tenpy Documentation

Release 0.5.0

TenPy Team

Dec 19, 2019

CONTENTS

1 How do I get set up? 3
2 How to read the documentation 5
3 Help - I looked at the documentation, but I don't understand how? 7
4 Citing TeNPy 9
5 I found a bug 11
6 License 13
7 Contents 15
7.1 User Guide 15
7.1.1 Content 15
7.2 Tenpy Reference 80
7.2.1 algorithms 80
7.2.2 linalg 169
7.2.3 models 237
7.2.4 networks 483
7.2.5 tools 581
7.2.6 version 606
8 Indices and tables 607
Bibliography 609
Python Module Index 611
Index 613

TeNPy (short for 'Tensor Network Python') is a Python library for the simulation of strongly correlated quantum systems with tensor networks.

The philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the same time powerful algorithms and fast development of new algorithms for experts. For good readability, we include an extensive documentation next to the code, both in Python doc strings and separately as user guides, as well as simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in ~ 100 lines per file.

HOW DO I GET SET UP?

Follow the instructions in the file doc/INSTALL.rst, online at https://tenpy.github.io/INSTALL.html. The latest version of the source code can be obtained from https://github.com/tenpy/tenpy.

HOW TO READ THE DOCUMENTATION

The documentation is available online at https://tenpy.github.io. The documentation is roughly split in two parts: on one hand the full "reference" containing the documentation of all functions, classes, methods, etc., and on the other hand the "user guide" containing some introductions and additional explanations.

The documentation is based on Python's docstrings, and some additional *. rst files located in the folder doc/ of the repository. All documentation is formated as reStructuredText, which means it is quite readable in the source plain text, but can also be converted to other formats. If you like it simple, you can just use intective python help(), Python IDEs of your choice or jupyter notebooks, or just read the source. Moreover, the documentation is nightly converted into HTML using Sphinx, and made available online at https://tenpy.github.io/. The big advantages of the (online) HTML documentation are a lot of cross-links between different functions, and even a search function. If you prefer yet another format, you can try to build the documentation yourself, as described in doc/contributing.rst, online at https://tenpy.github.io/contributing.html.

HELP - I LOOKED AT THE DOCUMENTATION, BUT I DON'T UNDERSTAND HOW ...?

We have set up a community forum at https://tenpy.johannes-hauschild.de/, where you can post questions and hopefully find answers. Once you got some experience with TeNPy, you might also be able to contribute to the community and answer some questions yourself ;-) We also use this forum for official annoucements, for example when we release a new version.

CITING TENPY

When you use TeNPy for a work published in an academic journal, you can cite this paper to acknowledge the work put into the development of TeNPy. (The license of TeNPy does not force you, however.) For example, you could add the sentence "Calculations were performed using the TeNPy Library (version X. X. X) \cite $\{$ tenpy $\}$. " in the acknowledgements or in the main text.

The corresponding BibTex Entry would be the following (the \}requires\usepackage\{hyperref\}intheLaTeXpreamble.):undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
@Article{tenpy,
    title={{Efficient numerical simulations with Tensor Networks: Tensor Network 〕
->Python (TeNPy)}},
    author={Johannes Hauschild and Frank Pollmann},
    journal={SciPost Phys. Lect. Notes},
    pages={5},
    year={2018},
    publisher={SciPost},
    doi={10.21468/SciPostPhysLectNotes.5},
    url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
    archiveprefix={arXiv},
    eprint={1805.00055},
    note={Code available from \url{https://github.com/tenpy/tenpy}},
}
```


I FOUND A BUG

You might want to check the github issues, if someone else already reported the same problem. To report a new bug, just open a new issue on github. If you already know how to fix it, you can just create a pull request :) If you are not sure whether your problem is a bug or a feature, you can also ask for help in the TeNPy forum.

LICENSE

The code is licensed under GPL-v3.0 given in the file LICENSE of the repository, in the online documentation readable at https://tenpy.github.io/license.html.

7.1 User Guide

First a short warning: the term 'user guide' might be a bit misleading: this part of the documentation simply covers everything but what is documented directly in the source - the latter can be found in the Tenpy Reference.
The first step to use tenpy is to download and install it; simply follow the Installation instructions.
After that, take a look at the Overview to get started.

7.1.1 Content

Installation instructions

Installation from packages

If you have the conda package manager from anaconda, you can simply download the environment. yml file and create a new environment for tenpy with all the required packages:

