to_stdout (setup_logging), ??

Mixer
amplitude (Mixer), ??
decay (Mixer), ??
disable_after (Mixer), ??

MPS_compress
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
compression_method (mulitple definitions), ??
compression_method (MPS.compress), ??
compression_method (PurificationMPS.compress),

??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
N_sweeps (VariationalCompression), ??

orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (mulitple definitions), ??
trunc_params (MPS.compress), ??
trunc_params (PurificationMPS.compress), ??
trunc_params (VariationalCompression), ??
trunc_params (Algorithm), ??

PurificationTEBD
delta_tau_list (mulitple definitions), ??
delta_tau_list (PurificationTEBD.run_GS), ??
delta_tau_list (PurificationTEBD2.run_GS), 257
delta_tau_list (Engine.run_GS), 202
delta_tau_list (RandomUnitaryEvolu-

tion.run_GS), ??
delta_tau_list (TEBDEngine.run_GS), ??
disentangle (PurificationTEBD), ??
dt (TimeEvolutionAlgorithm), ??
N_steps (mulitple definitions), ??
N_steps (PurificationTEBD.run_GS), ??
N_steps (PurificationTEBD2.run_GS), 257
N_steps (Engine.run_GS), 202
N_steps (RandomUnitaryEvolution.run_GS), ??
N_steps (TEBDEngine.run_GS), ??
N_steps (TimeEvolutionAlgorithm), ??
order (mulitple definitions), ??
order (PurificationTEBD.run_GS), ??
order (PurificationTEBD2.run_GS), 257
order (Engine.run_GS), 202
order (RandomUnitaryEvolution.run_GS), ??
order (TEBDEngine), ??
order (TEBDEngine.run_GS), ??
start_time (TimeEvolutionAlgorithm), ??
start_trunc_err (TEBDEngine), ??
trunc_params (Algorithm), ??

Config Option Index 781

TeNPy, Release 0.8.1

RandomUnitaryEvolution
delta_tau_list (mulitple definitions), ??
delta_tau_list (PurificationTEBD.run_GS), ??
delta_tau_list (PurificationTEBD2.run_GS), 257
delta_tau_list (Engine.run_GS), 202
delta_tau_list (RandomUnitaryEvolu-

tion.run_GS), ??
delta_tau_list (TEBDEngine.run_GS), ??
dt (TimeEvolutionAlgorithm), ??
N_steps (mulitple definitions), ??
N_steps (RandomUnitaryEvolution), ??
N_steps (PurificationTEBD.run_GS), ??
N_steps (PurificationTEBD2.run_GS), 257
N_steps (Engine.run_GS), 202
N_steps (RandomUnitaryEvolution.run_GS), ??
N_steps (TEBDEngine.run_GS), ??
N_steps (TimeEvolutionAlgorithm), ??
order (mulitple definitions), ??
order (PurificationTEBD.run_GS), ??
order (PurificationTEBD2.run_GS), 257
order (Engine.run_GS), 202
order (RandomUnitaryEvolution.run_GS), ??
order (TEBDEngine), ??
order (TEBDEngine.run_GS), ??
start_time (TimeEvolutionAlgorithm), ??
start_trunc_err (TEBDEngine), ??
trunc_params (mulitple definitions), ??
trunc_params (RandomUnitaryEvolution), ??
trunc_params (Algorithm), ??

Simulation
algorithm_class (mulitple definitions), ??
algorithm_class (Simulation.init_algorithm), ??
algorithm_class (RealTimeEvolu-

tion.init_algorithm), ??
algorithm_params (mulitple definitions), ??
algorithm_params (Simulation.init_algorithm), ??
algorithm_params (RealTimeEvolu-

tion.init_algorithm), ??
connect_algorithm_checkpoint (mulitple defi-

nitions), ??
connect_algorithm_checkpoint (Simula-

tion.init_algorithm), ??
connect_algorithm_checkpoint (Real-

TimeEvolution.init_algorithm), ??
connect_measurements (mulitple definitions), ??
connect_measurements (GroundState-

Search.init_measurements), ??
connect_measurements (Simula-

tion.init_measurements), ??
connect_measurements (RealTimeEvolu-

tion.init_measurements), ??
directory (Simulation), ??

initial_state_builder_class (mulitple defini-
tions), ??

initial_state_builder_class (GroundState-
Search.init_state), ??

initial_state_builder_class (Simula-
tion.init_state), ??

initial_state_builder_class (RealTimeEvo-
lution.init_state), ??

initial_state_params (mulitple definitions), ??
initial_state_params (GroundState-

Search.init_state), ??
initial_state_params (Simulation.init_state), ??
initial_state_params (RealTimeEvolu-

tion.init_state), ??
logging_params (Simulation), ??
model_class (mulitple definitions), ??
model_class (GroundStateSearch.init_model), ??
model_class (Simulation.init_model), ??
model_class (RealTimeEvolution.init_model), ??
model_params (mulitple definitions), ??
model_params (GroundStateSearch.init_model), ??
model_params (Simulation.init_model), ??
model_params (RealTimeEvolution.init_model), ??
output_filename (mulitple definitions), ??
output_filename (GroundState-

Search.fix_output_filenames), ??
output_filename (Simulation), ??
output_filename (Simulation.fix_output_filenames),

??
output_filename (RealTimeEvolu-

tion.fix_output_filenames), ??
overwrite_output (mulitple definitions), ??
overwrite_output (GroundState-

Search.fix_output_filenames), ??
overwrite_output (Simulation), ??
overwrite_output (Simula-

tion.fix_output_filenames), ??
overwrite_output (RealTimeEvolu-

tion.fix_output_filenames), ??
random_seed (Simulation), ??
safe_write (mulitple definitions), ??
safe_write (GroundState-

Search.fix_output_filenames), ??
safe_write (Simulation.fix_output_filenames), ??
safe_write (RealTimeEvolu-

tion.fix_output_filenames), ??
save_every_x_seconds (mulitple definitions), ??
save_every_x_seconds (GroundState-

Search.save_at_checkpoint), ??
save_every_x_seconds (Simula-

tion.save_at_checkpoint), ??
save_every_x_seconds (RealTimeEvolu-

tion.save_at_checkpoint), ??
save_psi (mulitple definitions), ??

782 Config Option Index

TeNPy, Release 0.8.1

save_psi (GroundStateSearch.init_state), ??
save_psi (Simulation.init_state), ??
save_psi (RealTimeEvolution.init_state), ??
skip_if_output_exists (mulitple definitions), ??
skip_if_output_exists (GroundState-

Search.fix_output_filenames), ??
skip_if_output_exists (Simula-

tion.fix_output_filenames), ??
skip_if_output_exists (RealTimeEvolu-

tion.fix_output_filenames), ??
use_default_measurements (mulitple defini-

tions), ??
use_default_measurements (GroundState-

Search.init_measurements), ??
use_default_measurements (Simula-

tion.init_measurements), ??
use_default_measurements (RealTimeEvolu-

tion.init_measurements), ??

SingleSiteDMRGEngine
chi_list (mulitple definitions), ??
chi_list (DMRGEngine.reset_stats), ??
chi_list (EngineCombine.reset_stats), 223
chi_list (EngineFracture.reset_stats), 232
chi_list (SingleSiteDMRGEngine.reset_stats), ??
chi_list (TwoSiteDMRGEngine.reset_stats), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
diag_method (mulitple definitions), ??
diag_method (DMRGEngine.run), ??
diag_method (DMRGEngine.diag), ??
diag_method (EngineCombine.diag), 220
diag_method (EngineCombine.run), 224
diag_method (EngineFracture.diag), 228
diag_method (EngineFracture.run), 233
diag_method (SingleSiteDMRGEngine.diag), ??
diag_method (SingleSiteDMRGEngine.run), ??
diag_method (TwoSiteDMRGEngine.diag), ??
diag_method (TwoSiteDMRGEngine.run), ??
E_tol_max (mulitple definitions), ??
E_tol_max (DMRGEngine.run), ??
E_tol_max (EngineCombine.run), 224
E_tol_max (EngineFracture.run), 233
E_tol_max (SingleSiteDMRGEngine.run), ??
E_tol_max (TwoSiteDMRGEngine.run), ??
E_tol_min (mulitple definitions), ??
E_tol_min (DMRGEngine.run), ??
E_tol_min (EngineCombine.run), 224
E_tol_min (EngineFracture.run), 233
E_tol_min (SingleSiteDMRGEngine.run), ??
E_tol_min (TwoSiteDMRGEngine.run), ??

E_tol_to_trunc (mulitple definitions), ??
E_tol_to_trunc (DMRGEngine.run), ??
E_tol_to_trunc (EngineCombine.run), 224
E_tol_to_trunc (EngineFracture.run), 233
E_tol_to_trunc (SingleSiteDMRGEngine.run), ??
E_tol_to_trunc (TwoSiteDMRGEngine.run), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
max_E_err (mulitple definitions), ??
max_E_err (DMRGEngine.run), ??
max_E_err (EngineCombine.run), 224
max_E_err (EngineFracture.run), 233
max_E_err (SingleSiteDMRGEngine.run), ??
max_E_err (TwoSiteDMRGEngine.run), ??
max_hours (mulitple definitions), ??
max_hours (DMRGEngine.run), ??
max_hours (EngineCombine.run), 224
max_hours (EngineFracture.run), 233
max_hours (SingleSiteDMRGEngine.run), ??
max_hours (TwoSiteDMRGEngine.run), ??
max_N_for_ED (mulitple definitions), ??
max_N_for_ED (DMRGEngine.diag), ??
max_N_for_ED (EngineCombine.diag), 220
max_N_for_ED (EngineFracture.diag), 228
max_N_for_ED (SingleSiteDMRGEngine.diag), ??
max_N_for_ED (TwoSiteDMRGEngine.diag), ??
max_S_err (mulitple definitions), ??
max_S_err (DMRGEngine.run), ??
max_S_err (EngineCombine.run), 224
max_S_err (EngineFracture.run), 233
max_S_err (SingleSiteDMRGEngine.run), ??
max_S_err (TwoSiteDMRGEngine.run), ??
max_sweeps (mulitple definitions), ??
max_sweeps (DMRGEngine.run), ??
max_sweeps (EngineCombine.run), 224
max_sweeps (EngineFracture.run), 233
max_sweeps (SingleSiteDMRGEngine.run), ??
max_sweeps (TwoSiteDMRGEngine.run), ??
min_sweeps (mulitple definitions), ??
min_sweeps (DMRGEngine.run), ??
min_sweeps (EngineCombine.run), 224
min_sweeps (EngineFracture.run), 233
min_sweeps (SingleSiteDMRGEngine.run), ??
min_sweeps (TwoSiteDMRGEngine.run), ??
N_sweeps_check (mulitple definitions), ??
N_sweeps_check (DMRGEngine.run), ??
N_sweeps_check (EngineCombine.run), 224

Config Option Index 783

TeNPy, Release 0.8.1

N_sweeps_check (EngineFracture.run), 233
N_sweeps_check (SingleSiteDMRGEngine.run), ??
N_sweeps_check (TwoSiteDMRGEngine.run), ??
norm_tol (mulitple definitions), ??
norm_tol (DMRGEngine.run), ??
norm_tol (EngineCombine.run), 225
norm_tol (EngineFracture.run), 233
norm_tol (SingleSiteDMRGEngine.run), ??
norm_tol (TwoSiteDMRGEngine.run), ??
norm_tol_iter (mulitple definitions), ??
norm_tol_iter (DMRGEngine.run), ??
norm_tol_iter (EngineCombine.run), 225
norm_tol_iter (EngineFracture.run), 233
norm_tol_iter (SingleSiteDMRGEngine.run), ??
norm_tol_iter (TwoSiteDMRGEngine.run), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
P_tol_max (mulitple definitions), ??
P_tol_max (DMRGEngine.run), ??
P_tol_max (EngineCombine.run), 225
P_tol_max (EngineFracture.run), 233
P_tol_max (SingleSiteDMRGEngine.run), ??
P_tol_max (TwoSiteDMRGEngine.run), ??
P_tol_min (mulitple definitions), ??
P_tol_min (DMRGEngine.run), ??
P_tol_min (EngineCombine.run), 225
P_tol_min (EngineFracture.run), 233
P_tol_min (SingleSiteDMRGEngine.run), ??
P_tol_min (TwoSiteDMRGEngine.run), ??
P_tol_to_trunc (mulitple definitions), ??
P_tol_to_trunc (DMRGEngine.run), ??
P_tol_to_trunc (EngineCombine.run), 225
P_tol_to_trunc (EngineFracture.run), 233
P_tol_to_trunc (SingleSiteDMRGEngine.run), ??
P_tol_to_trunc (TwoSiteDMRGEngine.run), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (DMRGEngine.reset_stats), ??
sweep_0 (EngineCombine.reset_stats), 224
sweep_0 (EngineFracture.reset_stats), 232
sweep_0 (SingleSiteDMRGEngine.reset_stats), ??
sweep_0 (TwoSiteDMRGEngine.reset_stats), ??

sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (Algorithm), ??
update_env (mulitple definitions), ??
update_env (DMRGEngine.run), ??
update_env (EngineCombine.run), 225
update_env (EngineFracture.run), 233
update_env (SingleSiteDMRGEngine.run), ??
update_env (TwoSiteDMRGEngine.run), ??

SpinChainNNN
bc_MPS (mulitple definitions), ??
bc_MPS (SpinChainNNN), ??
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535

784 Config Option Index

TeNPy, Release 0.8.1

bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (SpinChainNNN), ??
explicit_plus_hc (CouplingMPOModel), ??
hx (SpinChainNNN), ??
hy (SpinChainNNN), ??
hz (SpinChainNNN), ??
Jx (SpinChainNNN), ??
Jxp (SpinChainNNN), ??
Jy (SpinChainNNN), ??
Jyp (SpinChainNNN), ??
Jz (SpinChainNNN), ??
Jzp (SpinChainNNN), ??
L (mulitple definitions), ??
L (SpinChainNNN), ??
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563

lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??

Config Option Index 785

TeNPy, Release 0.8.1

Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
S (SpinChainNNN), ??
sort_mpo_legs (CouplingMPOModel), ??

SpinChainNNN2
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??

bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (SpinChainNNN2), ??
explicit_plus_hc (CouplingMPOModel), ??
hx (SpinChainNNN2), ??
hy (SpinChainNNN2), ??
hz (SpinChainNNN2), ??
Jx (SpinChainNNN2), ??
Jxp (SpinChainNNN2), ??
Jy (SpinChainNNN2), ??
Jyp (SpinChainNNN2), ??
Jz (SpinChainNNN2), ??
Jzp (SpinChainNNN2), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??

786 Config Option Index

TeNPy, Release 0.8.1

L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??

Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
S (SpinChainNNN2), ??
sort_mpo_legs (CouplingMPOModel), ??

SpinModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548

Config Option Index 787

TeNPy, Release 0.8.1

bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (SpinModel), ??
D (SpinModel), ??
E (SpinModel), ??
explicit_plus_hc (CouplingMPOModel), ??
hx (SpinModel), ??
hy (SpinModel), ??
hz (SpinModel), ??

Jx (SpinModel), ??
Jy (SpinModel), ??
Jz (SpinModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??

788 Config Option Index

TeNPy, Release 0.8.1

Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
muJ (SpinModel), ??
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
S (SpinModel), ??
sort_mpo_legs (CouplingMPOModel), ??

Sweep
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (Algorithm), ??

TDVP
active_sites (TDVPEngine), ??
dt (TimeEvolutionAlgorithm), ??
lanczos_options (TDVPEngine), ??
N_steps (TimeEvolutionAlgorithm), ??
start_time (TimeEvolutionAlgorithm), ??
trunc_params (mulitple definitions), ??
trunc_params (TDVPEngine), ??
trunc_params (Algorithm), ??

TEBDEngine
delta_tau_list (mulitple definitions), ??
delta_tau_list (PurificationTEBD.run_GS), ??
delta_tau_list (PurificationTEBD2.run_GS), 257
delta_tau_list (Engine.run_GS), 202

Config Option Index 789

TeNPy, Release 0.8.1

delta_tau_list (RandomUnitaryEvolu-
tion.run_GS), ??

delta_tau_list (TEBDEngine.run_GS), ??
dt (TimeEvolutionAlgorithm), ??
N_steps (mulitple definitions), ??
N_steps (PurificationTEBD.run_GS), ??
N_steps (PurificationTEBD2.run_GS), 257
N_steps (Engine.run_GS), 202
N_steps (RandomUnitaryEvolution.run_GS), ??
N_steps (TEBDEngine.run_GS), ??
N_steps (TimeEvolutionAlgorithm), ??
order (mulitple definitions), ??
order (PurificationTEBD.run_GS), ??
order (PurificationTEBD2.run_GS), 257
order (Engine.run_GS), 202
order (RandomUnitaryEvolution.run_GS), ??
order (TEBDEngine), ??
order (TEBDEngine.run_GS), ??
start_time (TimeEvolutionAlgorithm), ??
start_trunc_err (TEBDEngine), ??
trunc_params (Algorithm), ??

TFIModel
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??

bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (TFIModel), ??
explicit_plus_hc (CouplingMPOModel), ??
g (TFIModel), ??
J (TFIModel), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563

790 Config Option Index

TeNPy, Release 0.8.1

lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??

Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??

TimeEvolution
algorithm_class (mulitple definitions), ??
algorithm_class (Simulation.init_algorithm), ??
algorithm_class (RealTimeEvolu-

tion.init_algorithm), ??
algorithm_params (mulitple definitions), ??
algorithm_params (Simulation.init_algorithm), ??
algorithm_params (RealTimeEvolu-

tion.init_algorithm), ??
connect_algorithm_checkpoint (mulitple defi-

nitions), ??
connect_algorithm_checkpoint (Simula-

tion.init_algorithm), ??
connect_algorithm_checkpoint (Real-

TimeEvolution.init_algorithm), ??
connect_measurements (mulitple definitions), ??
connect_measurements (GroundState-

Search.init_measurements), ??
connect_measurements (Simula-

tion.init_measurements), ??
connect_measurements (RealTimeEvolu-

tion.init_measurements), ??
directory (Simulation), ??
final_time (RealTimeEvolution), ??
initial_state_builder_class (mulitple defini-

tions), ??

Config Option Index 791

TeNPy, Release 0.8.1

initial_state_builder_class (GroundState-
Search.init_state), ??

initial_state_builder_class (Simula-
tion.init_state), ??

initial_state_builder_class (RealTimeEvo-
lution.init_state), ??

initial_state_params (mulitple definitions), ??
initial_state_params (GroundState-

Search.init_state), ??
initial_state_params (Simulation.init_state), ??
initial_state_params (RealTimeEvolu-

tion.init_state), ??
logging_params (Simulation), ??
model_class (mulitple definitions), ??
model_class (GroundStateSearch.init_model), ??
model_class (Simulation.init_model), ??
model_class (RealTimeEvolution.init_model), ??
model_params (mulitple definitions), ??
model_params (GroundStateSearch.init_model), ??
model_params (Simulation.init_model), ??
model_params (RealTimeEvolution.init_model), ??
output_filename (mulitple definitions), ??
output_filename (GroundState-

Search.fix_output_filenames), ??
output_filename (Simulation), ??
output_filename (Simulation.fix_output_filenames),

??
output_filename (RealTimeEvolu-

tion.fix_output_filenames), ??
overwrite_output (mulitple definitions), ??
overwrite_output (GroundState-

Search.fix_output_filenames), ??
overwrite_output (Simulation), ??
overwrite_output (Simula-

tion.fix_output_filenames), ??
overwrite_output (RealTimeEvolu-

tion.fix_output_filenames), ??
random_seed (Simulation), ??
safe_write (mulitple definitions), ??
safe_write (GroundState-

Search.fix_output_filenames), ??
safe_write (Simulation.fix_output_filenames), ??
safe_write (RealTimeEvolu-

tion.fix_output_filenames), ??
save_every_x_seconds (mulitple definitions), ??
save_every_x_seconds (GroundState-

Search.save_at_checkpoint), ??
save_every_x_seconds (Simula-

tion.save_at_checkpoint), ??
save_every_x_seconds (RealTimeEvolu-

tion.save_at_checkpoint), ??
save_psi (mulitple definitions), ??
save_psi (GroundStateSearch.init_state), ??
save_psi (Simulation.init_state), ??

save_psi (RealTimeEvolution.init_state), ??
skip_if_output_exists (mulitple definitions), ??
skip_if_output_exists (GroundState-

Search.fix_output_filenames), ??
skip_if_output_exists (Simula-

tion.fix_output_filenames), ??
skip_if_output_exists (RealTimeEvolu-

tion.fix_output_filenames), ??
use_default_measurements (mulitple defini-

tions), ??
use_default_measurements (GroundState-

Search.init_measurements), ??
use_default_measurements (Simula-

tion.init_measurements), ??
use_default_measurements (RealTimeEvolu-

tion.init_measurements), ??

TimeEvolutionAlgorithm
dt (TimeEvolutionAlgorithm), ??
N_steps (TimeEvolutionAlgorithm), ??
start_time (TimeEvolutionAlgorithm), ??
trunc_params (Algorithm), ??

ToricCode
bc_MPS (mulitple definitions), 563
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), ??
bc_x (ToricCode), ??
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??

792 Config Option Index

TeNPy, Release 0.8.1

bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??
bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), ??
bc_y (ToricCode), ??
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
conserve (ToricCode), ??
explicit_plus_hc (CouplingMPOModel), ??
Jp (ToricCode), ??
Jv (ToricCode), ??
L (mulitple definitions), 563
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??