```
conda env create -f environment.yml
conda activate tenpy
```

This will also install pip. Alternatively, if you only have pip, install the required packages with:

```
pip install -r requirements.txt
```

Note: Make sure that the pip you call corresponds to the python version you want to use. (e.g. by using python $-m$ pip instead of a simple pip Also, you might need to use the arguement --user to install the packages to your home directory, if you don't have sudo rights.

Warning: It might just be a temporary problem, but I found that the pip version of numpy is incompatible with the python distribution of anaconda. If you have installed the intelpython or anaconda distribution, use the conda packagemanager instead of pip for updating the packages whenever possible!

After that, you can install the latest *stable* TeNPy package (without downloading the source) from PyPi with:

```
pip install physics-tenpy # note the different package name - 'tenpy' was taken!
```

Note: When the installation fails, don't give up yet. In the minimal version, tenpy requires only pure Python with somewhat up-to-date NumPy and SciPy. See the section Installation from source below.

To get the latest development version from the github master branch, you can use:

```
pip install git+git://github.com/tenpy/tenpy.git
```

Finally, if you downloaded the source and want to modify parts of the source, you should install tenpy in development version with -e:

```
cd $HOME/TeNPy # after downloading the source
pip install --editable .
```

In all cases, you can uninstall tenpy with:

```
pip uninstall physics-tenpy # note the longer name!
```


Updating to a new version

Before you update, take a look at the CHANGELOG, which lists the changes, fixes, and new stuff. Most importantly, it has a section on backwards incompatible changes (i.e., changes which may break your existing code) along with information how to fix it. Of course, we try to avoid introducing such incompatible changes, but sometimes, there's no way around them.

How to update depends a little bit on the way you installed TeNPy. Of course, you have always the option to just remove the tenpy files and download the newest version, following the instructions above.

Alternatively, if you used git clone . . . to download the repository, you can update to the newest version using Git. First, briefly check that you didn't change anything you need to keep with git status. Then, do a git pull to download (and possibly merge) the newest commit from the repository.

Note: If some Cython file (ending in . pyx) got renamed/removed (e.g., when updating from v0.3.0 to v0.4.0), you first need to remove the corresponding binary files. You can do so with the command bash cleanup. sh.

Furthermore, whenever one of the cython files (ending in . pyx) changed, you need to re-compile it. To do that, simply call the command bash . / compile again. If you are unsure whether a cython file changed, compiling again doesn't hurt.

To summarize, you need to execute the following bash commands in the repository:

```
# 0) make a backup of the whole folder
git status # check the output whether you modified some files
git pull
bash ./cleanup.sh # (confirm with 'y')
bash ./compile.sh
```


Installation from source

Minimal Requirements

This code works with a minimal requirement of pure Python $>=3.5$ and somewhat recent versions of NumPy and SciPy.

Getting the source

The following instructions are for (some kind of) Linux, and tested on Ubuntu. However, the code itself should work on other operating systems as well (in particular MacOS and Windows).

The offical repository is at https://github.com/tenpy/tenpy.git. To get the latest version of the code, you can clone it with Git using the following commands:

```
git clone https://github.com/tenpy/tenpy.git $HOME/TeNPy
cd $HOME/TeNPy
```

Adjust \$HOME / TeNPy to the path wherever you want to save the library.
Optionally, if you don't want to contribute, you can checkout the latest stable release:

```
git tag # this prints the available version tags
git checkout v0.3.0 # or whatever is the lastest stable version
```

Note: In case you don't have Git, you can download the repository as a ZIP archive. You can find it under releases, or the latest development version.

Minimal installation: Including tenpy into PYTHONPATH

The python source is in the directory tenpy/ of the repository. This folder tenpy/ should be placed in (one of the folders of) the environment variable PYTHONPATH. On Linux, you can simply do this with the following line in the terminal:

```
export PYTHONPATH=$HOME/TeNPy
```

(If you have already a path in this variable, separate the paths with a colon :.) However, if you enter this in the terminal, it will only be temporary for the terminal session where you entered it. To make it permanently, you can add the above line to the file $\$ \mathrm{HOME} / \mathrm{b}$ bashrc. You might need to restart the terminal session or need to relogin to force a reload of the $\sim /$. bashrc.

Whenever the path is set, you should be able to use the library from within python:

```
>>> import tenpy
/home/username/TeNPy/tenpy/tools/optimization.py:276: UserWarning: Couldn't load
compiled cython code. Code will run a bit slower.
    warnings.warn("Couldn't load compiled cython code. Code will run a bit slower.")
>>> tenpy.show_config()
tenpy 0.4.0.dev0+7706003 (not compiled),
git revision 77060034a9fa64d2c7c16b4211e130cf5b6f5272 using
python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0]
numpy 1.16.3, scipy 1.2.1
```

tenpy.show_config () prints the current version of the used TeNPy library as well as the versions of the used python, numpy and scipy libraries, which might be different on your computer. It is a good idea to save this data (given as string in tenpy.version.version_summary along with your data to allow to reproduce your results exactly.

If you got a similar output as above: congratulations! You can now run the codes :)

MKL and further packages

If you want to run larger simulations, we recommend the use of Intel's MKL. It ships with a Lapack library, and uses optimization for Intel CPUs. Moreover, it uses parallelization of the LAPACK/BLAS routines, which makes execution much faster. As of now, the library itself supports no other way of parallelization.

If you don't have a python version which is built against MKL, we recommend using the anaconda distribution, which ships with Intel MKL, or directly intelpython. Conda has the advantage that it allows to use different environments for different projects. Both are available for Linux, Mac and Windows; note that you don't even need administrator rights to install it on linux. Simply follow the (straight-forward) instructions of the web page for the installation. After a successfull installation, if you run python interactively, the first output line should state the python version and contain Anaconda or Intel Corporation, respectively.

If you have a working conda package manager, you can install the numpy build against mkl with:

```
conda install mkl numpy scipy
```

If you prefer using a separete conda environment, you can also use the following code to install all the recommended packages:

```
conda env create -f environment.yml
conda activate tenpy
```

Note: MKL uses different threads to parallelize various BLAS and LAPACK routines. If you run the code on a cluster, make sure that you specify the number of used cores/threads correctly. By default, MKL uses all the available CPUs, which might be in stark contrast than what you required from the cluster. The easiest way to set the used threads is using the environment variable $M K L_{-} N U M_{-} T H R E A D S$ (or $O M P _N U M_{-} T H R E A D S$). For a dynamic change of the used threads, you might want to look at process.

Some code uses MatPlotLib for plotting, e.g., to visualize a lattice. However, having matplotlib is not necessary for running any of the algorithms: tenpy does not import matplot lib by default. Further optional requirements are listed in the requirements*.txt files in the source repository.

Compilation of np_conserved

At the heart of the TeNPy library is the module tenpy.linalg.np_conseved, which provides an Array class to exploit the conservation of abelian charges. The data model of python is not ideal for the required book-keeping, thus we have implemented the same np_conserved module in Cython. This allows to compile (and thereby optimize) the corresponding python module, thereby speeding up the execution of the code. While this might give a significant speed-up for code with small matrix dimensions, don't expect the same speed-up in cases where most of the CPU-time is already spent in matrix multiplications (i.e. if the bond dimension of your MPS is huge).
To compile the code, you first need to install Cython