L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534
lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), ??
Lx (ToricCode), ??
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), ??
Ly (ToricCode), ??
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592

Config Option Index 793

TeNPy, Release 0.8.1

Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??
Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), ??
order (ToricCode), ??
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??

truncation
chi_max (truncate), ??
chi_min (truncate), ??
degeneracy_tol (truncate), ??
svd_min (truncate), ??
trunc_cut (truncate), ??

TwoSiteDMRGEngine
chi_list (mulitple definitions), ??
chi_list (DMRGEngine.reset_stats), ??
chi_list (EngineCombine.reset_stats), 223
chi_list (EngineFracture.reset_stats), 232
chi_list (SingleSiteDMRGEngine.reset_stats), ??
chi_list (TwoSiteDMRGEngine.reset_stats), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
diag_method (mulitple definitions), ??
diag_method (DMRGEngine.run), ??

diag_method (DMRGEngine.diag), ??
diag_method (EngineCombine.diag), 220
diag_method (EngineCombine.run), 224
diag_method (EngineFracture.diag), 228
diag_method (EngineFracture.run), 233
diag_method (SingleSiteDMRGEngine.diag), ??
diag_method (SingleSiteDMRGEngine.run), ??
diag_method (TwoSiteDMRGEngine.diag), ??
diag_method (TwoSiteDMRGEngine.run), ??
E_tol_max (mulitple definitions), ??
E_tol_max (DMRGEngine.run), ??
E_tol_max (EngineCombine.run), 224
E_tol_max (EngineFracture.run), 233
E_tol_max (SingleSiteDMRGEngine.run), ??
E_tol_max (TwoSiteDMRGEngine.run), ??
E_tol_min (mulitple definitions), ??
E_tol_min (DMRGEngine.run), ??
E_tol_min (EngineCombine.run), 224
E_tol_min (EngineFracture.run), 233
E_tol_min (SingleSiteDMRGEngine.run), ??
E_tol_min (TwoSiteDMRGEngine.run), ??
E_tol_to_trunc (mulitple definitions), ??
E_tol_to_trunc (DMRGEngine.run), ??
E_tol_to_trunc (EngineCombine.run), 224
E_tol_to_trunc (EngineFracture.run), 233
E_tol_to_trunc (SingleSiteDMRGEngine.run), ??
E_tol_to_trunc (TwoSiteDMRGEngine.run), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
max_E_err (mulitple definitions), ??
max_E_err (DMRGEngine.run), ??
max_E_err (EngineCombine.run), 224
max_E_err (EngineFracture.run), 233
max_E_err (SingleSiteDMRGEngine.run), ??
max_E_err (TwoSiteDMRGEngine.run), ??
max_hours (mulitple definitions), ??
max_hours (DMRGEngine.run), ??
max_hours (EngineCombine.run), 224
max_hours (EngineFracture.run), 233
max_hours (SingleSiteDMRGEngine.run), ??
max_hours (TwoSiteDMRGEngine.run), ??
max_N_for_ED (mulitple definitions), ??
max_N_for_ED (DMRGEngine.diag), ??
max_N_for_ED (EngineCombine.diag), 220
max_N_for_ED (EngineFracture.diag), 228
max_N_for_ED (SingleSiteDMRGEngine.diag), ??
max_N_for_ED (TwoSiteDMRGEngine.diag), ??

794 Config Option Index

TeNPy, Release 0.8.1

max_S_err (mulitple definitions), ??
max_S_err (DMRGEngine.run), ??
max_S_err (EngineCombine.run), 224
max_S_err (EngineFracture.run), 233
max_S_err (SingleSiteDMRGEngine.run), ??
max_S_err (TwoSiteDMRGEngine.run), ??
max_sweeps (mulitple definitions), ??
max_sweeps (DMRGEngine.run), ??
max_sweeps (EngineCombine.run), 224
max_sweeps (EngineFracture.run), 233
max_sweeps (SingleSiteDMRGEngine.run), ??
max_sweeps (TwoSiteDMRGEngine.run), ??
min_sweeps (mulitple definitions), ??
min_sweeps (DMRGEngine.run), ??
min_sweeps (EngineCombine.run), 224
min_sweeps (EngineFracture.run), 233
min_sweeps (SingleSiteDMRGEngine.run), ??
min_sweeps (TwoSiteDMRGEngine.run), ??
mixer (mulitple definitions), ??
mixer (DMRGEngine.mixer_activate), ??
mixer (EngineCombine.mixer_activate), 222
mixer (EngineFracture.mixer_activate), 231
mixer (SingleSiteDMRGEngine.mixer_activate), ??
mixer (TwoSiteDMRGEngine.mixer_activate), ??
mixer_params (mulitple definitions), ??
mixer_params (DMRGEngine.mixer_activate), ??
mixer_params (EngineCombine.mixer_activate), 222
mixer_params (EngineFracture.mixer_activate), 231
mixer_params (SingleSiteDMR-

GEngine.mixer_activate), ??
mixer_params (TwoSiteDMR-

GEngine.mixer_activate), ??
N_sweeps_check (mulitple definitions), ??
N_sweeps_check (DMRGEngine.run), ??
N_sweeps_check (EngineCombine.run), 224
N_sweeps_check (EngineFracture.run), 233
N_sweeps_check (SingleSiteDMRGEngine.run), ??
N_sweeps_check (TwoSiteDMRGEngine.run), ??
norm_tol (mulitple definitions), ??
norm_tol (DMRGEngine.run), ??
norm_tol (EngineCombine.run), 225
norm_tol (EngineFracture.run), 233
norm_tol (SingleSiteDMRGEngine.run), ??
norm_tol (TwoSiteDMRGEngine.run), ??
norm_tol_iter (mulitple definitions), ??
norm_tol_iter (DMRGEngine.run), ??
norm_tol_iter (EngineCombine.run), 225
norm_tol_iter (EngineFracture.run), 233
norm_tol_iter (SingleSiteDMRGEngine.run), ??
norm_tol_iter (TwoSiteDMRGEngine.run), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230

orthogonal_to (SingleSiteDMRGEngine.init_env),
??

orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
P_tol_max (mulitple definitions), ??
P_tol_max (DMRGEngine.run), ??
P_tol_max (EngineCombine.run), 225
P_tol_max (EngineFracture.run), 233
P_tol_max (SingleSiteDMRGEngine.run), ??
P_tol_max (TwoSiteDMRGEngine.run), ??
P_tol_min (mulitple definitions), ??
P_tol_min (DMRGEngine.run), ??
P_tol_min (EngineCombine.run), 225
P_tol_min (EngineFracture.run), 233
P_tol_min (SingleSiteDMRGEngine.run), ??
P_tol_min (TwoSiteDMRGEngine.run), ??
P_tol_to_trunc (mulitple definitions), ??
P_tol_to_trunc (DMRGEngine.run), ??
P_tol_to_trunc (EngineCombine.run), 225
P_tol_to_trunc (EngineFracture.run), 233
P_tol_to_trunc (SingleSiteDMRGEngine.run), ??
P_tol_to_trunc (TwoSiteDMRGEngine.run), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (DMRGEngine.reset_stats), ??
sweep_0 (EngineCombine.reset_stats), 224
sweep_0 (EngineFracture.reset_stats), 232
sweep_0 (SingleSiteDMRGEngine.reset_stats), ??
sweep_0 (TwoSiteDMRGEngine.reset_stats), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (Algorithm), ??
update_env (mulitple definitions), ??
update_env (DMRGEngine.run), ??
update_env (EngineCombine.run), 225
update_env (EngineFracture.run), 233
update_env (SingleSiteDMRGEngine.run), ??
update_env (TwoSiteDMRGEngine.run), ??

VariationalApplyMPO
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??

Config Option Index 795

TeNPy, Release 0.8.1

init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
N_sweeps (VariationalCompression), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221
orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (mulitple definitions), ??
trunc_params (VariationalCompression), ??
trunc_params (Algorithm), ??

VariationalCompression
chi_list (mulitple definitions), ??
chi_list (Sweep.reset_stats), ??
chi_list (VariationalApplyMPO.reset_stats), ??
chi_list (VariationalCompression.reset_stats), ??
chi_list (PurificationApplyMPO.reset_stats), 252
combine (Sweep), ??
init_env_data (mulitple definitions), ??
init_env_data (DMRGEngine.init_env), ??
init_env_data (EngineCombine.init_env), 221
init_env_data (EngineFracture.init_env), 230
init_env_data (SingleSiteDMRGEngine.init_env),

??
init_env_data (TwoSiteDMRGEngine.init_env), ??
init_env_data (Sweep.init_env), ??
lanczos_params (Sweep), ??
N_sweeps (VariationalCompression), ??
orthogonal_to (mulitple definitions), ??
orthogonal_to (DMRGEngine.init_env), ??
orthogonal_to (EngineCombine.init_env), 221

orthogonal_to (EngineFracture.init_env), 230
orthogonal_to (SingleSiteDMRGEngine.init_env),

??
orthogonal_to (TwoSiteDMRGEngine.init_env), ??
orthogonal_to (Sweep.init_env), ??
start_env (mulitple definitions), ??
start_env (DMRGEngine.init_env), ??
start_env (EngineCombine.init_env), 222
start_env (EngineFracture.init_env), 230
start_env (SingleSiteDMRGEngine.init_env), ??
start_env (TwoSiteDMRGEngine.init_env), ??
start_env (Sweep.init_env), ??
sweep_0 (mulitple definitions), ??
sweep_0 (Sweep.reset_stats), ??
sweep_0 (VariationalApplyMPO.reset_stats), ??
sweep_0 (VariationalCompression.reset_stats), ??
sweep_0 (PurificationApplyMPO.reset_stats), 252
trunc_params (mulitple definitions), ??
trunc_params (VariationalCompression), ??
trunc_params (Algorithm), ??

XXZChain
bc_MPS (mulitple definitions), ??
bc_MPS (XXZChain), ??
bc_MPS (FermionChain.init_lattice), 563
bc_MPS (FermionModel.init_lattice), ??
bc_MPS (BosonicHaldaneModel.init_lattice), ??
bc_MPS (FermionicHaldaneModel.init_lattice), ??
bc_MPS (HofstadterBosons.init_lattice), ??
bc_MPS (HofstadterFermions.init_lattice), ??
bc_MPS (BoseHubbardChain.init_lattice), 578
bc_MPS (BoseHubbardModel.init_lattice), ??
bc_MPS (FermiHubbardChain.init_lattice), 591
bc_MPS (FermiHubbardModel.init_lattice), ??
bc_MPS (CouplingMPOModel.init_lattice), ??
bc_MPS (SpinChain.init_lattice), 548
bc_MPS (SpinModel.init_lattice), ??
bc_MPS (SpinChainNNN.init_lattice), ??
bc_MPS (SpinChainNNN2.init_lattice), ??
bc_MPS (TFIChain.init_lattice), 520
bc_MPS (TFIModel.init_lattice), ??
bc_MPS (ToricCode.init_lattice), ??
bc_MPS (XXZChain2.init_lattice), 534
bc_x (mulitple definitions), 564
bc_x (FermionChain.init_lattice), 564
bc_x (FermionModel.init_lattice), ??
bc_x (BosonicHaldaneModel.init_lattice), ??
bc_x (FermionicHaldaneModel.init_lattice), ??
bc_x (HofstadterBosons.init_lattice), ??
bc_x (HofstadterFermions.init_lattice), ??
bc_x (BoseHubbardChain.init_lattice), 578
bc_x (BoseHubbardModel.init_lattice), ??
bc_x (FermiHubbardChain.init_lattice), 592
bc_x (FermiHubbardModel.init_lattice), ??

796 Config Option Index

TeNPy, Release 0.8.1

bc_x (CouplingMPOModel.init_lattice), ??
bc_x (SpinChain.init_lattice), 548
bc_x (SpinModel.init_lattice), ??
bc_x (SpinChainNNN.init_lattice), ??
bc_x (SpinChainNNN2.init_lattice), ??
bc_x (TFIChain.init_lattice), 520
bc_x (TFIModel.init_lattice), ??
bc_x (ToricCode.init_lattice), ??
bc_x (XXZChain2.init_lattice), 535
bc_y (mulitple definitions), 564
bc_y (FermionChain.init_lattice), 564
bc_y (FermionModel.init_lattice), ??
bc_y (BosonicHaldaneModel.init_lattice), ??
bc_y (FermionicHaldaneModel.init_lattice), ??
bc_y (HofstadterBosons.init_lattice), ??
bc_y (HofstadterFermions.init_lattice), ??
bc_y (BoseHubbardChain.init_lattice), 578
bc_y (BoseHubbardModel.init_lattice), ??
bc_y (FermiHubbardChain.init_lattice), 592
bc_y (FermiHubbardModel.init_lattice), ??
bc_y (CouplingMPOModel.init_lattice), ??
bc_y (SpinChain.init_lattice), 548
bc_y (SpinModel.init_lattice), ??
bc_y (SpinChainNNN.init_lattice), ??
bc_y (SpinChainNNN2.init_lattice), ??
bc_y (TFIChain.init_lattice), 520
bc_y (TFIModel.init_lattice), ??
bc_y (ToricCode.init_lattice), ??
bc_y (XXZChain2.init_lattice), 535
explicit_plus_hc (CouplingMPOModel), ??
hz (XXZChain), ??
Jxx (XXZChain), ??
Jz (XXZChain), ??
L (mulitple definitions), ??
L (XXZChain), ??
L (FermionChain.init_lattice), 563
L (FermionModel.init_lattice), ??
L (BosonicHaldaneModel.init_lattice), ??
L (FermionicHaldaneModel.init_lattice), ??
L (HofstadterBosons.init_lattice), ??
L (HofstadterFermions.init_lattice), ??
L (BoseHubbardChain.init_lattice), 578
L (BoseHubbardModel.init_lattice), ??
L (FermiHubbardChain.init_lattice), 591
L (FermiHubbardModel.init_lattice), ??
L (CouplingMPOModel.init_lattice), ??
L (SpinChain.init_lattice), 548
L (SpinModel.init_lattice), ??
L (SpinChainNNN.init_lattice), ??
L (SpinChainNNN2.init_lattice), ??
L (TFIChain.init_lattice), 520
L (TFIModel.init_lattice), ??
L (ToricCode.init_lattice), ??
L (XXZChain2.init_lattice), 534

lattice (mulitple definitions), 563
lattice (FermionChain.init_lattice), 563
lattice (FermionModel.init_lattice), ??
lattice (BosonicHaldaneModel.init_lattice), ??
lattice (FermionicHaldaneModel.init_lattice), ??
lattice (HofstadterBosons.init_lattice), ??
lattice (HofstadterFermions.init_lattice), ??
lattice (BoseHubbardChain.init_lattice), 578
lattice (BoseHubbardModel.init_lattice), ??
lattice (FermiHubbardChain.init_lattice), 591
lattice (FermiHubbardModel.init_lattice), ??
lattice (CouplingMPOModel.init_lattice), ??
lattice (SpinChain.init_lattice), 548
lattice (SpinModel.init_lattice), ??
lattice (SpinChainNNN.init_lattice), ??
lattice (SpinChainNNN2.init_lattice), ??
lattice (TFIChain.init_lattice), 520
lattice (TFIModel.init_lattice), ??
lattice (ToricCode.init_lattice), ??
lattice (XXZChain2.init_lattice), 534
Lx (mulitple definitions), 564
Lx (FermionChain.init_lattice), 564
Lx (FermionModel.init_lattice), ??
Lx (BosonicHaldaneModel.init_lattice), ??
Lx (FermionicHaldaneModel.init_lattice), ??
Lx (HofstadterBosons.init_lattice), ??
Lx (HofstadterFermions.init_lattice), ??
Lx (BoseHubbardChain.init_lattice), 578
Lx (BoseHubbardModel.init_lattice), ??
Lx (FermiHubbardChain.init_lattice), 592
Lx (FermiHubbardModel.init_lattice), ??
Lx (CouplingMPOModel.init_lattice), ??
Lx (SpinChain.init_lattice), 548
Lx (SpinModel.init_lattice), ??
Lx (SpinChainNNN.init_lattice), ??
Lx (SpinChainNNN2.init_lattice), ??
Lx (TFIChain.init_lattice), 520
Lx (TFIModel.init_lattice), ??
Lx (ToricCode.init_lattice), ??
Lx (XXZChain2.init_lattice), 535
Ly (mulitple definitions), 564
Ly (FermionChain.init_lattice), 564
Ly (FermionModel.init_lattice), ??
Ly (BosonicHaldaneModel.init_lattice), ??
Ly (FermionicHaldaneModel.init_lattice), ??
Ly (HofstadterBosons.init_lattice), ??
Ly (HofstadterFermions.init_lattice), ??
Ly (BoseHubbardChain.init_lattice), 578
Ly (BoseHubbardModel.init_lattice), ??
Ly (FermiHubbardChain.init_lattice), 592
Ly (FermiHubbardModel.init_lattice), ??
Ly (CouplingMPOModel.init_lattice), ??
Ly (SpinChain.init_lattice), 548
Ly (SpinModel.init_lattice), ??

Config Option Index 797

TeNPy, Release 0.8.1

Ly (SpinChainNNN.init_lattice), ??
Ly (SpinChainNNN2.init_lattice), ??
Ly (TFIChain.init_lattice), 520
Ly (TFIModel.init_lattice), ??
Ly (ToricCode.init_lattice), ??
Ly (XXZChain2.init_lattice), 535
order (mulitple definitions), 563
order (FermionChain.init_lattice), 563
order (FermionModel.init_lattice), ??
order (BosonicHaldaneModel.init_lattice), ??
order (FermionicHaldaneModel.init_lattice), ??
order (HofstadterBosons.init_lattice), ??
order (HofstadterFermions.init_lattice), ??
order (BoseHubbardChain.init_lattice), 578
order (BoseHubbardModel.init_lattice), ??
order (FermiHubbardChain.init_lattice), 591
order (FermiHubbardModel.init_lattice), ??
order (CouplingMPOModel.init_lattice), ??
order (SpinChain.init_lattice), 548
order (SpinModel.init_lattice), ??
order (SpinChainNNN.init_lattice), ??
order (SpinChainNNN2.init_lattice), ??
order (TFIChain.init_lattice), 520
order (TFIModel.init_lattice), ??
order (ToricCode.init_lattice), ??
order (XXZChain2.init_lattice), 534
sort_mpo_legs (CouplingMPOModel), ??

ZipUpApplyMPO
m_temp (MPO.apply_zipup), ??
trunc_params (MPO.apply_zipup), ??
trunc_weight (MPO.apply_zipup), ??

798 Config Option Index

CONFIG INDEX

A
Algorithm, ??
ApplyMPO, ??

B
BoseHubbardModel, ??
BosonicHaldaneModel, ??

C
Config, ??
CouplingMPOModel, ??

D
DMRG, ??
DMRGEngine, ??

E
ExpMPOEvolution, ??

F
FermiHubbardModel, ??
FermionicHaldaneModel, ??
FermionModel, ??

G
GroundStateSearch, ??

H
HofstadterBosons, ??
HofstadterFermions, ??

I
InitialStateBuilder, ??

L
Lanczos, ??
LanczosEvolution, ??
logging, ??

M
Mixer, ??

MPS_compress (master), ??
MPS_compress, ??
MPS_compress, ??

P
PurificationTEBD, ??

R
RandomUnitaryEvolution, ??

S
Simulation, ??
SingleSiteDMRGEngine, ??
SpinChainNNN, ??
SpinChainNNN2, ??
SpinModel, ??
Sweep, ??

T
TDVP, ??
TEBDEngine, ??
TFIModel, ??
TimeEvolution, ??
TimeEvolutionAlgorithm, ??
ToricCode, ??
truncation, ??
TwoSiteDMRGEngine, ??

V
VariationalApplyMPO, ??
VariationalCompression, ??

X
XXZChain, ??

Z
ZipUpApplyMPO, ??

799

TeNPy, Release 0.8.1

800 Config Index

INDEX

Symbols
_LP (tenpy.networks.mps.MPSEnvironment attribute),

651
_LP_age (tenpy.networks.mps.MPSEnvironment at-

tribute), 651
_RP (tenpy.networks.mps.MPSEnvironment attribute),

651
_RP_age (tenpy.networks.mps.MPSEnvironment at-

tribute), 651
__full_version__ (in module tenpy), 192
__version__ (in module tenpy), 192
_bra_N (tenpy.networks.mps.TransferMatrix attribute),

656
_data (tenpy.linalg.np_conserved.Array attribute), 273
_finite (tenpy.networks.mps.MPSEnvironment at-

tribute), 651
_grid_legs (tenpy.networks.mpo.MPOGraph at-

tribute), 666
_ket_M (tenpy.networks.mps.TransferMatrix attribute),

656
_labels (tenpy.linalg.np_conserved.Array attribute),

273
_labels_p (tenpy.algorithms.exact_diag.ExactDiag

attribute), 265
_labels_pconj (tenpy.algorithms.exact_diag.ExactDiag

attribute), 266
_labels_split (tenpy.linalg.sparse.FlatLinearOperator

attribute), 338
_mask (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 266
_mask (tenpy.linalg.charges.ChargeInfo attribute), 305
_mask (tenpy.linalg.sparse.FlatLinearOperator at-

tribute), 338
_mod_masked (tenpy.linalg.charges.ChargeInfo at-

tribute), 305
_mps2lat_vals_idx (tenpy.models.lattice.Lattice at-

tribute), 422
_mps2lat_vals_idx_fix_u

(tenpy.models.lattice.Lattice attribute), 422
_mps_fix_u (tenpy.models.lattice.Lattice attribute),

422
_npc_matvec_multileg

(tenpy.linalg.sparse.FlatLinearOperator
attribute), 338

_old_level (tenpy.tools.optimization.temporary_level
attribute), 750

_order (tenpy.models.lattice.Lattice attribute), 421
_perm (tenpy.linalg.charges.LegPipe attribute), 318
_perm (tenpy.models.lattice.Lattice attribute), 422
_pipe (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 266
_pipe_conj (tenpy.algorithms.exact_diag.ExactDiag

attribute), 266
_qdata (tenpy.linalg.np_conserved.Array attribute),

273
_qdata_sorted (tenpy.linalg.np_conserved.Array at-

tribute), 273
_sites (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 265
_strides (tenpy.linalg.charges.LegPipe attribute), 318
_strides (tenpy.models.lattice.Lattice attribute), 421

A
acts_on (tenpy.algorithms.mps_common.EffectiveH at-

tribute), 207
acts_on (tenpy.algorithms.mps_common.OneSiteH at-

tribute), 209
acts_on (tenpy.algorithms.mps_common.TwoSiteH at-

tribute), 212
acts_on (tenpy.linalg.sparse.NpcLinearOperator at-

tribute), 343
add() (tenpy.linalg.charges.ChargeInfo class method),

306
add() (tenpy.networks.mpo.MPOGraph method), 666
add_charge() (tenpy.linalg.np_conserved.Array

method), 280
add_coupling() (tenpy.models.fermions_spinless.FermionChain

method), 554
add_coupling() (tenpy.models.hubbard.BoseHubbardChain

method), 568
add_coupling() (tenpy.models.hubbard.FermiHubbardChain

method), 582
add_coupling() (tenpy.models.model.CouplingModel

method), 481

801

TeNPy, Release 0.8.1

add_coupling() (tenpy.models.model.MultiCouplingModel
method), 494

add_coupling() (tenpy.models.spins.SpinChain
method), 538

add_coupling() (tenpy.models.tf_ising.TFIChain
method), 510

add_coupling() (tenpy.models.xxz_chain.XXZChain2
method), 525

add_coupling_term()
(tenpy.models.fermions_spinless.FermionChain
method), 556

add_coupling_term()
(tenpy.models.hubbard.BoseHubbardChain
method), 570

add_coupling_term()
(tenpy.models.hubbard.FermiHubbardChain
method), 583

add_coupling_term()
(tenpy.models.model.CouplingModel method),
483

add_coupling_term()
(tenpy.models.model.MultiCouplingModel
method), 496

add_coupling_term()
(tenpy.models.spins.SpinChain method),
540

add_coupling_term()
(tenpy.models.tf_ising.TFIChain method),
512

add_coupling_term()
(tenpy.models.xxz_chain.XXZChain2 method),
527

add_coupling_term()
(tenpy.networks.terms.CouplingTerms method),
672

add_coupling_term()
(tenpy.networks.terms.MultiCouplingTerms
method), 680

add_exponentially_decaying_coupling()
(tenpy.models.fermions_spinless.FermionChain
method), 556

add_exponentially_decaying_coupling()
(tenpy.models.hubbard.BoseHubbardChain
method), 570

add_exponentially_decaying_coupling()
(tenpy.models.hubbard.FermiHubbardChain
method), 584

add_exponentially_decaying_coupling()
(tenpy.models.model.CouplingModel method),
485

add_exponentially_decaying_coupling()
(tenpy.models.model.MultiCouplingModel
method), 497

add_exponentially_decaying_coupling()

(tenpy.models.spins.SpinChain method), 541
add_exponentially_decaying_coupling()

(tenpy.models.tf_ising.TFIChain method), 513
add_exponentially_decaying_coupling()

(tenpy.models.xxz_chain.XXZChain2 method),
527

add_exponentially_decaying_coupling()
(tenpy.networks.terms.ExponentiallyDecayingTerms
method), 675

add_leg() (tenpy.linalg.np_conserved.Array method),
279

add_local_term() (tenpy.models.fermions_spinless.FermionChain
method), 557

add_local_term() (tenpy.models.hubbard.BoseHubbardChain
method), 571

add_local_term() (tenpy.models.hubbard.FermiHubbardChain
method), 585

add_local_term() (tenpy.models.model.CouplingModel
method), 480

add_local_term() (tenpy.models.model.MultiCouplingModel
method), 497

add_local_term() (tenpy.models.spins.SpinChain
method), 542

add_local_term() (tenpy.models.tf_ising.TFIChain
method), 514

add_local_term() (tenpy.models.xxz_chain.XXZChain2
method), 528

add_missing_IdL_IdR()
(tenpy.networks.mpo.MPOGraph method),
667

add_multi_coupling()
(tenpy.models.fermions_spinless.FermionChain
method), 557

add_multi_coupling()
(tenpy.models.hubbard.BoseHubbardChain
method), 571

add_multi_coupling()
(tenpy.models.hubbard.FermiHubbardChain
method), 585

add_multi_coupling()
(tenpy.models.model.CouplingModel method),
483

add_multi_coupling()
(tenpy.models.model.MultiCouplingModel
method), 498

add_multi_coupling()
(tenpy.models.spins.SpinChain method),
542

add_multi_coupling()
(tenpy.models.tf_ising.TFIChain method),
514

add_multi_coupling()
(tenpy.models.xxz_chain.XXZChain2 method),
528

802 Index

TeNPy, Release 0.8.1

add_multi_coupling_term()
(tenpy.models.fermions_spinless.FermionChain
method), 559

add_multi_coupling_term()
(tenpy.models.hubbard.BoseHubbardChain
method), 573

add_multi_coupling_term()
(tenpy.models.hubbard.FermiHubbardChain
method), 586

add_multi_coupling_term()
(tenpy.models.model.CouplingModel method),
484

add_multi_coupling_term()
(tenpy.models.model.MultiCouplingModel
method), 499

add_multi_coupling_term()
(tenpy.models.spins.SpinChain method),
543

add_multi_coupling_term()
(tenpy.models.tf_ising.TFIChain method),
515

add_multi_coupling_term()
(tenpy.models.xxz_chain.XXZChain2 method),
529

add_multi_coupling_term()
(tenpy.networks.terms.MultiCouplingTerms
method), 678

add_onsite() (tenpy.models.fermions_spinless.FermionChain
method), 559

add_onsite() (tenpy.models.hubbard.BoseHubbardChain
method), 573

add_onsite() (tenpy.models.hubbard.FermiHubbardChain
method), 587

add_onsite() (tenpy.models.model.CouplingModel
method), 480

add_onsite() (tenpy.models.model.MultiCouplingModel
method), 499

add_onsite() (tenpy.models.spins.SpinChain
method), 544

add_onsite() (tenpy.models.tf_ising.TFIChain
method), 516

add_onsite() (tenpy.models.xxz_chain.XXZChain2
method), 530

add_onsite_term()
(tenpy.models.fermions_spinless.FermionChain
method), 559

add_onsite_term()
(tenpy.models.hubbard.BoseHubbardChain
method), 573

add_onsite_term()
(tenpy.models.hubbard.FermiHubbardChain
method), 587

add_onsite_term()
(tenpy.models.model.CouplingModel method),

480
add_onsite_term()

(tenpy.models.model.MultiCouplingModel
method), 500

add_onsite_term() (tenpy.models.spins.SpinChain
method), 544

add_onsite_term()
(tenpy.models.tf_ising.TFIChain method),
516

add_onsite_term()
(tenpy.models.xxz_chain.XXZChain2 method),
530

add_onsite_term()
(tenpy.networks.terms.OnsiteTerms method),
683

add_op() (tenpy.networks.site.BosonSite method), 612
add_op() (tenpy.networks.site.FermionSite method),

617
add_op() (tenpy.networks.site.GroupedSite method),

622
add_op() (tenpy.networks.site.Site method), 627
add_op() (tenpy.networks.site.SpinHalfFermionSite

method), 632
add_op() (tenpy.networks.site.SpinHalfSite method),

636
add_op() (tenpy.networks.site.SpinSite method), 641
add_string() (tenpy.networks.mpo.MPOGraph

method), 667
add_to_graph() (tenpy.networks.terms.CouplingTerms

method), 673
add_to_graph() (tenpy.networks.terms.ExponentiallyDecayingTerms

method), 676
add_to_graph() (tenpy.networks.terms.MultiCouplingTerms

method), 679
add_to_graph() (tenpy.networks.terms.OnsiteTerms

method), 683
add_to_nn_bond_Arrays()

(tenpy.networks.terms.OnsiteTerms method),
683

add_trivial_leg()
(tenpy.linalg.np_conserved.Array method),
278

add_with_None_0() (in module tenpy.tools.misc),
726

adjoint() (tenpy.algorithms.mps_common.EffectiveH
method), 207

adjoint() (tenpy.algorithms.mps_common.OneSiteH
method), 210

adjoint() (tenpy.algorithms.mps_common.TwoSiteH
method), 213

adjoint() (tenpy.algorithms.purification.PurificationTwoSiteU
method), 260

adjoint() (tenpy.linalg.sparse.FlatHermitianOperator
method), 332

Index 803

TeNPy, Release 0.8.1

adjoint() (tenpy.linalg.sparse.FlatLinearOperator
method), 340

adjoint() (tenpy.linalg.sparse.NpcLinearOperator
method), 343

adjoint() (tenpy.linalg.sparse.NpcLinearOperatorWrapper
method), 345

adjoint() (tenpy.linalg.sparse.OrthogonalNpcLinearOperator
method), 346

adjoint() (tenpy.linalg.sparse.ShiftNpcLinearOperator
method), 347

adjoint() (tenpy.linalg.sparse.SumNpcLinearOperator
method), 347

adjoint() (tenpy.networks.mps.TransferMatrix
method), 657

alg_decay() (in module tenpy.tools.fit), 740
alg_decay_fit() (in module tenpy.tools.fit), 741
alg_decay_fit_res() (in module tenpy.tools.fit),

741
alg_decay_fits() (in module tenpy.tools.fit), 741
all_coupling_terms()

(tenpy.models.fermions_spinless.FermionChain
method), 560

all_coupling_terms()
(tenpy.models.hubbard.BoseHubbardChain
method), 574

all_coupling_terms()
(tenpy.models.hubbard.FermiHubbardChain
method), 588

all_coupling_terms()
(tenpy.models.model.CouplingModel method),
483

all_coupling_terms()
(tenpy.models.model.MultiCouplingModel
method), 500

all_coupling_terms()
(tenpy.models.spins.SpinChain method),
544

all_coupling_terms()
(tenpy.models.tf_ising.TFIChain method),
516

all_coupling_terms()
(tenpy.models.xxz_chain.XXZChain2 method),
531

all_onsite_terms()
(tenpy.models.fermions_spinless.FermionChain
method), 560

all_onsite_terms()
(tenpy.models.hubbard.BoseHubbardChain
method), 574

all_onsite_terms()
(tenpy.models.hubbard.FermiHubbardChain
method), 588

all_onsite_terms()
(tenpy.models.model.CouplingModel method),

481
all_onsite_terms()

(tenpy.models.model.MultiCouplingModel
method), 500

all_onsite_terms()
(tenpy.models.spins.SpinChain method),
544

all_onsite_terms()
(tenpy.models.tf_ising.TFIChain method),
516

all_onsite_terms()
(tenpy.models.xxz_chain.XXZChain2 method),
531

any_nonzero() (in module tenpy.tools.misc), 726
anynan() (in module tenpy.tools.misc), 727
arg_descr (tenpy.tools.events.EventHandler at-

tribute), 721
argsort() (in module tenpy.tools.misc), 727
Array (class in tenpy.linalg.np_conserved), 272
as_completely_blocked()

(tenpy.linalg.np_conserved.Array method),
283

asConfig() (in module tenpy.tools.params), 718
astype() (tenpy.linalg.np_conserved.Array method),

283
atleast_2d_pad() (in module tenpy.tools.misc), 728
ATTR_CLASS (in module tenpy.tools.hdf5_io), 715
ATTR_FORMAT (in module tenpy.tools.hdf5_io), 715
ATTR_LEN (in module tenpy.tools.hdf5_io), 715
ATTR_MODULE (in module tenpy.tools.hdf5_io), 715
ATTR_TYPE (in module tenpy.tools.hdf5_io), 715

B
basis (tenpy.models.lattice.Lattice attribute), 421
bc (tenpy.models.lattice.Lattice attribute), 421
bc (tenpy.networks.mpo.MPOGraph attribute), 665
bc_MPS (tenpy.models.lattice.Lattice attribute), 421
bc_shift (tenpy.models.lattice.Lattice attribute), 421
binary_blockwise()

(tenpy.linalg.np_conserved.Array method),
287

block_number (tenpy.linalg.charges.LegCharge at-
tribute), 309

bond_dimension() (in module
tenpy.simulations.measurement), 694

bond_energies() (in module
tenpy.simulations.measurement), 694

bond_energies() (tenpy.models.fermions_spinless.FermionChain
method), 560

bond_energies() (tenpy.models.hubbard.BoseHubbardChain
method), 574

bond_energies() (tenpy.models.hubbard.FermiHubbardChain
method), 588

804 Index

TeNPy, Release 0.8.1

bond_energies() (tenpy.models.model.NearestNeighborModel
method), 505

bond_energies() (tenpy.models.spins.SpinChain
method), 544

bond_energies() (tenpy.models.tf_ising.TFIChain
method), 516

bond_energies() (tenpy.models.xxz_chain.XXZChain2
method), 531

BoseHubbardChain (class in tenpy.models.hubbard),
568

BosonSite (class in tenpy.networks.site), 612
bottleneck (in module tenpy.tools.optimization), 754
boundary_conditions()

(tenpy.models.lattice.Chain property), 357
boundary_conditions()

(tenpy.models.lattice.HelicalLattice prop-
erty), 370

boundary_conditions()
(tenpy.models.lattice.Honeycomb property),
375

boundary_conditions()
(tenpy.models.lattice.IrregularLattice prop-
erty), 389

boundary_conditions()
(tenpy.models.lattice.Kagome property),
397

boundary_conditions()
(tenpy.models.lattice.Ladder property), 409

boundary_conditions()
(tenpy.models.lattice.Lattice property), 424

boundary_conditions()
(tenpy.models.lattice.SimpleLattice property),
433

boundary_conditions()
(tenpy.models.lattice.Square property), 442

boundary_conditions()
(tenpy.models.lattice.Triangular property),
455

boundary_conditions()
(tenpy.models.lattice.TrivialLattice property),
464

boundary_conditions()
(tenpy.models.toric_code.DualSquare prop-
erty), 600

box() (in module tenpy.linalg.random_matrix), 329
build_full_H_from_bonds()

(tenpy.algorithms.exact_diag.ExactDiag
method), 266

build_full_H_from_mpo()
(tenpy.algorithms.exact_diag.ExactDiag
method), 266

build_initial_state() (in module
tenpy.networks.mps), 657

build_initial_state() (in module

tenpy.tools.misc), 728
build_MPO() (tenpy.networks.mpo.MPOGraph

method), 667
bunch() (tenpy.linalg.charges.LegCharge method), 314
bunch() (tenpy.linalg.charges.LegPipe method), 319
bunched (tenpy.linalg.charges.LegCharge attribute),

309

C
calc_H_bond() (tenpy.models.fermions_spinless.FermionChain

method), 560
calc_H_bond() (tenpy.models.hubbard.BoseHubbardChain

method), 574
calc_H_bond() (tenpy.models.hubbard.FermiHubbardChain

method), 588
calc_H_bond() (tenpy.models.model.CouplingModel

method), 486
calc_H_bond() (tenpy.models.model.MultiCouplingModel

method), 500
calc_H_bond() (tenpy.models.spins.SpinChain

method), 545
calc_H_bond() (tenpy.models.tf_ising.TFIChain

method), 517
calc_H_bond() (tenpy.models.xxz_chain.XXZChain2

method), 531
calc_H_bond_from_MPO()

(tenpy.models.fermions_spinless.FermionChain
method), 560

calc_H_bond_from_MPO()
(tenpy.models.hubbard.BoseHubbardChain
method), 575

calc_H_bond_from_MPO()
(tenpy.models.hubbard.FermiHubbardChain
method), 588

calc_H_bond_from_MPO()
(tenpy.models.model.MPOModel method),
490

calc_H_bond_from_MPO()
(tenpy.models.spins.SpinChain method),
545

calc_H_bond_from_MPO()
(tenpy.models.tf_ising.TFIChain method),
517

calc_H_bond_from_MPO()
(tenpy.models.xxz_chain.XXZChain2 method),
531

calc_H_MPO() (tenpy.models.fermions_spinless.FermionChain
method), 560

calc_H_MPO() (tenpy.models.hubbard.BoseHubbardChain
method), 574

calc_H_MPO() (tenpy.models.hubbard.FermiHubbardChain
method), 588

calc_H_MPO() (tenpy.models.model.CouplingModel
method), 486

Index 805

TeNPy, Release 0.8.1

calc_H_MPO() (tenpy.models.model.MultiCouplingModel
method), 500

calc_H_MPO() (tenpy.models.spins.SpinChain
method), 545

calc_H_MPO() (tenpy.models.tf_ising.TFIChain
method), 517

calc_H_MPO() (tenpy.models.xxz_chain.XXZChain2
method), 531

calc_H_MPO_from_bond()
(tenpy.models.fermions_spinless.FermionChain
method), 560

calc_H_MPO_from_bond()
(tenpy.models.hubbard.BoseHubbardChain
method), 574

calc_H_MPO_from_bond()
(tenpy.models.hubbard.FermiHubbardChain
method), 588

calc_H_MPO_from_bond()
(tenpy.models.model.NearestNeighborModel
method), 505

calc_H_MPO_from_bond()
(tenpy.models.spins.SpinChain method),
545

calc_H_MPO_from_bond()
(tenpy.models.tf_ising.TFIChain method),
517

calc_H_MPO_from_bond()
(tenpy.models.xxz_chain.XXZChain2 method),
531

calc_H_onsite() (tenpy.models.fermions_spinless.FermionChain
method), 561

calc_H_onsite() (tenpy.models.hubbard.BoseHubbardChain
method), 575

calc_H_onsite() (tenpy.models.hubbard.FermiHubbardChain
method), 589

calc_H_onsite() (tenpy.models.model.CouplingModel
method), 486

calc_H_onsite() (tenpy.models.model.MultiCouplingModel
method), 500

calc_H_onsite() (tenpy.models.spins.SpinChain
method), 545

calc_H_onsite() (tenpy.models.tf_ising.TFIChain
method), 517

calc_H_onsite() (tenpy.models.xxz_chain.XXZChain2
method), 532

calc_U() (tenpy.algorithms.purification.PurificationTEBD2
method), 256

calc_U() (tenpy.algorithms.tebd.Engine method), 201
callback() (tenpy.tools.events.Listener property), 724
central_charge_from_S_profile() (in mod-

ule tenpy.tools.fit), 741
Chain (class in tenpy.models.lattice), 356
change() (tenpy.linalg.charges.ChargeInfo class

method), 306

change_charge() (tenpy.linalg.np_conserved.Array
method), 280

change_charge() (tenpy.networks.site.BosonSite
method), 613

change_charge() (tenpy.networks.site.FermionSite
method), 617

change_charge() (tenpy.networks.site.GroupedSite
method), 622

change_charge() (tenpy.networks.site.Site method),
627

change_charge() (tenpy.networks.site.SpinHalfFermionSite
method), 632

change_charge() (tenpy.networks.site.SpinHalfSite
method), 637

change_charge() (tenpy.networks.site.SpinSite
method), 641

charge_sector (tenpy.algorithms.exact_diag.ExactDiag
attribute), 265

charge_sector() (tenpy.linalg.sparse.FlatHermitianOperator
property), 332

charge_sector() (tenpy.linalg.sparse.FlatLinearOperator
property), 338

charge_sectors() (tenpy.linalg.charges.LegCharge
method), 315

charge_sectors() (tenpy.linalg.charges.LegPipe
method), 320

ChargeInfo (class in tenpy.linalg.charges), 305
charges (tenpy.linalg.charges.LegCharge attribute),

309
check_valid() (tenpy.linalg.charges.ChargeInfo

method), 307
chi_list() (in module tenpy.algorithms.dmrg), 239
chi_list() (in module tenpy.tools.misc), 728
chinfo (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 265
chinfo (tenpy.linalg.charges.LegCharge attribute), 309
chinfo (tenpy.linalg.np_conserved.Array attribute),

273
chinfo (tenpy.networks.mpo.MPOGraph attribute), 665
COE() (in module tenpy.linalg.random_matrix), 327
combine (tenpy.algorithms.mps_common.EffectiveH at-

tribute), 207
combine (tenpy.algorithms.mps_common.TwoSiteH at-

tribute), 212
combine_Heff() (tenpy.algorithms.mps_common.OneSiteH

method), 210
combine_Heff() (tenpy.algorithms.mps_common.TwoSiteH

method), 212
combine_Heff() (tenpy.algorithms.purification.PurificationTwoSiteU

method), 260
combine_legs() (tenpy.linalg.np_conserved.Array

method), 281
combine_theta() (tenpy.algorithms.mps_common.EffectiveH

method), 207

806 Index

TeNPy, Release 0.8.1

combine_theta() (tenpy.algorithms.mps_common.OneSiteH
method), 210

combine_theta() (tenpy.algorithms.mps_common.TwoSiteH
method), 212

combine_theta() (tenpy.algorithms.purification.PurificationTwoSiteU
method), 260

compiled_with_MKL (in module
tenpy.tools.optimization), 754

complex_conj() (tenpy.linalg.np_conserved.Array
method), 286

concatenate() (in module
tenpy.linalg.np_conserved), 288

conj() (tenpy.linalg.charges.LegCharge method), 312
conj() (tenpy.linalg.charges.LegPipe method), 319
conj() (tenpy.linalg.np_conserved.Array method), 286
connect() (tenpy.tools.events.EventHandler method),