```
conda install cython # when using anaconda, or
pip install --upgrade Cython # when using pip
```

Moreover, you need a C++ compiler. For example, on Ubuntu you can install sudo apt-get install build_essential, or on Windows you can download MS Visual Studio 2015. If you use anaconda, you can also use one conda install -c conda-forge cxx-compiler.

After that, go to the root directory of TeNPy (\$HOME / TeNPy) and simply run

```
bash ./compile.sh
```

Note that it is not required to separately download (and install) Intel MKL: the compilation just obtains the includes from numpy. In other words, if your current numpy version uses MKL (as the one provided by anaconda), the compiled TeNPy code will also use it.

After a successful compilation, the warning that TeNPy was not compiled should go away:

```
>>> import tenpy
>>> tenpy.show_config()
tenpy 0.4.0.dev0+b60bad3 (compiled from git rev.u
\hookrightarrowb60bad3243b7e54f549f4f7c1f074dc55bb54ba3),
git revision b60bad3243b7e54f549f4f7c1f074dc55bb54ba3 using
python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0]
numpy 1.16.3, scipy 1.2.1
```

Note: For further optimization options, look at tenpy.tools.optimization.

Checking the installation

As a first check of the installation you can try to run (one of) the python files in the examples/ subfolder; hopefully all of them should run without error.

You can also run the automated testsuite with pytest (pip install pytest) to make sure everything works fine:

```
cd $HOME/TeNPy/tests
pytest
```

This should run some tests. In case of errors or failures it gives a detailed traceback and possibly some output of the test. At least the stable releases should run these tests without any failures.

If you can run the examples but not the tests, check whether pytest actually uses the correct python version.
The test suite is also run automatically with travis-ci, results can be inspected at here.

Overview

Repository

The root directory of this git repository contains the following folders:
tenpy The actual source code of the library. Every subfolder contains an \qquad init \qquad . py file with a summary what the modules in it are good for. (This file is also necessary to mark the folder as part of the python package. Consequently, other subfolders of the git repo should not include a \qquad init \qquad . py file.)
toycodes Simple toy codes completely independet of the remaining library (i.e., codes in tenpy/). These codes should be quite readable and intend to give a flavor of how (some of) the algorithms work.
examples Some example files demonstrating the usage and interface of the library.
doc A folder containing the documentation: the user guide is contained in the $*$.rst files. The online documentation is autogenerated from these files and the docstrings of the library. This folder contains a make file for building the documentation, run make help for the different options. The necessary files for the reference in doc/ reference can be auto-generated/updated with make src2html.
tests Contains files with test routines, to be used with pytest. If you are set up correctly and have pytest installed, you can run the test suite with pytest from within the tests/folder.
build This folder is not distributed with the code, but is generated by setup.py (or compile.sh, respectively). It contains compiled versions of the Cython files, and can be ignored (and even removed without loosing functionality).

Code structure: getting started

There are several layers of abstraction in TeNPy. While there is a certain hierarchy of how the concepts build up on each other, the user can decide to utilize only some of them. A maximal flexibility is provided by an object oriented style based on classes, which can be inherited and adjusted to individual demands.

The following figure gives an overview of the most important modules, classes and functions in TeNPy. Gray backgrounds indicate (sub)modules, yellow backgrounds indicate classes. Red arrows indicate inheritance relations, dashed black arrows indicate a direct use. (The individual models might be derived from the NearestNeighborModel depending on the geometry of the lattice.) There is a clear hierarchy from high-level algorithms in the tenpy. algorithms module down to basic operations from linear algebra in the tenpy. Iinalg module.

Most basic level: linear algebra

Note: See Introduction to np_conserved for more information on defining charges for arrays.
The most basic layer is given by in the linalg module, which provides basic features of linear algebra. In particular, the np_conserved submodule implements an Array class which is used to represent the tensors. The basic interface of np_conserved is very similar to that of the NumPy and SciPy libraries. However, the Array class implements abelian charge conservation. If no charges are to be used, one can use 'trivial' arrays, as shown in the following example code.