722
connect_by_name()

(tenpy.tools.events.EventHandler method),
723

cons_N (tenpy.networks.site.SpinHalfFermionSite at-
tribute), 632

cons_Sz (tenpy.networks.site.SpinHalfFermionSite at-
tribute), 632

conserve (tenpy.networks.site.BosonSite attribute),
612

conserve (tenpy.networks.site.FermionSite attribute),
617

conserve (tenpy.networks.site.SpinHalfSite attribute),
636

conserve (tenpy.networks.site.SpinSite attribute), 641
console_main() (in module tenpy), 190
contract() (in module

tenpy.algorithms.network_contractor), 262
copy() (tenpy.algorithms.truncation.TruncationError

method), 196
copy() (tenpy.linalg.charges.LegCharge method), 310
copy() (tenpy.linalg.charges.LegPipe method), 319
copy() (tenpy.linalg.np_conserved.Array method), 273
copy() (tenpy.tools.events.EventHandler method), 722
correlation_length() (in module

tenpy.simulations.measurement), 695
count() (tenpy.tools.events.Listener method), 724
count_neighbors() (tenpy.models.lattice.Chain

method), 357
count_neighbors()

(tenpy.models.lattice.HelicalLattice method),
370

count_neighbors()
(tenpy.models.lattice.Honeycomb method),
378

count_neighbors()
(tenpy.models.lattice.IrregularLattice method),
389

count_neighbors() (tenpy.models.lattice.Kagome
method), 397

count_neighbors() (tenpy.models.lattice.Ladder
method), 409

count_neighbors() (tenpy.models.lattice.Lattice
method), 427

count_neighbors()
(tenpy.models.lattice.SimpleLattice method),
433

count_neighbors() (tenpy.models.lattice.Square
method), 444

count_neighbors()
(tenpy.models.lattice.Triangular method),
455

count_neighbors()
(tenpy.models.lattice.TrivialLattice method),
464

count_neighbors()
(tenpy.models.toric_code.DualSquare method),
600

coupling_shape() (tenpy.models.lattice.Chain
method), 357

coupling_shape() (tenpy.models.lattice.HelicalLattice
method), 370

coupling_shape() (tenpy.models.lattice.Honeycomb
method), 378

coupling_shape() (tenpy.models.lattice.IrregularLattice
method), 389

coupling_shape() (tenpy.models.lattice.Kagome
method), 398

coupling_shape() (tenpy.models.lattice.Ladder
method), 409

coupling_shape() (tenpy.models.lattice.Lattice
method), 428

coupling_shape() (tenpy.models.lattice.SimpleLattice
method), 433

coupling_shape() (tenpy.models.lattice.Square
method), 444

coupling_shape() (tenpy.models.lattice.Triangular
method), 455

coupling_shape() (tenpy.models.lattice.TrivialLattice
method), 465

coupling_shape() (tenpy.models.toric_code.DualSquare
method), 600

coupling_strength_add_ext_flux()
(tenpy.models.fermions_spinless.FermionChain
method), 561

coupling_strength_add_ext_flux()
(tenpy.models.hubbard.BoseHubbardChain
method), 575

coupling_strength_add_ext_flux()
(tenpy.models.hubbard.FermiHubbardChain
method), 589

coupling_strength_add_ext_flux()

Index 807

TeNPy, Release 0.8.1

(tenpy.models.model.CouplingModel method),
486

coupling_strength_add_ext_flux()
(tenpy.models.model.MultiCouplingModel
method), 501

coupling_strength_add_ext_flux()
(tenpy.models.spins.SpinChain method),
546

coupling_strength_add_ext_flux()
(tenpy.models.tf_ising.TFIChain method),
518

coupling_strength_add_ext_flux()
(tenpy.models.xxz_chain.XXZChain2 method),
532

coupling_term_handle_JW()
(tenpy.networks.terms.CouplingTerms method),
672

coupling_term_handle_JW()
(tenpy.networks.terms.MultiCouplingTerms
method), 680

coupling_terms (tenpy.models.model.CouplingModel
attribute), 479

coupling_terms (tenpy.networks.terms.CouplingTerms
attribute), 671

coupling_terms (tenpy.networks.terms.MultiCouplingTerms
attribute), 678

CouplingModel (class in tenpy.models.model), 479
CouplingTerms (class in tenpy.networks.terms), 671
CRE() (in module tenpy.linalg.random_matrix), 327
create_group_for_obj()

(tenpy.tools.hdf5_io.Hdf5Saver method),
709

CUE() (in module tenpy.linalg.random_matrix), 327

D
default_lattice (tenpy.models.fermions_spinless.FermionChain

attribute), 554
default_lattice (tenpy.models.hubbard.FermiHubbardChain

attribute), 582
default_lattice (tenpy.models.spins.SpinChain at-

tribute), 538
default_lattice (tenpy.models.tf_ising.TFIChain

attribute), 510
DefaultMixer (tenpy.algorithms.dmrg.EngineCombine

attribute), 220
DefaultMixer (tenpy.algorithms.dmrg.EngineFracture

attribute), 228
del_LP() (tenpy.networks.mpo.MPOEnvironment

method), 663
del_LP() (tenpy.networks.mps.MPSEnvironment

method), 653
del_RP() (tenpy.networks.mpo.MPOEnvironment

method), 663

del_RP() (tenpy.networks.mps.MPSEnvironment
method), 653

DensityMatrixMixer (class in
tenpy.algorithms.dmrg), 215

detect_grid_outer_legcharge() (in module
tenpy.linalg.np_conserved), 289

detect_legcharge() (in module
tenpy.linalg.np_conserved), 289

detect_qtotal() (in module
tenpy.linalg.np_conserved), 290

diag() (in module tenpy.linalg.np_conserved), 290
diag() (tenpy.algorithms.dmrg.EngineCombine

method), 220
diag() (tenpy.algorithms.dmrg.EngineFracture

method), 228
dim (tenpy.models.lattice.Chain attribute), 357
dim (tenpy.models.lattice.Honeycomb attribute), 375
dim (tenpy.models.lattice.Kagome attribute), 406
dim (tenpy.models.lattice.Ladder attribute), 409
dim (tenpy.models.lattice.Square attribute), 442
dim (tenpy.models.lattice.Triangular attribute), 455
dim (tenpy.models.toric_code.DualSquare attribute), 600
dim() (tenpy.models.lattice.HelicalLattice property),

370
dim() (tenpy.models.lattice.IrregularLattice property),

389
dim() (tenpy.models.lattice.Lattice property), 422
dim() (tenpy.models.lattice.SimpleLattice property),

433
dim() (tenpy.models.lattice.TrivialLattice property),

465
dim() (tenpy.networks.site.BosonSite property), 613
dim() (tenpy.networks.site.FermionSite property), 617
dim() (tenpy.networks.site.GroupedSite property), 622
dim() (tenpy.networks.site.Site property), 627
dim() (tenpy.networks.site.SpinHalfFermionSite prop-

erty), 633
dim() (tenpy.networks.site.SpinHalfSite property), 637
dim() (tenpy.networks.site.SpinSite property), 641
disconnect() (tenpy.tools.events.EventHandler

method), 723
disent_iterations()

(tenpy.algorithms.purification.PurificationTEBD2
property), 256

disentangle() (tenpy.algorithms.purification.PurificationTEBD2
method), 256

disentangle_global()
(tenpy.algorithms.purification.PurificationTEBD2
method), 256

disentangle_global_nsite()
(tenpy.algorithms.purification.PurificationTEBD2
method), 256

disentangle_n_site()
(tenpy.algorithms.purification.PurificationTEBD2

808 Index

TeNPy, Release 0.8.1

method), 256
dispatch_load (tenpy.tools.hdf5_io.Hdf5Loader at-

tribute), 706
dispatch_save (tenpy.tools.hdf5_io.Hdf5Saver at-

tribute), 709
distance() (tenpy.models.lattice.Chain method), 357
distance() (tenpy.models.lattice.HelicalLattice

method), 370
distance() (tenpy.models.lattice.Honeycomb

method), 378
distance() (tenpy.models.lattice.IrregularLattice

method), 389
distance() (tenpy.models.lattice.Kagome method),

398
distance() (tenpy.models.lattice.Ladder method),

409
distance() (tenpy.models.lattice.Lattice method), 427
distance() (tenpy.models.lattice.SimpleLattice

method), 433
distance() (tenpy.models.lattice.Square method), 444
distance() (tenpy.models.lattice.Triangular method),

455
distance() (tenpy.models.lattice.TrivialLattice

method), 465
distance() (tenpy.models.toric_code.DualSquare

method), 600
dot() (tenpy.linalg.sparse.FlatHermitianOperator

method), 332
dot() (tenpy.linalg.sparse.FlatLinearOperator

method), 340
drop() (tenpy.linalg.charges.ChargeInfo class method),

306
drop_charge() (tenpy.linalg.np_conserved.Array

method), 280
dtype (tenpy.algorithms.mps_common.EffectiveH at-

tribute), 207
dtype (tenpy.linalg.np_conserved.Array attribute), 273
dtype (tenpy.linalg.sparse.FlatLinearOperator at-

tribute), 337
dtype (tenpy.linalg.sparse.NpcLinearOperator at-

tribute), 343
dtype (tenpy.models.model.Model attribute), 491
dtype (tenpy.networks.mps.MPSEnvironment attribute),

651
DualSquare (class in tenpy.models.toric_code), 598

E
E (tenpy.algorithms.exact_diag.ExactDiag attribute), 265
EffectiveH (class in tenpy.algorithms.mps_common),

206
EffectiveH (tenpy.algorithms.dmrg.EngineCombine

attribute), 220
EffectiveH (tenpy.algorithms.dmrg.EngineFracture

attribute), 228

EffectiveH (tenpy.algorithms.purification.PurificationApplyMPO
attribute), 251

eig() (in module tenpy.linalg.np_conserved), 291
eigenvectors() (tenpy.linalg.sparse.FlatHermitianOperator

method), 335
eigenvectors() (tenpy.linalg.sparse.FlatLinearOperator

method), 339
eigenvectors() (tenpy.networks.mps.TransferMatrix

method), 657
eigh() (in module tenpy.linalg.np_conserved), 291
eigvals() (in module tenpy.linalg.np_conserved), 292
eigvalsh() (in module tenpy.linalg.np_conserved),

292
emit() (tenpy.tools.events.EventHandler method), 723
emit_until_result()

(tenpy.tools.events.EventHandler method),
723

energy_MPO() (in module
tenpy.simulations.measurement), 695

Engine (class in tenpy.algorithms.tdvp), 243
Engine (class in tenpy.algorithms.tebd), 201
EngineCombine (class in tenpy.algorithms.dmrg), 219
EngineFracture (class in tenpy.algorithms.dmrg),

228
enlarge_mps_unit_cell()

(tenpy.models.fermions_spinless.FermionChain
method), 562

enlarge_mps_unit_cell()
(tenpy.models.hubbard.BoseHubbardChain
method), 576

enlarge_mps_unit_cell()
(tenpy.models.hubbard.FermiHubbardChain
method), 590

enlarge_mps_unit_cell()
(tenpy.models.lattice.Chain method), 358

enlarge_mps_unit_cell()
(tenpy.models.lattice.HelicalLattice method),
368

enlarge_mps_unit_cell()
(tenpy.models.lattice.Honeycomb method),
378

enlarge_mps_unit_cell()
(tenpy.models.lattice.IrregularLattice method),
390

enlarge_mps_unit_cell()
(tenpy.models.lattice.Kagome method), 399

enlarge_mps_unit_cell()
(tenpy.models.lattice.Ladder method), 410

enlarge_mps_unit_cell()
(tenpy.models.lattice.Lattice method), 424

enlarge_mps_unit_cell()
(tenpy.models.lattice.SimpleLattice method),
434

enlarge_mps_unit_cell()

Index 809

TeNPy, Release 0.8.1

(tenpy.models.lattice.Square method), 444
enlarge_mps_unit_cell()

(tenpy.models.lattice.Triangular method),
456

enlarge_mps_unit_cell()
(tenpy.models.lattice.TrivialLattice method),
465

enlarge_mps_unit_cell()
(tenpy.models.model.CouplingModel method),
487

enlarge_mps_unit_cell()
(tenpy.models.model.Model method), 491

enlarge_mps_unit_cell()
(tenpy.models.model.MPOModel method),
489

enlarge_mps_unit_cell()
(tenpy.models.model.MultiCouplingModel
method), 502

enlarge_mps_unit_cell()
(tenpy.models.model.NearestNeighborModel
method), 505

enlarge_mps_unit_cell()
(tenpy.models.spins.SpinChain method),
546

enlarge_mps_unit_cell()
(tenpy.models.tf_ising.TFIChain method),
518

enlarge_mps_unit_cell()
(tenpy.models.toric_code.DualSquare method),
601

enlarge_mps_unit_cell()
(tenpy.models.xxz_chain.XXZChain2 method),
533

entropy() (in module
tenpy.simulations.measurement), 696

entropy() (in module tenpy.tools.math), 736
entropy_profile_from_CFT() (in module

tenpy.tools.fit), 742
environment_sweeps()

(tenpy.algorithms.dmrg.EngineCombine
method), 220

environment_sweeps()
(tenpy.algorithms.dmrg.EngineFracture
method), 229

environment_sweeps()
(tenpy.algorithms.purification.PurificationApplyMPO
method), 251

eps (tenpy.algorithms.truncation.TruncationError at-
tribute), 196

EventHandler (class in tenpy.tools.events), 721
evolved_time() (in module

tenpy.simulations.measurement), 696
ExactDiag (class in tenpy.algorithms.exact_diag), 265
exp_decaying_terms

(tenpy.models.model.CouplingModel attribute),
479

exp_decaying_terms
(tenpy.networks.terms.ExponentiallyDecayingTerms
attribute), 675

exp_H() (tenpy.algorithms.exact_diag.ExactDiag
method), 266

expectation_value()
(tenpy.networks.mpo.MPOEnvironment
method), 663

expectation_value()
(tenpy.networks.mps.MPSEnvironment
method), 653

explicit_plus_hc (tenpy.models.model.CouplingModel
attribute), 479

expm() (in module tenpy.linalg.np_conserved), 293
ExponentiallyDecayingTerms (class in

tenpy.networks.terms), 675
extend() (tenpy.linalg.charges.LegCharge method),

315
extend() (tenpy.linalg.charges.LegPipe method), 320
extend() (tenpy.linalg.np_conserved.Array method),

279
eye_like() (in module tenpy.linalg.np_conserved),

293

F
FermiHubbardChain (class in

tenpy.models.hubbard), 581
FermionChain (class in

tenpy.models.fermions_spinless), 554
FermionSite (class in tenpy.networks.site), 616
filling (tenpy.networks.site.BosonSite attribute), 612
filling (tenpy.networks.site.FermionSite attribute),

617
filling (tenpy.networks.site.SpinHalfFermionSite at-

tribute), 632
find_coupling_pairs()

(tenpy.models.lattice.Chain method), 358
find_coupling_pairs()

(tenpy.models.lattice.HelicalLattice method),
371

find_coupling_pairs()
(tenpy.models.lattice.Honeycomb method),
379

find_coupling_pairs()
(tenpy.models.lattice.IrregularLattice method),
390

find_coupling_pairs()
(tenpy.models.lattice.Kagome method), 399

find_coupling_pairs()
(tenpy.models.lattice.Ladder method), 410

find_coupling_pairs()
(tenpy.models.lattice.Lattice method), 427

810 Index

TeNPy, Release 0.8.1

find_coupling_pairs()
(tenpy.models.lattice.SimpleLattice method),
434

find_coupling_pairs()
(tenpy.models.lattice.Square method), 445

find_coupling_pairs()
(tenpy.models.lattice.Triangular method),
456

find_coupling_pairs()
(tenpy.models.lattice.TrivialLattice method),
466

find_coupling_pairs()
(tenpy.models.toric_code.DualSquare method),
601

find_global() (in module tenpy.tools.hdf5_io), 712
find_subclass() (in module tenpy.tools.misc), 729
fit_with_sum_of_exp() (in module

tenpy.tools.fit), 742
flat_linop (tenpy.networks.mps.TransferMatrix at-

tribute), 656
flat_to_npc() (tenpy.linalg.sparse.FlatHermitianOperator

method), 333
flat_to_npc() (tenpy.linalg.sparse.FlatLinearOperator

method), 338
flat_to_npc_all_sectors()

(tenpy.linalg.sparse.FlatHermitianOperator
method), 333

flat_to_npc_all_sectors()
(tenpy.linalg.sparse.FlatLinearOperator
method), 339

flat_to_npc_None_sector()
(tenpy.linalg.sparse.FlatHermitianOperator
method), 333

flat_to_npc_None_sector()
(tenpy.linalg.sparse.FlatLinearOperator
method), 339

FlatHermitianOperator (class in
tenpy.linalg.sparse), 332

FlatLinearOperator (class in tenpy.linalg.sparse),
337

flatten() (in module tenpy.tools.misc), 729
flip_charges_qconj()

(tenpy.linalg.charges.LegCharge method),
312

flip_charges_qconj()
(tenpy.linalg.charges.LegPipe method), 320

form (tenpy.networks.mps.TransferMatrix attribute),
656

format_selection (tenpy.tools.hdf5_io.Hdf5Saver
attribute), 709

from_add_charge()
(tenpy.linalg.charges.LegCharge class method),
311

from_add_charge() (tenpy.linalg.charges.LegPipe

class method), 320
from_change_charge()

(tenpy.linalg.charges.LegCharge class method),
311

from_change_charge()
(tenpy.linalg.charges.LegPipe class method),
321

from_drop_charge()
(tenpy.linalg.charges.LegCharge class method),
311

from_drop_charge() (tenpy.linalg.charges.LegPipe
class method), 321

from_func() (tenpy.linalg.np_conserved.Array class
method), 275

from_func_square()
(tenpy.linalg.np_conserved.Array class
method), 276

from_guess_with_pipe()
(tenpy.linalg.sparse.FlatHermitianOperator
class method), 333

from_guess_with_pipe()
(tenpy.linalg.sparse.FlatLinearOperator
class method), 338

from_H_mpo() (tenpy.algorithms.exact_diag.ExactDiag
class method), 266

from_hdf5() (tenpy.algorithms.truncation.TruncationError
class method), 196

from_hdf5() (tenpy.linalg.charges.ChargeInfo class
method), 306

from_hdf5() (tenpy.linalg.charges.LegCharge class
method), 310

from_hdf5() (tenpy.linalg.charges.LegPipe class
method), 319

from_hdf5() (tenpy.linalg.np_conserved.Array class
method), 274

from_hdf5() (tenpy.models.fermions_spinless.FermionChain
class method), 562

from_hdf5() (tenpy.models.hubbard.BoseHubbardChain
class method), 576

from_hdf5() (tenpy.models.hubbard.FermiHubbardChain
class method), 590

from_hdf5() (tenpy.models.lattice.Chain class
method), 358

from_hdf5() (tenpy.models.lattice.HelicalLattice
class method), 367

from_hdf5() (tenpy.models.lattice.Honeycomb class
method), 379

from_hdf5() (tenpy.models.lattice.IrregularLattice
class method), 388

from_hdf5() (tenpy.models.lattice.Kagome class
method), 399

from_hdf5() (tenpy.models.lattice.Ladder class
method), 410

from_hdf5() (tenpy.models.lattice.Lattice class

Index 811

TeNPy, Release 0.8.1

method), 422
from_hdf5() (tenpy.models.lattice.SimpleLattice

class method), 434
from_hdf5() (tenpy.models.lattice.Square class

method), 445
from_hdf5() (tenpy.models.lattice.Triangular class

method), 456
from_hdf5() (tenpy.models.lattice.TrivialLattice class

method), 466
from_hdf5() (tenpy.models.model.CouplingModel

class method), 487
from_hdf5() (tenpy.models.model.Model class

method), 492
from_hdf5() (tenpy.models.model.MPOModel class

method), 490
from_hdf5() (tenpy.models.model.MultiCouplingModel

class method), 502
from_hdf5() (tenpy.models.model.NearestNeighborModel

class method), 505
from_hdf5() (tenpy.models.spins.SpinChain class

method), 547
from_hdf5() (tenpy.models.tf_ising.TFIChain class

method), 519
from_hdf5() (tenpy.models.toric_code.DualSquare

class method), 601
from_hdf5() (tenpy.models.xxz_chain.XXZChain2

class method), 533
from_hdf5() (tenpy.networks.site.BosonSite class

method), 613
from_hdf5() (tenpy.networks.site.FermionSite class

method), 617
from_hdf5() (tenpy.networks.site.GroupedSite class

method), 622
from_hdf5() (tenpy.networks.site.Site class method),

629
from_hdf5() (tenpy.networks.site.SpinHalfFermionSite

class method), 633
from_hdf5() (tenpy.networks.site.SpinHalfSite class

method), 637
from_hdf5() (tenpy.networks.site.SpinSite class

method), 641
from_hdf5() (tenpy.networks.terms.CouplingTerms

class method), 673
from_hdf5() (tenpy.networks.terms.ExponentiallyDecayingTerms

class method), 676
from_hdf5() (tenpy.networks.terms.MultiCouplingTerms

class method), 680
from_hdf5() (tenpy.networks.terms.OnsiteTerms

class method), 684
from_hdf5() (tenpy.networks.terms.TermList class

method), 687
from_hdf5() (tenpy.tools.hdf5_io.Hdf5Exportable

class method), 703
from_lattice_locations()

(tenpy.networks.terms.TermList class method),
686

from_MPOModel() (tenpy.models.fermions_spinless.FermionChain
class method), 562

from_MPOModel() (tenpy.models.hubbard.BoseHubbardChain
class method), 576

from_MPOModel() (tenpy.models.hubbard.FermiHubbardChain
class method), 590

from_MPOModel() (tenpy.models.model.NearestNeighborModel
class method), 504

from_MPOModel() (tenpy.models.spins.SpinChain
class method), 546

from_MPOModel() (tenpy.models.tf_ising.TFIChain
class method), 518

from_MPOModel() (tenpy.models.xxz_chain.XXZChain2
class method), 533

from_ndarray() (tenpy.linalg.np_conserved.Array
class method), 275

from_ndarray_trivial()
(tenpy.linalg.np_conserved.Array class
method), 274

from_norm() (tenpy.algorithms.truncation.TruncationError
class method), 196

from_NpcArray() (tenpy.linalg.sparse.FlatHermitianOperator
class method), 333

from_NpcArray() (tenpy.linalg.sparse.FlatLinearOperator
class method), 338

from_qdict() (tenpy.linalg.charges.LegCharge class
method), 311

from_qdict() (tenpy.linalg.charges.LegPipe class
method), 321

from_qflat() (tenpy.linalg.charges.LegCharge class
method), 310

from_qflat() (tenpy.linalg.charges.LegPipe class
method), 321

from_qind() (tenpy.linalg.charges.LegCharge class
method), 311

from_qind() (tenpy.linalg.charges.LegPipe class
method), 322

from_S() (tenpy.algorithms.truncation.TruncationError
class method), 196

from_term_list() (tenpy.networks.mpo.MPOGraph
class method), 666

from_terms() (tenpy.networks.mpo.MPOGraph class
method), 666

from_trivial() (tenpy.linalg.charges.LegCharge
class method), 310

from_trivial() (tenpy.linalg.charges.LegPipe class
method), 322

full_contraction()
(tenpy.networks.mpo.MPOEnvironment
method), 663

full_contraction()
(tenpy.networks.mps.MPSEnvironment

812 Index

TeNPy, Release 0.8.1

method), 653
full_diag_effH() (in module

tenpy.algorithms.dmrg), 239
full_diagonalization()

(tenpy.algorithms.exact_diag.ExactDiag
method), 266

full_H (tenpy.algorithms.exact_diag.ExactDiag at-
tribute), 265

full_to_mps() (tenpy.algorithms.exact_diag.ExactDiag
method), 267

full_version (in module tenpy.version), 755

G
gauge_hopping() (in module

tenpy.models.hofstadter), 594
gauge_total_charge()

(tenpy.linalg.np_conserved.Array method),
279

gcd() (in module tenpy.tools.math), 737
gcd_array() (in module tenpy.tools.math), 737
get_attr() (tenpy.tools.hdf5_io.Hdf5Loader static

method), 706
get_block() (tenpy.linalg.np_conserved.Array

method), 278
get_block_sizes()

(tenpy.linalg.charges.LegCharge method),
313

get_block_sizes() (tenpy.linalg.charges.LegPipe
method), 322

get_charge() (tenpy.linalg.charges.LegCharge
method), 314

get_charge() (tenpy.linalg.charges.LegPipe
method), 322

get_close() (in module tenpy.tools.misc), 730
get_hc_op_name() (tenpy.networks.site.BosonSite

method), 613
get_hc_op_name() (tenpy.networks.site.FermionSite

method), 618
get_hc_op_name() (tenpy.networks.site.GroupedSite

method), 622
get_hc_op_name() (tenpy.networks.site.Site

method), 628
get_hc_op_name() (tenpy.networks.site.SpinHalfFermionSite

method), 633
get_hc_op_name() (tenpy.networks.site.SpinHalfSite

method), 637
get_hc_op_name() (tenpy.networks.site.SpinSite

method), 641
get_initialization_data()

(tenpy.networks.mpo.MPOEnvironment
method), 663

get_initialization_data()
(tenpy.networks.mps.MPSEnvironment
method), 653

get_lattice() (in module tenpy.models.lattice), 474
get_leg() (tenpy.linalg.np_conserved.Array method),

277
get_leg_index() (tenpy.linalg.np_conserved.Array

method), 277
get_leg_indices()

(tenpy.linalg.np_conserved.Array method),
277

get_leg_labels() (tenpy.linalg.np_conserved.Array
method), 277

get_level() (in module tenpy.tools.optimization),
751

get_LP() (tenpy.networks.mpo.MPOEnvironment
method), 662

get_LP() (tenpy.networks.mps.MPSEnvironment
method), 652

get_LP_age() (tenpy.networks.mpo.MPOEnvironment
method), 663

get_LP_age() (tenpy.networks.mps.MPSEnvironment
method), 652

get_op() (tenpy.networks.site.BosonSite method), 613
get_op() (tenpy.networks.site.FermionSite method),

618
get_op() (tenpy.networks.site.GroupedSite method),

623
get_op() (tenpy.networks.site.Site method), 628
get_op() (tenpy.networks.site.SpinHalfFermionSite

method), 633
get_op() (tenpy.networks.site.SpinHalfSite method),

637
get_op() (tenpy.networks.site.SpinSite method), 642
get_order() (in module tenpy.models.lattice), 474
get_order_grouped() (in module

tenpy.models.lattice), 475
get_parameter() (in module tenpy.tools.params),

718
get_qindex() (tenpy.linalg.charges.LegCharge

method), 313
get_qindex() (tenpy.linalg.charges.LegPipe

method), 322
get_qindex_of_charges()

(tenpy.linalg.charges.LegCharge method),
314

get_qindex_of_charges()
(tenpy.linalg.charges.LegPipe method), 322

get_recursive() (in module tenpy.tools.misc), 730
get_resume_data()

(tenpy.algorithms.dmrg.EngineCombine
method), 220

get_resume_data()
(tenpy.algorithms.dmrg.EngineFracture
method), 229

get_resume_data()
(tenpy.algorithms.purification.PurificationApplyMPO

Index 813

TeNPy, Release 0.8.1

method), 251
get_resume_data()

(tenpy.algorithms.purification.PurificationTEBD2
method), 256

get_resume_data() (tenpy.algorithms.tdvp.Engine
method), 243

get_resume_data() (tenpy.algorithms.tebd.Engine
method), 201

get_RP() (tenpy.networks.mpo.MPOEnvironment
method), 663

get_RP() (tenpy.networks.mps.MPSEnvironment
method), 652

get_RP_age() (tenpy.networks.mpo.MPOEnvironment
method), 663

get_RP_age() (tenpy.networks.mps.MPSEnvironment
method), 653

get_slice() (tenpy.linalg.charges.LegCharge
method), 313

get_slice() (tenpy.linalg.charges.LegPipe method),
322

get_sweep_schedule()
(tenpy.algorithms.dmrg.EngineCombine
method), 221

get_sweep_schedule()
(tenpy.algorithms.dmrg.EngineFracture
method), 229

get_sweep_schedule()
(tenpy.algorithms.purification.PurificationApplyMPO
method), 251

get_xL() (tenpy.algorithms.dmrg.DensityMatrixMixer
method), 217

get_xR() (tenpy.algorithms.dmrg.DensityMatrixMixer
method), 217

git_revision (in module tenpy.version), 755
GOE() (in module tenpy.linalg.random_matrix), 328
gram_schmidt() (in module tenpy.linalg.lanczos),

349
graph (tenpy.networks.mpo.MPOGraph attribute), 665
grid_concat() (in module

tenpy.linalg.np_conserved), 293
grid_insert_ops() (in module

tenpy.networks.mpo), 668
grid_outer() (in module tenpy.linalg.np_conserved),

295
groundstate() (tenpy.algorithms.exact_diag.ExactDiag

method), 266
group_by_degeneracy() (in module

tenpy.tools.misc), 731
group_sites() (in module tenpy.networks.site), 644
group_sites() (tenpy.models.fermions_spinless.FermionChain

method), 563
group_sites() (tenpy.models.hubbard.BoseHubbardChain

method), 577
group_sites() (tenpy.models.hubbard.FermiHubbardChain

method), 591
group_sites() (tenpy.models.model.CouplingModel

method), 487
group_sites() (tenpy.models.model.Model method),

492
group_sites() (tenpy.models.model.MPOModel

method), 489
group_sites() (tenpy.models.model.MultiCouplingModel

method), 502
group_sites() (tenpy.models.model.NearestNeighborModel

method), 505
group_sites() (tenpy.models.spins.SpinChain

method), 547
group_sites() (tenpy.models.tf_ising.TFIChain

method), 519
group_sites() (tenpy.models.xxz_chain.XXZChain2

method), 534
GroupedSite (class in tenpy.networks.site), 621
GUE() (in module tenpy.linalg.random_matrix), 328

H
H (tenpy.networks.mpo.MPOEnvironment attribute), 662
H() (tenpy.linalg.sparse.FlatHermitianOperator prop-

erty), 332
H() (tenpy.linalg.sparse.FlatLinearOperator property),

340
H0_mixed (class in tenpy.algorithms.tdvp), 245
H1_mixed (class in tenpy.algorithms.tdvp), 246
H2_mixed (class in tenpy.algorithms.tdvp), 247
h5group (tenpy.tools.hdf5_io.Hdf5Loader attribute),

706
h5group (tenpy.tools.hdf5_io.Hdf5Saver attribute), 709
H_bond (tenpy.models.model.NearestNeighborModel at-

tribute), 504
H_MPO (tenpy.models.model.MPOModel attribute), 489
has_edge() (tenpy.networks.mpo.MPOGraph

method), 667
has_label() (tenpy.linalg.np_conserved.Array

method), 277
have_cython_functions (in module

tenpy.tools.optimization), 754
hc_ops (tenpy.networks.site.Site attribute), 626
Hdf5Exportable (class in tenpy.tools.hdf5_io), 702
Hdf5ExportError, 711
Hdf5FormatError, 711
Hdf5Ignored (class in tenpy.tools.hdf5_io), 704
Hdf5ImportError, 712
Hdf5Loader (class in tenpy.tools.hdf5_io), 705
Hdf5Saver (class in tenpy.tools.hdf5_io), 708
HelicalLattice (class in tenpy.models.lattice), 365
Honeycomb (class in tenpy.models.lattice), 375

I
iadd_prefactor_other()

814 Index

TeNPy, Release 0.8.1

(tenpy.linalg.np_conserved.Array method),
287

ibinary_blockwise()
(tenpy.linalg.np_conserved.Array method),
286

iconj() (tenpy.linalg.np_conserved.Array method),
286

idrop_labels() (tenpy.linalg.np_conserved.Array
method), 278

ignore_unknown (tenpy.tools.hdf5_io.Hdf5Loader at-
tribute), 706

ind_len (tenpy.linalg.charges.LegCharge attribute),
309

index() (tenpy.tools.events.Listener method), 724
init_env() (tenpy.algorithms.dmrg.EngineCombine

method), 221
init_env() (tenpy.algorithms.dmrg.EngineFracture

method), 230
init_env() (tenpy.algorithms.purification.PurificationApplyMPO

method), 252
init_H_from_terms()

(tenpy.models.fermions_spinless.FermionChain
method), 563

init_H_from_terms()
(tenpy.models.hubbard.BoseHubbardChain
method), 577

init_H_from_terms()
(tenpy.models.hubbard.FermiHubbardChain
method), 591

init_H_from_terms()
(tenpy.models.spins.SpinChain method),
548

init_H_from_terms()
(tenpy.models.tf_ising.TFIChain method),
520

init_H_from_terms()
(tenpy.models.xxz_chain.XXZChain2 method),
534

init_lattice() (tenpy.models.fermions_spinless.FermionChain
method), 563

init_lattice() (tenpy.models.hubbard.BoseHubbardChain
method), 577

init_lattice() (tenpy.models.hubbard.FermiHubbardChain
method), 591

init_lattice() (tenpy.models.spins.SpinChain
method), 548

init_lattice() (tenpy.models.tf_ising.TFIChain
method), 520

init_lattice() (tenpy.models.xxz_chain.XXZChain2
method), 534

init_LP() (tenpy.networks.mpo.MPOEnvironment
method), 662

init_LP() (tenpy.networks.mps.MPSEnvironment
method), 651

init_RP() (tenpy.networks.mpo.MPOEnvironment
method), 662

init_RP() (tenpy.networks.mps.MPSEnvironment
method), 652

init_sites() (tenpy.models.fermions_spinless.FermionChain
method), 564

init_sites() (tenpy.models.hubbard.BoseHubbardChain
method), 578

init_sites() (tenpy.models.hubbard.FermiHubbardChain
method), 592

init_sites() (tenpy.models.spins.SpinChain
method), 549

init_sites() (tenpy.models.tf_ising.TFIChain
method), 521

init_sites() (tenpy.models.xxz_chain.XXZChain2
method), 524

init_terms() (tenpy.models.fermions_spinless.FermionChain
method), 564

init_terms() (tenpy.models.hubbard.BoseHubbardChain
method), 578

init_terms() (tenpy.models.hubbard.FermiHubbardChain
method), 592

init_terms() (tenpy.models.spins.SpinChain
method), 549

init_terms() (tenpy.models.tf_ising.TFIChain
method), 521

init_terms() (tenpy.models.xxz_chain.XXZChain2
method), 525

initial_guess() (tenpy.networks.mps.TransferMatrix
method), 657

inner() (in module tenpy.linalg.np_conserved), 296
inverse_permutation() (in module

tenpy.tools.misc), 731
iproject() (tenpy.linalg.np_conserved.Array

method), 284
ipurge_zeros() (tenpy.linalg.np_conserved.Array

method), 284
ireplace_label() (tenpy.linalg.np_conserved.Array

method), 277
ireplace_labels()

(tenpy.linalg.np_conserved.Array method),
277

IrregularLattice (class in tenpy.models.lattice),
386

is_blocked() (tenpy.linalg.charges.LegCharge
method), 312

is_blocked() (tenpy.linalg.charges.LegPipe
method), 322

is_bunched() (tenpy.linalg.charges.LegCharge
method), 312

is_bunched() (tenpy.linalg.charges.LegPipe
method), 322

is_completely_blocked()
(tenpy.linalg.np_conserved.Array method),

Index 815

TeNPy, Release 0.8.1

280
is_non_string_iterable() (in module

tenpy.tools.string), 744
is_sorted() (tenpy.linalg.charges.LegCharge

method), 312
is_sorted() (tenpy.linalg.charges.LegPipe method),

322
iscale_axis() (tenpy.linalg.np_conserved.Array

method), 285
iscale_prefactor()

(tenpy.linalg.np_conserved.Array method),
287

iset_leg_labels()
(tenpy.linalg.np_conserved.Array method),
277

isort_qdata() (tenpy.linalg.np_conserved.Array
method), 281

iswapaxes() (tenpy.linalg.np_conserved.Array
method), 285

itranspose() (tenpy.linalg.np_conserved.Array
method), 285

iunary_blockwise()
(tenpy.linalg.np_conserved.Array method),
285

J
JW_exponent (tenpy.networks.site.Site attribute), 626

K
Kagome (class in tenpy.models.lattice), 397
kroneckerproduct()

(tenpy.networks.site.GroupedSite method),
621

L
L (tenpy.networks.mps.MPSEnvironment attribute), 651
L (tenpy.networks.mps.TransferMatrix attribute), 656
L (tenpy.networks.terms.CouplingTerms attribute), 671
L (tenpy.networks.terms.ExponentiallyDecayingTerms at-

tribute), 675
L (tenpy.networks.terms.MultiCouplingTerms attribute),

678
L (tenpy.networks.terms.OnsiteTerms attribute), 683
L() (tenpy.networks.mpo.MPOGraph property), 666
label_split (tenpy.networks.mps.TransferMatrix at-

tribute), 656
labels (tenpy.networks.site.GroupedSite attribute), 621
Ladder (class in tenpy.models.lattice), 408
lanczos() (in module tenpy.linalg.lanczos), 349
lanczos_arpack() (in module tenpy.linalg.lanczos),

350
lat (tenpy.models.model.Model attribute), 491
lat2mps_idx() (tenpy.models.lattice.Chain method),

359

lat2mps_idx() (tenpy.models.lattice.HelicalLattice
method), 367

lat2mps_idx() (tenpy.models.lattice.Honeycomb
method), 379

lat2mps_idx() (tenpy.models.lattice.IrregularLattice
method), 390

lat2mps_idx() (tenpy.models.lattice.Kagome
method), 400

lat2mps_idx() (tenpy.models.lattice.Ladder
method), 410

lat2mps_idx() (tenpy.models.lattice.Lattice
method), 425

lat2mps_idx() (tenpy.models.lattice.SimpleLattice
method), 435

lat2mps_idx() (tenpy.models.lattice.Square
method), 445

lat2mps_idx() (tenpy.models.lattice.Triangular
method), 456

lat2mps_idx() (tenpy.models.lattice.TrivialLattice
method), 466

lat2mps_idx() (tenpy.models.toric_code.DualSquare
method), 602

Lattice (class in tenpy.models.lattice), 419
lcm() (in module tenpy.tools.math), 737
leg (tenpy.linalg.sparse.FlatLinearOperator attribute),

337
leg (tenpy.networks.site.Site attribute), 626
LegCharge (class in tenpy.linalg.charges), 309
LegPipe (class in tenpy.linalg.charges), 317
legs (tenpy.linalg.charges.LegPipe attribute), 317
legs (tenpy.linalg.np_conserved.Array attribute), 273
length (tenpy.algorithms.mps_common.EffectiveH at-

tribute), 207
length (tenpy.algorithms.mps_common.OneSiteH at-

tribute), 209
length (tenpy.algorithms.mps_common.TwoSiteH at-

tribute), 212
LeviCivita3 (in module tenpy.tools.math), 740
lexsort() (in module tenpy.tools.misc), 732
LHeff (tenpy.algorithms.mps_common.TwoSiteH

attribute), 212
limits() (tenpy.networks.terms.TermList method), 687
lin_fit_res() (in module tenpy.tools.fit), 743
linear_fit() (in module tenpy.tools.fit), 743
list_to_dict_list() (in module

tenpy.tools.misc), 732
Listener (class in tenpy.tools.events), 724
listener_id() (tenpy.tools.events.Listener prop-

erty), 724
listeners (tenpy.tools.events.EventHandler at-

tribute), 721
load() (in module tenpy.tools.hdf5_io), 712
load() (tenpy.tools.hdf5_io.Hdf5Loader method), 706
load_dataset() (tenpy.tools.hdf5_io.Hdf5Loader

816 Index

TeNPy, Release 0.8.1

method), 706
load_dict() (tenpy.tools.hdf5_io.Hdf5Loader

method), 707
load_dtype() (tenpy.tools.hdf5_io.Hdf5Loader

method), 707
load_from_hdf5() (in module tenpy.tools.hdf5_io),

713
load_general_dict()

(tenpy.tools.hdf5_io.Hdf5Loader method),
707

load_global() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_hdf5exportable()
(tenpy.tools.hdf5_io.Hdf5Loader method),
707

load_ignored() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_list() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_none() (tenpy.tools.hdf5_io.Hdf5Loader
method), 706

load_omp_library() (in module
tenpy.tools.process), 746

load_range() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_reduce() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_set() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_simple_dict()
(tenpy.tools.hdf5_io.Hdf5Loader method),
707

load_str() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

load_tuple() (tenpy.tools.hdf5_io.Hdf5Loader
method), 707

logger (tenpy.models.model.Model attribute), 491
Lp (tenpy.algorithms.tdvp.H0_mixed attribute), 245
Lp (tenpy.algorithms.tdvp.H1_mixed attribute), 246
Lp (tenpy.algorithms.tdvp.H2_mixed attribute), 247
Ls (tenpy.models.lattice.Lattice attribute), 420
Lu (tenpy.models.lattice.Honeycomb attribute), 375
Lu (tenpy.models.lattice.Kagome attribute), 406
Lu (tenpy.models.lattice.Ladder attribute), 409
Lu (tenpy.models.lattice.Lattice attribute), 422
Lu (tenpy.models.lattice.SimpleLattice attribute), 433

M
make_eff_H() (tenpy.algorithms.dmrg.EngineCombine

method), 222
make_eff_H() (tenpy.algorithms.dmrg.EngineFracture

method), 230
make_eff_H() (tenpy.algorithms.purification.PurificationApplyMPO

method), 252

make_pipe() (tenpy.linalg.np_conserved.Array
method), 281

make_valid() (tenpy.linalg.charges.ChargeInfo
method), 307

make_W_II() (in module tenpy.networks.mpo), 668
map_incoming_flat()

(tenpy.linalg.charges.LegPipe method), 320
matmat() (tenpy.linalg.sparse.FlatHermitianOperator

method), 334
matmat() (tenpy.linalg.sparse.FlatLinearOperator

method), 341
matvec() (tenpy.algorithms.exact_diag.ExactDiag

method), 267
matvec() (tenpy.algorithms.mps_common.EffectiveH

method), 207
matvec() (tenpy.algorithms.mps_common.OneSiteH

method), 210
matvec() (tenpy.algorithms.mps_common.TwoSiteH

method), 212
matvec() (tenpy.algorithms.purification.PurificationTwoSiteU

method), 260
matvec() (tenpy.linalg.np_conserved.Array method),

287
matvec() (tenpy.linalg.sparse.FlatHermitianOperator

method), 334
matvec() (tenpy.linalg.sparse.FlatLinearOperator

method), 341
matvec() (tenpy.linalg.sparse.NpcLinearOperator

method), 343
matvec() (tenpy.networks.mps.TransferMatrix

method), 656
matvec_count (tenpy.linalg.sparse.FlatLinearOperator

attribute), 337
matvec_to_array() (in module tenpy.tools.math),

737
max_range (tenpy.networks.mpo.MPOGraph at-

tribute), 665
max_range() (tenpy.networks.terms.CouplingTerms

method), 672
max_range() (tenpy.networks.terms.ExponentiallyDecayingTerms

method), 676
max_range() (tenpy.networks.terms.MultiCouplingTerms

method), 679
max_range() (tenpy.networks.terms.OnsiteTerms

method), 683
max_size (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 265
measurement_index() (in module

tenpy.simulations.measurement), 696
memo_load (tenpy.tools.hdf5_io.Hdf5Loader attribute),

706
memo_save (tenpy.tools.hdf5_io.Hdf5Saver attribute),

709
memorize_load() (tenpy.tools.hdf5_io.Hdf5Loader

Index 817

TeNPy, Release 0.8.1

method), 706
memorize_save() (tenpy.tools.hdf5_io.Hdf5Saver

method), 710
memory_usage() (in module tenpy.tools.process), 746
mix_rho_L() (tenpy.algorithms.dmrg.DensityMatrixMixer

method), 216
mix_rho_R() (tenpy.algorithms.dmrg.DensityMatrixMixer

method), 216
mixed_svd() (tenpy.algorithms.dmrg.EngineCombine

method), 222
mixed_svd() (tenpy.algorithms.dmrg.EngineFracture

method), 230
mixer_activate() (tenpy.algorithms.dmrg.EngineCombine

method), 222
mixer_activate() (tenpy.algorithms.dmrg.EngineFracture

method), 231
mixer_cleanup() (tenpy.algorithms.dmrg.EngineCombine

method), 222
mixer_cleanup() (tenpy.algorithms.dmrg.EngineFracture

method), 231
mkl_get_nthreads() (in module

tenpy.tools.process), 747
mkl_set_nthreads() (in module

tenpy.tools.process), 747
mod() (tenpy.linalg.charges.ChargeInfo property), 307
Model (class in tenpy.models.model), 491
model (tenpy.algorithms.exact_diag.ExactDiag at-

tribute), 265
module

tenpy, 189
tenpy.algorithms, 193
tenpy.algorithms.algorithm, 194
tenpy.algorithms.dmrg, 240
tenpy.algorithms.exact_diag, 267
tenpy.algorithms.mpo_evolution, 261
tenpy.algorithms.mps_common, 213
tenpy.algorithms.network_contractor,

263
tenpy.algorithms.purification, 261
tenpy.algorithms.tdvp, 248
tenpy.algorithms.tebd, 204
tenpy.algorithms.truncation, 198
tenpy.linalg, 269
tenpy.linalg.charges, 324
tenpy.linalg.lanczos, 351
tenpy.linalg.np_conserved, 302
tenpy.linalg.random_matrix, 329
tenpy.linalg.sparse, 348
tenpy.linalg.svd_robust, 326
tenpy.models, 353
tenpy.models.fermions_spinless, 565
tenpy.models.haldane, 596
tenpy.models.hofstadter, 595
tenpy.models.hubbard, 593

tenpy.models.lattice, 476
tenpy.models.model, 506
tenpy.models.spins, 549
tenpy.models.spins_nnn, 550
tenpy.models.tf_ising, 521
tenpy.models.toric_code, 607
tenpy.models.xxz_chain, 535
tenpy.networks, 609
tenpy.networks.mpo, 669
tenpy.networks.mps, 658
tenpy.networks.purification_mps, 689
tenpy.networks.site, 648
tenpy.networks.terms, 688
tenpy.simulations, 691
tenpy.simulations.ground_state_search,

698
tenpy.simulations.measurement, 697
tenpy.simulations.simulation, 693
tenpy.simulations.time_evolution,

699
tenpy.tools, 701
tenpy.tools.events, 725
tenpy.tools.fit, 744
tenpy.tools.hdf5_io, 714
tenpy.tools.math, 740
tenpy.tools.misc, 736
tenpy.tools.optimization, 753
tenpy.tools.params, 720
tenpy.tools.process, 748
tenpy.tools.string, 745
tenpy.version, 755

move_right (tenpy.algorithms.mps_common.EffectiveH
attribute), 207

MPOEnvironment (class in tenpy.networks.mpo), 661
MPOGraph (class in tenpy.networks.mpo), 665
MPOModel (class in tenpy.models.model), 489
mps2lat_idx() (tenpy.models.lattice.Chain method),

359
mps2lat_idx() (tenpy.models.lattice.HelicalLattice

method), 367
mps2lat_idx() (tenpy.models.lattice.Honeycomb

method), 379
mps2lat_idx() (tenpy.models.lattice.IrregularLattice

method), 391
mps2lat_idx() (tenpy.models.lattice.Kagome

method), 400
mps2lat_idx() (tenpy.models.lattice.Ladder

method), 411
mps2lat_idx() (tenpy.models.lattice.Lattice

method), 424
mps2lat_idx() (tenpy.models.lattice.SimpleLattice

method), 435
mps2lat_idx() (tenpy.models.lattice.Square

method), 445

818 Index

TeNPy, Release 0.8.1

mps2lat_idx() (tenpy.models.lattice.Triangular
method), 457

mps2lat_idx() (tenpy.models.lattice.TrivialLattice
method), 466

mps2lat_idx() (tenpy.models.toric_code.DualSquare
method), 602

mps2lat_values() (tenpy.models.lattice.Chain
method), 359

mps2lat_values() (tenpy.models.lattice.HelicalLattice
method), 368

mps2lat_values() (tenpy.models.lattice.Honeycomb
method), 380

mps2lat_values() (tenpy.models.lattice.IrregularLattice
method), 391

mps2lat_values() (tenpy.models.lattice.Kagome
method), 400

mps2lat_values() (tenpy.models.lattice.Ladder
method), 411

mps2lat_values() (tenpy.models.lattice.Lattice
method), 425

mps2lat_values() (tenpy.models.lattice.SimpleLattice
method), 433

mps2lat_values() (tenpy.models.lattice.Square
method), 446

mps2lat_values() (tenpy.models.lattice.Triangular
method), 457

mps2lat_values() (tenpy.models.lattice.TrivialLattice
method), 467

mps2lat_values() (tenpy.models.toric_code.DualSquare
method), 602

mps2lat_values_masked()
(tenpy.models.lattice.Chain method), 359

mps2lat_values_masked()
(tenpy.models.lattice.HelicalLattice method),
368

mps2lat_values_masked()
(tenpy.models.lattice.Honeycomb method),
381

mps2lat_values_masked()
(tenpy.models.lattice.IrregularLattice method),
392

mps2lat_values_masked()
(tenpy.models.lattice.Kagome method), 401

mps2lat_values_masked()
(tenpy.models.lattice.Ladder method), 412

mps2lat_values_masked()
(tenpy.models.lattice.Lattice method), 426

mps2lat_values_masked()
(tenpy.models.lattice.SimpleLattice method),
435

mps2lat_values_masked()
(tenpy.models.lattice.Square method), 446

mps2lat_values_masked()
(tenpy.models.lattice.Triangular method),

457
mps2lat_values_masked()

(tenpy.models.lattice.TrivialLattice method),
468

mps2lat_values_masked()
(tenpy.models.toric_code.DualSquare method),
603

mps_idx_fix_u() (tenpy.models.lattice.Chain
method), 359

mps_idx_fix_u() (tenpy.models.lattice.HelicalLattice
method), 371

mps_idx_fix_u() (tenpy.models.lattice.Honeycomb
method), 381

mps_idx_fix_u() (tenpy.models.lattice.IrregularLattice
method), 389

mps_idx_fix_u() (tenpy.models.lattice.Kagome
method), 401

mps_idx_fix_u() (tenpy.models.lattice.Ladder
method), 412

mps_idx_fix_u() (tenpy.models.lattice.Lattice
method), 425

mps_idx_fix_u() (tenpy.models.lattice.SimpleLattice
method), 435

mps_idx_fix_u() (tenpy.models.lattice.Square
method), 446

mps_idx_fix_u() (tenpy.models.lattice.Triangular
method), 457

mps_idx_fix_u() (tenpy.models.lattice.TrivialLattice
method), 468

mps_idx_fix_u() (tenpy.models.toric_code.DualSquare
method), 603

mps_lat_idx_fix_u() (tenpy.models.lattice.Chain
method), 360

mps_lat_idx_fix_u()
(tenpy.models.lattice.HelicalLattice method),
371

mps_lat_idx_fix_u()
(tenpy.models.lattice.Honeycomb method),
381

mps_lat_idx_fix_u()
(tenpy.models.lattice.IrregularLattice method),
392

mps_lat_idx_fix_u()
(tenpy.models.lattice.Kagome method), 401

mps_lat_idx_fix_u()
(tenpy.models.lattice.Ladder method), 412

mps_lat_idx_fix_u() (tenpy.models.lattice.Lattice
method), 425

mps_lat_idx_fix_u()
(tenpy.models.lattice.SimpleLattice method),
436

mps_lat_idx_fix_u() (tenpy.models.lattice.Square
method), 446

mps_lat_idx_fix_u()

Index 819

TeNPy, Release 0.8.1

(tenpy.models.lattice.Triangular method),
457

mps_lat_idx_fix_u()
(tenpy.models.lattice.TrivialLattice method),
468

mps_lat_idx_fix_u()
(tenpy.models.toric_code.DualSquare method),
603

mps_sites() (tenpy.models.lattice.Chain method),
360

mps_sites() (tenpy.models.lattice.HelicalLattice
method), 371

mps_sites() (tenpy.models.lattice.Honeycomb
method), 381

mps_sites() (tenpy.models.lattice.IrregularLattice
method), 392

mps_sites() (tenpy.models.lattice.Kagome method),
402

mps_sites() (tenpy.models.lattice.Ladder method),
413

mps_sites() (tenpy.models.lattice.Lattice method),
424

mps_sites() (tenpy.models.lattice.SimpleLattice
method), 436

mps_sites() (tenpy.models.lattice.Square method),
446

mps_sites() (tenpy.models.lattice.Triangular
method), 458

mps_sites() (tenpy.models.lattice.TrivialLattice
method), 468

mps_sites() (tenpy.models.toric_code.DualSquare
method), 604

mps_to_full() (tenpy.algorithms.exact_diag.ExactDiag
method), 266

MPSEnvironment (class in tenpy.networks.mps), 650
multi_coupling_shape()

(tenpy.models.lattice.Chain method), 360
multi_coupling_shape()

(tenpy.models.lattice.HelicalLattice method),
371

multi_coupling_shape()
(tenpy.models.lattice.Honeycomb method),
381

multi_coupling_shape()
(tenpy.models.lattice.IrregularLattice method),
392

multi_coupling_shape()
(tenpy.models.lattice.Kagome method), 402

multi_coupling_shape()
(tenpy.models.lattice.Ladder method), 413

multi_coupling_shape()
(tenpy.models.lattice.Lattice method), 429

multi_coupling_shape()
(tenpy.models.lattice.SimpleLattice method),

436
multi_coupling_shape()

(tenpy.models.lattice.Square method), 447
multi_coupling_shape()

(tenpy.models.lattice.Triangular method),
458

multi_coupling_shape()
(tenpy.models.lattice.TrivialLattice method),
468

multi_coupling_shape()
(tenpy.models.toric_code.DualSquare method),
604

multi_coupling_term_handle_JW()
(tenpy.networks.terms.MultiCouplingTerms
method), 679

multi_sites_combine_charges() (in module
tenpy.networks.site), 644

MultiCouplingModel (class in tenpy.models.model),
494

MultiCouplingTerms (class in
tenpy.networks.terms), 678

multiply_op_names()
(tenpy.networks.site.BosonSite method),
613

multiply_op_names()
(tenpy.networks.site.FermionSite method),
618

multiply_op_names()
(tenpy.networks.site.GroupedSite method),
623

multiply_op_names() (tenpy.networks.site.Site
method), 629

multiply_op_names()
(tenpy.networks.site.SpinHalfFermionSite
method), 633

multiply_op_names()
(tenpy.networks.site.SpinHalfSite method),
637

multiply_op_names()
(tenpy.networks.site.SpinSite method), 642

multiply_operators()
(tenpy.networks.site.BosonSite method),
614

multiply_operators()
(tenpy.networks.site.FermionSite method),
618

multiply_operators()
(tenpy.networks.site.GroupedSite method),
623

multiply_operators() (tenpy.networks.site.Site
method), 629

multiply_operators()
(tenpy.networks.site.SpinHalfFermionSite
method), 633

820 Index

TeNPy, Release 0.8.1

multiply_operators()
(tenpy.networks.site.SpinHalfSite method),
638

multiply_operators()
(tenpy.networks.site.SpinSite method), 642

N
N (tenpy.algorithms.mps_common.EffectiveH attribute),

207
N_cells (tenpy.models.lattice.Lattice attribute), 421
n_optimize() (tenpy.algorithms.dmrg.EngineCombine

property), 222
n_optimize() (tenpy.algorithms.dmrg.EngineFracture

property), 231
n_optimize() (tenpy.algorithms.purification.PurificationApplyMPO

property), 252
N_rings (tenpy.models.lattice.Lattice attribute), 421
N_sites (tenpy.models.lattice.Lattice attribute), 421
n_sites (tenpy.networks.site.GroupedSite attribute),

621
N_sites_per_ring (tenpy.models.lattice.Lattice at-

tribute), 421
name (tenpy.tools.hdf5_io.Hdf5Ignored attribute), 704
names (tenpy.linalg.charges.ChargeInfo attribute), 305
ncon() (in module tenpy.algorithms.network_contractor),

262
ndim() (tenpy.linalg.np_conserved.Array property),

276
NearestNeighborModel (class in

tenpy.models.model), 504
need_JW_string (tenpy.networks.site.Site attribute),

626
nlegs (tenpy.linalg.charges.LegPipe attribute), 317
norm() (in module tenpy.linalg.np_conserved), 296
norm() (tenpy.linalg.np_conserved.Array method), 286
npc_matvec (tenpy.linalg.sparse.FlatLinearOperator

attribute), 337
npc_to_flat() (tenpy.linalg.sparse.FlatHermitianOperator

method), 334
npc_to_flat() (tenpy.linalg.sparse.FlatLinearOperator

method), 339
npc_to_flat_all_sectors()

(tenpy.linalg.sparse.FlatHermitianOperator
method), 334

npc_to_flat_all_sectors()
(tenpy.linalg.sparse.FlatLinearOperator
method), 339

NpcLinearOperator (class in tenpy.linalg.sparse),
343

NpcLinearOperatorWrapper (class in
tenpy.linalg.sparse), 344

number_nearest_neighbors()
(tenpy.models.lattice.Chain method), 360

number_nearest_neighbors()
(tenpy.models.lattice.HelicalLattice method),
372

number_nearest_neighbors()
(tenpy.models.lattice.Honeycomb method),
382

number_nearest_neighbors()
(tenpy.models.lattice.IrregularLattice method),
393

number_nearest_neighbors()
(tenpy.models.lattice.Kagome method), 402

number_nearest_neighbors()
(tenpy.models.lattice.Ladder method), 413

number_nearest_neighbors()
(tenpy.models.lattice.Lattice method), 427

number_nearest_neighbors()
(tenpy.models.lattice.SimpleLattice method),
436

number_nearest_neighbors()
(tenpy.models.lattice.Square method), 447

number_nearest_neighbors()
(tenpy.models.lattice.Triangular method),
458

number_nearest_neighbors()
(tenpy.models.lattice.TrivialLattice method),
469

number_nearest_neighbors()
(tenpy.models.toric_code.DualSquare method),
604

number_next_nearest_neighbors()
(tenpy.models.lattice.Chain method), 360

number_next_nearest_neighbors()
(tenpy.models.lattice.HelicalLattice method),
372

number_next_nearest_neighbors()
(tenpy.models.lattice.Honeycomb method),
382

number_next_nearest_neighbors()
(tenpy.models.lattice.IrregularLattice method),
393

number_next_nearest_neighbors()
(tenpy.models.lattice.Kagome method), 402

number_next_nearest_neighbors()
(tenpy.models.lattice.Ladder method), 413

number_next_nearest_neighbors()
(tenpy.models.lattice.Lattice method), 427

number_next_nearest_neighbors()
(tenpy.models.lattice.SimpleLattice method),
436

number_next_nearest_neighbors()
(tenpy.models.lattice.Square method), 447

number_next_nearest_neighbors()
(tenpy.models.lattice.Triangular method),
458

Index 821

TeNPy, Release 0.8.1

number_next_nearest_neighbors()
(tenpy.models.lattice.TrivialLattice method),
469

number_next_nearest_neighbors()
(tenpy.models.toric_code.DualSquare method),
604

O
O_close_1() (in module tenpy.linalg.random_matrix),

328
omp_get_nthreads() (in module

tenpy.tools.process), 747
omp_set_nthreads() (in module

tenpy.tools.process), 747
ones() (in module tenpy.linalg.np_conserved), 297
OneSiteH (class in tenpy.algorithms.mps_common),

209
onsite_expectation_value() (in module

tenpy.simulations.measurement), 697
onsite_ops() (tenpy.networks.site.BosonSite prop-

erty), 614
onsite_ops() (tenpy.networks.site.FermionSite prop-

erty), 618
onsite_ops() (tenpy.networks.site.GroupedSite prop-

erty), 623
onsite_ops() (tenpy.networks.site.Site property), 627
onsite_ops() (tenpy.networks.site.SpinHalfFermionSite

property), 634
onsite_ops() (tenpy.networks.site.SpinHalfSite

property), 638
onsite_ops() (tenpy.networks.site.SpinSite prop-

erty), 642
onsite_terms (tenpy.models.model.CouplingModel

attribute), 479
onsite_terms (tenpy.networks.terms.OnsiteTerms at-

tribute), 683
OnsiteTerms (class in tenpy.networks.terms), 682
op_needs_JW() (tenpy.networks.site.BosonSite

method), 614
op_needs_JW() (tenpy.networks.site.FermionSite

method), 618
op_needs_JW() (tenpy.networks.site.GroupedSite

method), 623
op_needs_JW() (tenpy.networks.site.Site method),

628
op_needs_JW() (tenpy.networks.site.SpinHalfFermionSite

method), 634
op_needs_JW() (tenpy.networks.site.SpinHalfSite

method), 638
op_needs_JW() (tenpy.networks.site.SpinSite

method), 642
opnames (tenpy.networks.site.Site attribute), 626
ops (tenpy.networks.site.Site attribute), 626

OptimizationFlag (class in
tenpy.tools.optimization), 749

optimize() (in module tenpy.tools.optimization), 751
order() (tenpy.models.lattice.Chain property), 360
order() (tenpy.models.lattice.HelicalLattice property),

367
order() (tenpy.models.lattice.Honeycomb property),

382
order() (tenpy.models.lattice.IrregularLattice prop-

erty), 388
order() (tenpy.models.lattice.Kagome property), 402
order() (tenpy.models.lattice.Ladder property), 413
order() (tenpy.models.lattice.Lattice property), 423
order() (tenpy.models.lattice.SimpleLattice property),

436
order() (tenpy.models.lattice.Square property), 447
order() (tenpy.models.lattice.Triangular property),

458
order() (tenpy.models.lattice.TrivialLattice property),

469
order() (tenpy.models.toric_code.DualSquare prop-

erty), 604
order_combine() (tenpy.networks.terms.TermList

method), 687
order_combine_term() (in module

tenpy.networks.terms), 688
ordering() (tenpy.models.lattice.Chain method), 357
ordering() (tenpy.models.lattice.HelicalLattice

method), 367
ordering() (tenpy.models.lattice.Honeycomb

method), 375
ordering() (tenpy.models.lattice.IrregularLattice

method), 388
ordering() (tenpy.models.lattice.Kagome method),

402
ordering() (tenpy.models.lattice.Ladder method),

413
ordering() (tenpy.models.lattice.Lattice method), 423
ordering() (tenpy.models.lattice.SimpleLattice

method), 436
ordering() (tenpy.models.lattice.Square method), 447
ordering() (tenpy.models.lattice.Triangular method),

458
ordering() (tenpy.models.lattice.TrivialLattice

method), 469
ordering() (tenpy.models.toric_code.DualSquare

method), 600
orig_operator (tenpy.linalg.sparse.NpcLinearOperatorWrapper

attribute), 344
OrthogonalNpcLinearOperator (class in

tenpy.linalg.sparse), 345
outer() (in module tenpy.linalg.np_conserved), 297
outer_conj() (tenpy.linalg.charges.LegPipe

method), 319

822 Index

TeNPy, Release 0.8.1

outer_product (in module
tenpy.algorithms.network_contractor), 263

ov (tenpy.algorithms.truncation.TruncationError at-
tribute), 196

ov_err() (tenpy.algorithms.truncation.TruncationError
property), 196

P
pad() (in module tenpy.tools.misc), 732
pairs (tenpy.models.lattice.Lattice attribute), 421
perm (tenpy.networks.site.Site attribute), 626
perm_flat_from_perm_qind()

(tenpy.linalg.charges.LegCharge method),
315

perm_flat_from_perm_qind()
(tenpy.linalg.charges.LegPipe method), 323

perm_qind_from_perm_flat()
(tenpy.linalg.charges.LegCharge method),
315

perm_qind_from_perm_flat()
(tenpy.linalg.charges.LegPipe method), 323

perm_sign() (in module tenpy.tools.math), 738
permute() (tenpy.linalg.np_conserved.Array method),

284
perturb_svd() (tenpy.algorithms.dmrg.DensityMatrixMixer

method), 215
perturb_svd() (tenpy.algorithms.dmrg.SingleSiteMixer

method), 236
perturb_svd() (tenpy.algorithms.dmrg.TwoSiteMixer

method), 238
pinv() (in module tenpy.linalg.np_conserved), 298
pipe (tenpy.networks.mps.TransferMatrix attribute),

656
plot_alg_decay_fit() (in module tenpy.tools.fit),

743
plot_basis() (tenpy.models.lattice.Chain method),

360
plot_basis() (tenpy.models.lattice.HelicalLattice

method), 372
plot_basis() (tenpy.models.lattice.Honeycomb

method), 382
plot_basis() (tenpy.models.lattice.IrregularLattice

method), 393
plot_basis() (tenpy.models.lattice.Kagome method),

404
plot_basis() (tenpy.models.lattice.Ladder method),

415
plot_basis() (tenpy.models.lattice.Lattice method),

430
plot_basis() (tenpy.models.lattice.SimpleLattice

method), 438
plot_basis() (tenpy.models.lattice.Square method),

449

plot_basis() (tenpy.models.lattice.Triangular
method), 460

plot_basis() (tenpy.models.lattice.TrivialLattice
method), 471

plot_basis() (tenpy.models.toric_code.DualSquare
method), 604

plot_bc_identified()
(tenpy.models.lattice.Chain method), 361

plot_bc_identified()
(tenpy.models.lattice.HelicalLattice method),
372

plot_bc_identified()
(tenpy.models.lattice.Honeycomb method),
382

plot_bc_identified()
(tenpy.models.lattice.IrregularLattice method),
393

plot_bc_identified()
(tenpy.models.lattice.Kagome method), 404

plot_bc_identified()
(tenpy.models.lattice.Ladder method), 415

plot_bc_identified()
(tenpy.models.lattice.Lattice method), 430

plot_bc_identified()
(tenpy.models.lattice.SimpleLattice method),
438

plot_bc_identified()
(tenpy.models.lattice.Square method), 449

plot_bc_identified()
(tenpy.models.lattice.Triangular method),
460

plot_bc_identified()
(tenpy.models.lattice.TrivialLattice method),
471

plot_bc_identified()
(tenpy.models.toric_code.DualSquare method),
604

plot_coupling() (tenpy.models.lattice.Chain
method), 361

plot_coupling() (tenpy.models.lattice.HelicalLattice
method), 369

plot_coupling() (tenpy.models.lattice.Honeycomb
method), 382

plot_coupling() (tenpy.models.lattice.IrregularLattice
method), 393

plot_coupling() (tenpy.models.lattice.Kagome
method), 404

plot_coupling() (tenpy.models.lattice.Ladder
method), 415

plot_coupling() (tenpy.models.lattice.Lattice
method), 430

plot_coupling() (tenpy.models.lattice.SimpleLattice
method), 438

plot_coupling() (tenpy.models.lattice.Square

Index 823

TeNPy, Release 0.8.1

method), 449
plot_coupling() (tenpy.models.lattice.Triangular

method), 460
plot_coupling() (tenpy.models.lattice.TrivialLattice

method), 471
plot_coupling() (tenpy.models.toric_code.DualSquare

method), 605
plot_coupling_terms()

(tenpy.networks.terms.CouplingTerms method),
672

plot_coupling_terms()
(tenpy.networks.terms.MultiCouplingTerms
method), 681

plot_order() (tenpy.models.lattice.Chain method),
361

plot_order() (tenpy.models.lattice.HelicalLattice
method), 372

plot_order() (tenpy.models.lattice.Honeycomb
method), 383

plot_order() (tenpy.models.lattice.IrregularLattice
method), 394

plot_order() (tenpy.models.lattice.Kagome method),
404

plot_order() (tenpy.models.lattice.Ladder method),
416

plot_order() (tenpy.models.lattice.Lattice method),
429

plot_order() (tenpy.models.lattice.SimpleLattice
method), 438

plot_order() (tenpy.models.lattice.Square method),
449

plot_order() (tenpy.models.lattice.Triangular
method), 460

plot_order() (tenpy.models.lattice.TrivialLattice
method), 471

plot_order() (tenpy.models.toric_code.DualSquare
method), 605

plot_sites() (tenpy.models.lattice.Chain method),
361

plot_sites() (tenpy.models.lattice.HelicalLattice
method), 372

plot_sites() (tenpy.models.lattice.Honeycomb
method), 383

plot_sites() (tenpy.models.lattice.IrregularLattice
method), 394

plot_sites() (tenpy.models.lattice.Kagome method),
405

plot_sites() (tenpy.models.lattice.Ladder method),
416

plot_sites() (tenpy.models.lattice.Lattice method),
429

plot_sites() (tenpy.models.lattice.SimpleLattice
method), 439

plot_sites() (tenpy.models.lattice.Square method),

450
plot_sites() (tenpy.models.lattice.Triangular

method), 461
plot_sites() (tenpy.models.lattice.TrivialLattice

method), 472
plot_sites() (tenpy.models.toric_code.DualSquare

method), 605
plot_stats() (in module tenpy.linalg.lanczos), 350
plot_sweep_stats()

(tenpy.algorithms.dmrg.EngineCombine
method), 222

plot_sweep_stats()
(tenpy.algorithms.dmrg.EngineFracture
method), 231

plot_update_stats()
(tenpy.algorithms.dmrg.EngineCombine
method), 223

plot_update_stats()
(tenpy.algorithms.dmrg.EngineFracture
method), 231

position() (tenpy.models.lattice.Chain method), 362
position() (tenpy.models.lattice.HelicalLattice

method), 373
position() (tenpy.models.lattice.Honeycomb

method), 383
position() (tenpy.models.lattice.IrregularLattice

method), 394
position() (tenpy.models.lattice.Kagome method),

405
position() (tenpy.models.lattice.Ladder method),

416
position() (tenpy.models.lattice.Lattice method), 424
position() (tenpy.models.lattice.SimpleLattice

method), 439
position() (tenpy.models.lattice.Square method), 450
position() (tenpy.models.lattice.Triangular method),

461
position() (tenpy.models.lattice.TrivialLattice

method), 472
position() (tenpy.models.toric_code.DualSquare

method), 605
possible_charge_sectors

(tenpy.linalg.sparse.FlatLinearOperator
attribute), 337

possible_couplings()
(tenpy.models.lattice.Chain method), 362

possible_couplings()
(tenpy.models.lattice.HelicalLattice method),
368

possible_couplings()
(tenpy.models.lattice.Honeycomb method),
383

possible_couplings()
(tenpy.models.lattice.IrregularLattice method),

824 Index

TeNPy, Release 0.8.1

394
possible_couplings()

(tenpy.models.lattice.Kagome method), 405
possible_couplings()

(tenpy.models.lattice.Ladder method), 416
possible_couplings()

(tenpy.models.lattice.Lattice method), 428
possible_couplings()

(tenpy.models.lattice.SimpleLattice method),
439

possible_couplings()
(tenpy.models.lattice.Square method), 450

possible_couplings()
(tenpy.models.lattice.Triangular method),
461

possible_couplings()
(tenpy.models.lattice.TrivialLattice method),
472

possible_couplings()
(tenpy.models.toric_code.DualSquare method),
606

possible_multi_couplings()
(tenpy.models.lattice.Chain method), 362

possible_multi_couplings()
(tenpy.models.lattice.HelicalLattice method),
369

possible_multi_couplings()
(tenpy.models.lattice.Honeycomb method),
384

possible_multi_couplings()
(tenpy.models.lattice.IrregularLattice method),
395

possible_multi_couplings()
(tenpy.models.lattice.Kagome method), 405

possible_multi_couplings()
(tenpy.models.lattice.Ladder method), 417

possible_multi_couplings()
(tenpy.models.lattice.Lattice method), 429

possible_multi_couplings()
(tenpy.models.lattice.SimpleLattice method),
439

possible_multi_couplings()
(tenpy.models.lattice.Square method), 451

possible_multi_couplings()
(tenpy.models.lattice.Triangular method),
461

possible_multi_couplings()
(tenpy.models.lattice.TrivialLattice method),
472

possible_multi_couplings()
(tenpy.models.toric_code.DualSquare method),
606

post_update_local()
(tenpy.algorithms.dmrg.EngineCombine

method), 223
post_update_local()

(tenpy.algorithms.dmrg.EngineFracture
method), 232

post_update_local()
(tenpy.algorithms.purification.PurificationApplyMPO
method), 252

prepare_svd() (tenpy.algorithms.dmrg.EngineCombine
method), 223

prepare_svd() (tenpy.algorithms.dmrg.EngineFracture
method), 232

prepare_update() (tenpy.algorithms.dmrg.EngineCombine
method), 223

prepare_update() (tenpy.algorithms.dmrg.EngineFracture
method), 232

prepare_update() (tenpy.algorithms.purification.PurificationApplyMPO
method), 252

priority() (tenpy.tools.events.Listener property), 724
project() (tenpy.linalg.charges.LegCharge method),

314
project() (tenpy.linalg.charges.LegPipe method), 319
PurificationApplyMPO (class in

tenpy.algorithms.purification), 251
PurificationTEBD2 (class in

tenpy.algorithms.purification), 255
PurificationTwoSiteU (class in

tenpy.algorithms.purification), 260
Python Enhancement Proposals

PEP 257, 181
PEP 8, 181

Q
q_map (tenpy.linalg.charges.LegPipe attribute), 318
q_map_slices (tenpy.linalg.charges.LegPipe at-

tribute), 318
qconj (tenpy.linalg.charges.LegCharge attribute), 309
QCUTOFF (in module tenpy.linalg.np_conserved), 302
qnumber() (tenpy.linalg.charges.ChargeInfo property),

307
qr() (in module tenpy.linalg.np_conserved), 298
qr_li() (in module tenpy.tools.math), 738
qtotal (tenpy.linalg.np_conserved.Array attribute),

273
qtotal (tenpy.networks.mps.TransferMatrix attribute),

656
QTYPE (in module tenpy.linalg.charges), 324
QTYPE (in module tenpy.linalg.np_conserved), 302

R
rank (tenpy.linalg.np_conserved.Array attribute), 273
regular_lattice (tenpy.models.lattice.IrregularLattice

attribute), 387
released (in module tenpy.version), 755

Index 825

TeNPy, Release 0.8.1

remove_op() (tenpy.networks.site.BosonSite method),
614

remove_op() (tenpy.networks.site.FermionSite
method), 619

remove_op() (tenpy.networks.site.GroupedSite
method), 623

remove_op() (tenpy.networks.site.Site method), 628
remove_op() (tenpy.networks.site.SpinHalfFermionSite

method), 634
remove_op() (tenpy.networks.site.SpinHalfSite

method), 638
remove_op() (tenpy.networks.site.SpinSite method),

642
remove_zeros() (tenpy.networks.terms.CouplingTerms

method), 673
remove_zeros() (tenpy.networks.terms.MultiCouplingTerms

method), 679
remove_zeros() (tenpy.networks.terms.OnsiteTerms

method), 683
rename_op() (tenpy.networks.site.BosonSite method),

614
rename_op() (tenpy.networks.site.FermionSite

method), 619
rename_op() (tenpy.networks.site.GroupedSite

method), 623
rename_op() (tenpy.networks.site.Site method), 628
rename_op() (tenpy.networks.site.SpinHalfFermionSite

method), 634
rename_op() (tenpy.networks.site.SpinHalfSite

method), 638
rename_op() (tenpy.networks.site.SpinSite method),

642
replace_label() (tenpy.linalg.np_conserved.Array

method), 277
replace_labels() (tenpy.linalg.np_conserved.Array

method), 278
REPR_ARRAY (in module tenpy.tools.hdf5_io), 715
REPR_BOOL (in module tenpy.tools.hdf5_io), 715
REPR_COMPLEX (in module tenpy.tools.hdf5_io), 715
REPR_DICT_GENERAL (in module

tenpy.tools.hdf5_io), 716
REPR_DICT_SIMPLE (in module tenpy.tools.hdf5_io),

716
REPR_DTYPE (in module tenpy.tools.hdf5_io), 716
REPR_FLOAT (in module tenpy.tools.hdf5_io), 715
REPR_FLOAT32 (in module tenpy.tools.hdf5_io), 715
REPR_FLOAT64 (in module tenpy.tools.hdf5_io), 715
REPR_HDF5EXPORTABLE (in module

tenpy.tools.hdf5_io), 715
REPR_IGNORED (in module tenpy.tools.hdf5_io), 716
REPR_INT (in module tenpy.tools.hdf5_io), 715
REPR_INT32 (in module tenpy.tools.hdf5_io), 715
REPR_INT64 (in module tenpy.tools.hdf5_io), 715
REPR_LIST (in module tenpy.tools.hdf5_io), 716

REPR_NONE (in module tenpy.tools.hdf5_io), 716
REPR_RANGE (in module tenpy.tools.hdf5_io), 716
REPR_SET (in module tenpy.tools.hdf5_io), 716
REPR_STR (in module tenpy.tools.hdf5_io), 715
REPR_TUPLE (in module tenpy.tools.hdf5_io), 716
reset_stats() (tenpy.algorithms.dmrg.EngineCombine

method), 223
reset_stats() (tenpy.algorithms.dmrg.EngineFracture

method), 232
reset_stats() (tenpy.algorithms.purification.PurificationApplyMPO

method), 252
resume_from_checkpoint() (in module

tenpy.simulations.simulation), 692
resume_run() (tenpy.algorithms.dmrg.EngineCombine

method), 224
resume_run() (tenpy.algorithms.dmrg.EngineFracture

method), 232
resume_run() (tenpy.algorithms.purification.PurificationApplyMPO

method), 252
resume_run() (tenpy.algorithms.purification.PurificationTEBD2

method), 257
resume_run() (tenpy.algorithms.tdvp.Engine

method), 243
resume_run() (tenpy.algorithms.tebd.Engine

method), 201
RHeff (tenpy.algorithms.mps_common.TwoSiteH

attribute), 212
rmatmat() (tenpy.linalg.sparse.FlatHermitianOperator

method), 335
rmatmat() (tenpy.linalg.sparse.FlatLinearOperator

method), 341
rmatvec() (tenpy.linalg.sparse.FlatHermitianOperator

method), 335
rmatvec() (tenpy.linalg.sparse.FlatLinearOperator

method), 342
Rp (tenpy.algorithms.tdvp.H0_mixed attribute), 245
Rp (tenpy.algorithms.tdvp.H1_mixed attribute), 246
Rp (tenpy.algorithms.tdvp.H2_mixed attribute), 247
rq_li() (in module tenpy.tools.math), 738
run() (tenpy.algorithms.dmrg.EngineCombine method),

224
run() (tenpy.algorithms.dmrg.EngineFracture method),

232
run() (tenpy.algorithms.purification.PurificationApplyMPO

method), 253
run() (tenpy.algorithms.purification.PurificationTEBD2

method), 257
run() (tenpy.algorithms.tdvp.Engine method), 243
run() (tenpy.algorithms.tebd.Engine method), 201
run_GS() (tenpy.algorithms.purification.PurificationTEBD2

method), 257
run_GS() (tenpy.algorithms.tebd.Engine method), 201
run_imaginary() (tenpy.algorithms.purification.PurificationTEBD2

method), 257

826 Index

TeNPy, Release 0.8.1

run_one_site() (tenpy.algorithms.tdvp.Engine
method), 243

run_simulation() (in module tenpy), 190
run_simulation() (in module

tenpy.simulations.simulation), 693
run_two_sites() (tenpy.algorithms.tdvp.Engine

method), 243

S
S (tenpy.networks.site.SpinSite attribute), 640
save() (in module tenpy.tools.hdf5_io), 713
save() (tenpy.tools.hdf5_io.Hdf5Saver method), 709
save_dataset() (tenpy.tools.hdf5_io.Hdf5Saver

method), 710
save_dict() (tenpy.tools.hdf5_io.Hdf5Saver

method), 710
save_dict_content()

(tenpy.tools.hdf5_io.Hdf5Saver method),
710

save_dtype() (tenpy.tools.hdf5_io.Hdf5Saver
method), 711

save_global() (tenpy.tools.hdf5_io.Hdf5Saver
method), 711

save_hdf5() (tenpy.algorithms.truncation.TruncationError
method), 196

save_hdf5() (tenpy.linalg.charges.ChargeInfo
method), 306

save_hdf5() (tenpy.linalg.charges.LegCharge
method), 310

save_hdf5() (tenpy.linalg.charges.LegPipe method),
319

save_hdf5() (tenpy.linalg.np_conserved.Array
method), 274

save_hdf5() (tenpy.models.fermions_spinless.FermionChain
method), 564

save_hdf5() (tenpy.models.hubbard.BoseHubbardChain
method), 578

save_hdf5() (tenpy.models.hubbard.FermiHubbardChain
method), 592

save_hdf5() (tenpy.models.lattice.Chain method),
363

save_hdf5() (tenpy.models.lattice.HelicalLattice
method), 365

save_hdf5() (tenpy.models.lattice.Honeycomb
method), 384

save_hdf5() (tenpy.models.lattice.IrregularLattice
method), 388

save_hdf5() (tenpy.models.lattice.Kagome method),
406

save_hdf5() (tenpy.models.lattice.Ladder method),
417

save_hdf5() (tenpy.models.lattice.Lattice method),
422

save_hdf5() (tenpy.models.lattice.SimpleLattice
method), 440

save_hdf5() (tenpy.models.lattice.Square method),
451

save_hdf5() (tenpy.models.lattice.Triangular
method), 462

save_hdf5() (tenpy.models.lattice.TrivialLattice
method), 473

save_hdf5() (tenpy.models.model.CouplingModel
method), 488

save_hdf5() (tenpy.models.model.Model method),
492

save_hdf5() (tenpy.models.model.MPOModel
method), 490

save_hdf5() (tenpy.models.model.MultiCouplingModel
method), 502

save_hdf5() (tenpy.models.model.NearestNeighborModel
method), 506

save_hdf5() (tenpy.models.spins.SpinChain method),
549

save_hdf5() (tenpy.models.tf_ising.TFIChain
method), 521

save_hdf5() (tenpy.models.toric_code.DualSquare
method), 607

save_hdf5() (tenpy.models.xxz_chain.XXZChain2
method), 535

save_hdf5() (tenpy.networks.site.BosonSite method),
614

save_hdf5() (tenpy.networks.site.FermionSite
method), 619

save_hdf5() (tenpy.networks.site.GroupedSite
method), 624

save_hdf5() (tenpy.networks.site.Site method), 629
save_hdf5() (tenpy.networks.site.SpinHalfFermionSite

method), 634
save_hdf5() (tenpy.networks.site.SpinHalfSite

method), 638
save_hdf5() (tenpy.networks.site.SpinSite method),

643
save_hdf5() (tenpy.networks.terms.CouplingTerms

method), 674
save_hdf5() (tenpy.networks.terms.ExponentiallyDecayingTerms

method), 676
save_hdf5() (tenpy.networks.terms.MultiCouplingTerms

method), 681
save_hdf5() (tenpy.networks.terms.OnsiteTerms

method), 684
save_hdf5() (tenpy.networks.terms.TermList

method), 687
save_hdf5() (tenpy.tools.hdf5_io.Hdf5Exportable

method), 703
save_ignored() (tenpy.tools.hdf5_io.Hdf5Saver

method), 711
save_iterable() (tenpy.tools.hdf5_io.Hdf5Saver

Index 827

TeNPy, Release 0.8.1

method), 710
save_iterable_content()

(tenpy.tools.hdf5_io.Hdf5Saver method),
710

save_none() (tenpy.tools.hdf5_io.Hdf5Saver
method), 710

save_range() (tenpy.tools.hdf5_io.Hdf5Saver
method), 711

save_reduce() (tenpy.tools.hdf5_io.Hdf5Saver
method), 710

save_to_hdf5() (in module tenpy.tools.hdf5_io), 714
scale_axis() (tenpy.linalg.np_conserved.Array

method), 285
set_anonymous_svd()

(tenpy.algorithms.tdvp.Engine method), 243
set_B() (tenpy.algorithms.dmrg.EngineCombine

method), 225
set_B() (tenpy.algorithms.dmrg.EngineFracture

method), 234
set_common_charges() (in module

tenpy.networks.site), 645
set_level() (in module tenpy.tools.optimization),

752
set_LP() (tenpy.networks.mpo.MPOEnvironment

method), 664
set_LP() (tenpy.networks.mps.MPSEnvironment

method), 653
set_recursive() (in module tenpy.tools.misc), 733
set_RP() (tenpy.networks.mpo.MPOEnvironment

method), 664
set_RP() (tenpy.networks.mps.MPSEnvironment

method), 653
setup_executable() (in module tenpy.tools.misc),

733
shape (tenpy.linalg.np_conserved.Array attribute), 273
shape (tenpy.linalg.sparse.FlatLinearOperator at-

tribute), 337
shape (tenpy.models.lattice.Lattice attribute), 420
shift() (tenpy.networks.terms.TermList method), 687
shift_bra (tenpy.networks.mps.TransferMatrix

attribute), 656
shift_ket (tenpy.networks.mps.TransferMatrix

attribute), 656
ShiftNpcLinearOperator (class in

tenpy.linalg.sparse), 346
short_version (in module tenpy.version), 755
show_config() (in module tenpy), 192
SimpleLattice (class in tenpy.models.lattice), 432
SingleSiteMixer (class in tenpy.algorithms.dmrg),

235
Site (class in tenpy.networks.site), 625
site() (tenpy.models.lattice.Chain method), 363
site() (tenpy.models.lattice.HelicalLattice method),

373

site() (tenpy.models.lattice.Honeycomb method), 384
site() (tenpy.models.lattice.IrregularLattice method),

395
site() (tenpy.models.lattice.Kagome method), 406
site() (tenpy.models.lattice.Ladder method), 417
site() (tenpy.models.lattice.Lattice method), 424
site() (tenpy.models.lattice.SimpleLattice method),

440
site() (tenpy.models.lattice.Square method), 451
site() (tenpy.models.lattice.Triangular method), 462
site() (tenpy.models.lattice.TrivialLattice method),

473
site() (tenpy.models.toric_code.DualSquare method),

607
sites (tenpy.networks.mpo.MPOGraph attribute), 665
sites (tenpy.networks.site.GroupedSite attribute), 621
size() (tenpy.linalg.np_conserved.Array property),

276
Skip, 692
slices (tenpy.linalg.charges.LegCharge attribute), 309
sort() (tenpy.linalg.charges.LegCharge method), 314
sort() (tenpy.linalg.charges.LegPipe method), 319
sort_legcharge() (tenpy.linalg.np_conserved.Array

method), 281
sorted (tenpy.linalg.charges.LegCharge attribute), 309
sparse_diag() (tenpy.algorithms.exact_diag.ExactDiag

method), 267
sparse_stats() (tenpy.linalg.np_conserved.Array

method), 278
speigs() (in module tenpy.linalg.np_conserved), 299
speigs() (in module tenpy.tools.math), 739
speigsh() (in module tenpy.tools.math), 739
SpinChain (class in tenpy.models.spins), 538
SpinHalfFermionSite (class in

tenpy.networks.site), 631
SpinHalfSite (class in tenpy.networks.site), 636
SpinSite (class in tenpy.networks.site), 640
split_legs() (tenpy.linalg.np_conserved.Array

method), 282
Square (class in tenpy.models.lattice), 442
squeeze() (tenpy.linalg.np_conserved.Array method),

283
standard_normal_complex() (in module

tenpy.linalg.random_matrix), 329
state_index() (tenpy.networks.site.BosonSite

method), 615
state_index() (tenpy.networks.site.FermionSite

method), 619
state_index() (tenpy.networks.site.GroupedSite

method), 624
state_index() (tenpy.networks.site.Site method),

628
state_index() (tenpy.networks.site.SpinHalfFermionSite

method), 634

828 Index

TeNPy, Release 0.8.1

state_index() (tenpy.networks.site.SpinHalfSite
method), 639

state_index() (tenpy.networks.site.SpinSite
method), 643

state_indices() (tenpy.networks.site.BosonSite
method), 615

state_indices() (tenpy.networks.site.FermionSite
method), 619

state_indices() (tenpy.networks.site.GroupedSite
method), 624

state_indices() (tenpy.networks.site.Site method),
628

state_indices() (tenpy.networks.site.SpinHalfFermionSite
method), 634

state_indices() (tenpy.networks.site.SpinHalfSite
method), 639

state_indices() (tenpy.networks.site.SpinSite
method), 643

state_labels (tenpy.networks.site.Site attribute), 626
states (tenpy.networks.mpo.MPOGraph attribute), 665
stored_blocks() (tenpy.linalg.np_conserved.Array

property), 276
strength (tenpy.networks.terms.TermList attribute),

686
subqshape (tenpy.linalg.charges.LegPipe attribute),

318
subshape (tenpy.linalg.charges.LegPipe attribute), 317
subspace_expand()

(tenpy.algorithms.dmrg.SingleSiteMixer
method), 236

subspace_expand()
(tenpy.algorithms.dmrg.TwoSiteMixer method),
238

sum_of_exp() (in module tenpy.tools.fit), 743
SumNpcLinearOperator (class in

tenpy.linalg.sparse), 347
suzuki_trotter_decomposition()

(tenpy.algorithms.purification.PurificationTEBD2
static method), 257

suzuki_trotter_decomposition()
(tenpy.algorithms.tebd.Engine static method),
202

suzuki_trotter_time_steps()
(tenpy.algorithms.purification.PurificationTEBD2
static method), 257

suzuki_trotter_time_steps()
(tenpy.algorithms.tebd.Engine static method),
202

svd() (in module tenpy.linalg.np_conserved), 299
svd() (in module tenpy.linalg.svd_robust), 325
svd_gesvd() (in module tenpy.linalg.svd_robust), 325
svd_theta() (in module tenpy.algorithms.truncation),

197
sweep() (tenpy.algorithms.dmrg.EngineCombine

method), 225
sweep() (tenpy.algorithms.dmrg.EngineFracture

method), 234
sweep() (tenpy.algorithms.purification.PurificationApplyMPO

method), 253
sweep_left_right()

(tenpy.algorithms.tdvp.Engine method), 243
sweep_left_right_two()

(tenpy.algorithms.tdvp.Engine method), 244
sweep_right_left()

(tenpy.algorithms.tdvp.Engine method), 244
sweep_right_left_two()

(tenpy.algorithms.tdvp.Engine method), 244

T
T() (tenpy.linalg.sparse.FlatHermitianOperator prop-

erty), 332
T() (tenpy.linalg.sparse.FlatLinearOperator property),

340
take_slice() (tenpy.linalg.np_conserved.Array

method), 278
temporary_level (class in tenpy.tools.optimization),

750
temporary_level (tenpy.tools.optimization.temporary_level

attribute), 750
tenpy

module, 189
tenpy.algorithms

module, 193
tenpy.algorithms.algorithm

module, 194
tenpy.algorithms.dmrg

module, 240
tenpy.algorithms.exact_diag

module, 267
tenpy.algorithms.mpo_evolution

module, 261
tenpy.algorithms.mps_common

module, 213
tenpy.algorithms.network_contractor

module, 263
tenpy.algorithms.purification

module, 261
tenpy.algorithms.tdvp

module, 248
tenpy.algorithms.tebd

module, 204
tenpy.algorithms.truncation

module, 198
tenpy.linalg

module, 269
tenpy.linalg.charges

module, 324
tenpy.linalg.lanczos

Index 829

TeNPy, Release 0.8.1

module, 351
tenpy.linalg.np_conserved

module, 302
tenpy.linalg.random_matrix

module, 329
tenpy.linalg.sparse

module, 348
tenpy.linalg.svd_robust

module, 326
tenpy.models

module, 353
tenpy.models.fermions_spinless

module, 565
tenpy.models.haldane

module, 596
tenpy.models.hofstadter

module, 595
tenpy.models.hubbard

module, 593
tenpy.models.lattice

module, 476
tenpy.models.model

module, 506
tenpy.models.spins

module, 549
tenpy.models.spins_nnn

module, 550
tenpy.models.tf_ising

module, 521
tenpy.models.toric_code

module, 607
tenpy.models.xxz_chain

module, 535
tenpy.networks

module, 609
tenpy.networks.mpo

module, 669
tenpy.networks.mps

module, 658
tenpy.networks.purification_mps

module, 689
tenpy.networks.site

module, 648
tenpy.networks.terms

module, 688
tenpy.simulations

module, 691
tenpy.simulations.ground_state_search

module, 698
tenpy.simulations.measurement

module, 697
tenpy.simulations.simulation

module, 693
tenpy.simulations.time_evolution

module, 699
tenpy.tools

module, 701
tenpy.tools.events

module, 725
tenpy.tools.fit

module, 744
tenpy.tools.hdf5_io

module, 714
tenpy.tools.math

module, 740
tenpy.tools.misc

module, 736
tenpy.tools.optimization

module, 753
tenpy.tools.params

module, 720
tenpy.tools.process

module, 748
tenpy.tools.string

module, 745
tenpy.version

module, 755
tensordot() (in module tenpy.linalg.np_conserved),

300
TermList (class in tenpy.networks.terms), 685
terms (tenpy.networks.terms.TermList attribute), 685
test_contractible()

(tenpy.linalg.charges.LegCharge method),
312

test_contractible()
(tenpy.linalg.charges.LegPipe method), 323

test_equal() (tenpy.linalg.charges.LegCharge
method), 313

test_equal() (tenpy.linalg.charges.LegPipe
method), 323

test_sanity() (tenpy.linalg.charges.ChargeInfo
method), 307

test_sanity() (tenpy.linalg.charges.LegCharge
method), 312

test_sanity() (tenpy.linalg.charges.LegPipe
method), 319

test_sanity() (tenpy.linalg.np_conserved.Array
method), 273

test_sanity() (tenpy.models.fermions_spinless.FermionChain
method), 564

test_sanity() (tenpy.models.hubbard.BoseHubbardChain
method), 579

test_sanity() (tenpy.models.hubbard.FermiHubbardChain
method), 592

test_sanity() (tenpy.models.lattice.Chain method),
363

test_sanity() (tenpy.models.lattice.HelicalLattice
method), 373

830 Index

TeNPy, Release 0.8.1

test_sanity() (tenpy.models.lattice.Honeycomb
method), 384

test_sanity() (tenpy.models.lattice.IrregularLattice
method), 395

test_sanity() (tenpy.models.lattice.Kagome
method), 406

test_sanity() (tenpy.models.lattice.Ladder
method), 417

test_sanity() (tenpy.models.lattice.Lattice
method), 422

test_sanity() (tenpy.models.lattice.SimpleLattice
method), 440

test_sanity() (tenpy.models.lattice.Square
method), 451

test_sanity() (tenpy.models.lattice.Triangular
method), 462

test_sanity() (tenpy.models.lattice.TrivialLattice
method), 473

test_sanity() (tenpy.models.model.CouplingModel
method), 480

test_sanity() (tenpy.models.model.MultiCouplingModel
method), 502

test_sanity() (tenpy.models.spins.SpinChain
method), 549

test_sanity() (tenpy.models.tf_ising.TFIChain
method), 521

test_sanity() (tenpy.models.toric_code.DualSquare
method), 607

test_sanity() (tenpy.models.xxz_chain.XXZChain2
method), 535

test_sanity() (tenpy.networks.mpo.MPOEnvironment
method), 662

test_sanity() (tenpy.networks.mpo.MPOGraph
method), 666

test_sanity() (tenpy.networks.mps.MPSEnvironment
method), 651

test_sanity() (tenpy.networks.site.BosonSite
method), 615

test_sanity() (tenpy.networks.site.FermionSite
method), 619

test_sanity() (tenpy.networks.site.GroupedSite
method), 624

test_sanity() (tenpy.networks.site.Site method),
627

test_sanity() (tenpy.networks.site.SpinHalfFermionSite
method), 634

test_sanity() (tenpy.networks.site.SpinHalfSite
method), 639

test_sanity() (tenpy.networks.site.SpinSite
method), 643

TFIChain (class in tenpy.models.tf_ising), 510
theta_svd_left_right()

(tenpy.algorithms.tdvp.Engine method), 244
theta_svd_right_left()

(tenpy.algorithms.tdvp.Engine method), 244
to_array() (in module tenpy.tools.misc), 734
to_Arrays() (tenpy.networks.terms.OnsiteTerms

method), 683
to_iterable() (in module tenpy.tools.misc), 734
to_iterable_arrays() (in module

tenpy.linalg.np_conserved), 301
to_iterable_of_len() (in module

tenpy.tools.misc), 734
to_LegCharge() (tenpy.linalg.charges.LegPipe

method), 319
to_mathematica_lists() (in module

tenpy.tools.string), 744
to_matrix() (tenpy.algorithms.mps_common.EffectiveH

method), 208
to_matrix() (tenpy.algorithms.mps_common.OneSiteH

method), 210
to_matrix() (tenpy.algorithms.mps_common.TwoSiteH

method), 213
to_matrix() (tenpy.algorithms.purification.PurificationTwoSiteU

method), 260
to_matrix() (tenpy.linalg.sparse.NpcLinearOperator

method), 343
to_matrix() (tenpy.linalg.sparse.NpcLinearOperatorWrapper

method), 344
to_matrix() (tenpy.linalg.sparse.OrthogonalNpcLinearOperator

method), 346
to_matrix() (tenpy.linalg.sparse.ShiftNpcLinearOperator

method), 346
to_matrix() (tenpy.linalg.sparse.SumNpcLinearOperator

method), 347
to_matrix() (tenpy.networks.mps.TransferMatrix

method), 657
to_ndarray() (tenpy.linalg.np_conserved.Array

method), 278
to_nn_bond_Arrays()

(tenpy.networks.terms.CouplingTerms method),
673

to_nn_bond_Arrays()
(tenpy.networks.terms.MultiCouplingTerms
method), 681

to_OnsiteTerms_CouplingTerms()
(tenpy.networks.terms.TermList method),
686

to_OptimizationFlag() (in module
tenpy.tools.optimization), 752

to_qdict() (tenpy.linalg.charges.LegCharge method),
312

to_qdict() (tenpy.linalg.charges.LegPipe method),
324

to_qflat() (tenpy.linalg.charges.LegCharge method),
312

to_qflat() (tenpy.linalg.charges.LegPipe method),
324

Index 831

TeNPy, Release 0.8.1

to_TermList() (tenpy.networks.terms.CouplingTerms
method), 673

to_TermList() (tenpy.networks.terms.ExponentiallyDecayingTerms
method), 676

to_TermList() (tenpy.networks.terms.MultiCouplingTerms
method), 680

to_TermList() (tenpy.networks.terms.OnsiteTerms
method), 684

trace() (in module tenpy.linalg.np_conserved), 301
TransferMatrix (class in tenpy.networks.mps), 655
transpose (tenpy.networks.mps.TransferMatrix

attribute), 656
transpose() (tenpy.linalg.np_conserved.Array

method), 285
transpose() (tenpy.linalg.sparse.FlatHermitianOperator

method), 335
transpose() (tenpy.linalg.sparse.FlatLinearOperator

method), 342
transpose_list_list() (in module

tenpy.tools.misc), 735
Triangular (class in tenpy.models.lattice), 453
trivial_like_NNModel()

(tenpy.models.fermions_spinless.FermionChain
method), 564

trivial_like_NNModel()
(tenpy.models.hubbard.BoseHubbardChain
method), 579

trivial_like_NNModel()
(tenpy.models.hubbard.FermiHubbardChain
method), 592

trivial_like_NNModel()
(tenpy.models.model.NearestNeighborModel
method), 505

trivial_like_NNModel()
(tenpy.models.spins.SpinChain method),
549

trivial_like_NNModel()
(tenpy.models.tf_ising.TFIChain method),
521

trivial_like_NNModel()
(tenpy.models.xxz_chain.XXZChain2 method),
535

TrivialLattice (class in tenpy.models.lattice), 464
trunc_err_bonds()

(tenpy.algorithms.purification.PurificationTEBD2
property), 258

trunc_err_bonds() (tenpy.algorithms.tebd.Engine
property), 202

TruncationError (class in
tenpy.algorithms.truncation), 195

TwoSiteH (class in tenpy.algorithms.mps_common),
211

TwoSiteMixer (class in tenpy.algorithms.dmrg), 237
TYPES_FOR_HDF5_DATASETS (in module

tenpy.tools.hdf5_io), 716

U
U_close_1() (in module tenpy.linalg.random_matrix),

329
unary_blockwise()

(tenpy.linalg.np_conserved.Array method),
286

unit_cell (tenpy.models.lattice.Lattice attribute), 421
unit_cell_positions (tenpy.models.lattice.Lattice

attribute), 421
unused_parameters() (in module

tenpy.tools.params), 719
unwrapped() (tenpy.linalg.sparse.NpcLinearOperatorWrapper

method), 344
unwrapped() (tenpy.linalg.sparse.OrthogonalNpcLinearOperator

method), 346
unwrapped() (tenpy.linalg.sparse.ShiftNpcLinearOperator

method), 347
unwrapped() (tenpy.linalg.sparse.SumNpcLinearOperator

method), 348
update() (tenpy.algorithms.purification.PurificationTEBD2

method), 255
update() (tenpy.algorithms.tebd.Engine method), 202
update_amplitude()

(tenpy.algorithms.dmrg.DensityMatrixMixer
method), 217

update_amplitude()
(tenpy.algorithms.dmrg.SingleSiteMixer
method), 236

update_amplitude()
(tenpy.algorithms.dmrg.TwoSiteMixer method),
238

update_bond() (tenpy.algorithms.purification.PurificationTEBD2
method), 258

update_bond() (tenpy.algorithms.tebd.Engine
method), 203

update_bond_imag()
(tenpy.algorithms.purification.PurificationTEBD2
method), 258

update_bond_imag()
(tenpy.algorithms.tebd.Engine method), 203

update_imag() (tenpy.algorithms.purification.PurificationTEBD2
method), 258

update_imag() (tenpy.algorithms.tebd.Engine
method), 203

update_local() (tenpy.algorithms.dmrg.EngineCombine
method), 226

update_local() (tenpy.algorithms.dmrg.EngineFracture
method), 234

update_local() (tenpy.algorithms.purification.PurificationApplyMPO
method), 251

update_LP() (tenpy.algorithms.dmrg.EngineCombine
method), 225

832 Index

TeNPy, Release 0.8.1

update_LP() (tenpy.algorithms.dmrg.EngineFracture
method), 234

update_new_psi() (tenpy.algorithms.purification.PurificationApplyMPO
method), 251

update_recursive() (in module tenpy.tools.misc),
735

update_RP() (tenpy.algorithms.dmrg.EngineCombine
method), 226

update_RP() (tenpy.algorithms.dmrg.EngineFracture
method), 234

update_s_h0() (tenpy.algorithms.tdvp.Engine
method), 244

update_step() (tenpy.algorithms.purification.PurificationTEBD2
method), 255

update_step() (tenpy.algorithms.tebd.Engine
method), 203

update_theta_h1() (tenpy.algorithms.tdvp.Engine
method), 244

update_theta_h2() (tenpy.algorithms.tdvp.Engine
method), 244

use_cython() (in module tenpy.tools.optimization),
752

V
V (tenpy.algorithms.exact_diag.ExactDiag attribute), 265
valid_hdf5_path_component() (in module

tenpy.tools.hdf5_io), 714
valid_opname() (tenpy.networks.site.BosonSite

method), 615
valid_opname() (tenpy.networks.site.FermionSite

method), 619
valid_opname() (tenpy.networks.site.GroupedSite

method), 624
valid_opname() (tenpy.networks.site.Site method),

628
valid_opname() (tenpy.networks.site.SpinHalfFermionSite

method), 635
valid_opname() (tenpy.networks.site.SpinHalfSite

method), 639
valid_opname() (tenpy.networks.site.SpinSite

method), 643
vec_label (tenpy.linalg.sparse.FlatLinearOperator

attribute), 337
version (in module tenpy.version), 755
version_summary (in module tenpy.version), 755
vert_join() (in module tenpy.tools.string), 745

W
W (tenpy.algorithms.tdvp.H1_mixed attribute), 246
W0 (tenpy.algorithms.tdvp.H2_mixed attribute), 247
W1 (tenpy.algorithms.tdvp.H2_mixed attribute), 247

X
XXZChain2 (class in tenpy.models.xxz_chain), 524

Z
zero_if_close() (in module tenpy.tools.misc), 735
zeros() (in module tenpy.linalg.np_conserved), 301
zeros_like() (tenpy.linalg.np_conserved.Array

method), 276

Index 833

	I User guide
	How do I get set up?
	How to read the documentation
	Help - I looked at the documentation, but I don’t understand how …?
	I found a bug
	Citing TeNPy
	Acknowledgment
	License
	Installation instructions
	Installation with conda from conda-forge
	Installation from PyPi with pip
	Updating to a new version
	Installation from source
	Extra requirements
	Checking the installation
	TeNPy developer team
	License

	Release Notes
	[latest]
	[v0.8.1] - 2021-02-23
	[v0.8.0] - 2021-02-19
	[0.7.2] - 2020-10-09
	[0.7.1] - 2020-09-04
	[0.7.0] - 2020-09-04
	[0.6.1] - 2020-05-18
	[0.6.0] - 2020-05-16
	[0.5.0] - 2019-12-18
	[0.4.1] - 2019-08-14
	[0.4.0] - 2019-04-28
	[0.3.0] - 2018-02-19
	[0.2.0] - 2017-02-24
	Changes compared to previous TeNPy

	Introductions
	Overview
	Charge conservation with np_conserved
	Models
	Simulations
	Details on the lattice geometry
	Logging and terminal output
	Parameters and options
	Saving to disk: input/output
	Fermions and the Jordan-Wigner transformation
	Protocol for using (i)DMRG

	Examples
	Toycodes
	Python scripts
	Jupyter Notebooks

	Troubleshooting and FAQ
	I get an error when …
	I get a warning about …

	Literature and References
	TeNPy related sources
	Software-related
	General reading
	Algorithm developments
	References

	Papers using TeNPy
	Contributing
	Coding Guidelines
	Bulding the documentation
	To-Do list

	II Reference
	Tenpy main module
	run_simulation
	console_main
	show_config

	algorithms
	algorithm
	truncation
	tebd
	mps_common
	dmrg
	tdvp
	purification
	mpo_evolution
	network_contractor
	exact_diag

	linalg
	np_conserved
	charges
	svd_robust
	random_matrix
	sparse
	lanczos

	models
	lattice
	model
	tf_ising
	xxz_chain
	spins
	spins_nnn
	fermions_spinless
	hubbard
	hofstadter
	haldane
	toric_code

	networks
	site
	mps
	mpo
	terms
	purification_mps

	simulations
	simulation
	measurement
	ground_state_search
	time_evolution

	tools
	hdf5_io
	params
	events
	misc
	math
	fit
	string
	process
	optimization

	version
	Bibliography
	Python Module Index
	Config Option Index
	Config Index
	Index