```
"""Basic use of the `Array` class with trivial arrays."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
import tenpy.linalg.np_conserved as npc
M = npc.Array.from_ndarray_trivial([[0., 1.], [1., 0.]])
v = npc.Array.from_ndarray_trivial([2., 4. + 1.j])
v[0] = 3. # set indiviual entries like in numpy
print("|v> =", v.to_ndarray())
# |v> = [ 3.+0.j 4.+1.j]
M_v = npc.tensordot(M, v, axes=[1, 0])
print("M|v> =", M_v.to_ndarray())
# M/v> = [ 4.+1.j 3.+0.j]
print("<v|M|v> =", npc.inner(v.conj(), M_v, axes='range'))
# <v|M|v> = (24+0j)
```

The number and types of symmetries are specified in a ChargeInfo class. An Array instance represents a tensor satisfying a charge rule specifying which blocks of it are nonzero. Internally, it stores only the non-zero blocks of the tensor, along with one LegCharge instance for each leg, which contains the charges and sign qconj for each leg. We can combine multiple legs into a single larger LegPipe, which is derived from the LegCharge and stores all the information necessary to later split the pipe.

The following code explicitly defines the spin-1/2 S^{+}, S^{-}, S^{z} operators and uses them to generate and diagonalize the two-site Hamiltonian $H=\vec{S} \cdot \vec{S}$. It prints the charge values (by default sorted ascending) and the eigenvalues of H .

```
"""Explicit definition of charges and spin-1/2 operators."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
import tenpy.linalg.np_conserved as npc
# consider spin-1/2 with Sz-conservation
chinfo = npc.ChargeInfo([1]) # just a U(I) charge
# charges for up, down state
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]])
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]], [p_leg, p_leg.conj()])
Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]], [p_leg, p_leg.conj()])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]], [p_leg, p_leg.conj()])
Hxy = 0.5 * (npc.outer(Sp, Sm) + npc.outer(Sm, Sp))
Hz = npc.outer(Sz, Sz)
H = Hxy + Hz
# here, H has 4 legs
H.iset_leg_labels(["s1", "t1", "s2", "t2"])
H = H.combine_legs([["s1", "s2"], ["t1", "t2"]], qconj=[+1, -1])
# here, H has 2 legs
print(H.legs[0].to_qflat().flatten())
# prints [-2 0 0 2]
E, U = npc.eigh(H) # diagonalize blocks individually
print(E)
# [ [ 0.25 -0.75 0.25 0.25]
```


Sites for the local Hilbert space and tensor networks

The next basic concept is that of a local Hilbert space, which is represented by a Site in TeNPy. This class does not only label the local states and define the charges, but also provides onsite operators. For example, the SpinHalfSite provides the S^{+}, S^{-}, S^{z} operators under the names 'Sp', 'Sm', 'Sz', defined as Array instances similarly as in the code above. Since the most common sites like for example the SpinSite (for general spin $\mathrm{S}=0.5,1,1.5, \ldots$), BosonSite and FermionSite are predefined, a user of TeNPy usually does not need to define the local charges and operators explicitly. The total Hilbert space, i.e, the tensor product of the local Hilbert spaces, is then just given by a list of Site instances. If desired, different kinds of Site can be combined in that list. This list is then given to classes representing tensor networks like the MPS and MPO. The tensor network classes also use Array instances for the tensors of the represented network.
The following example illustrates the initialization of a spin- $1 / 2$ site, an MPS representing the Neel state, and an MPO representing the Heisenberg model by explicitly defining the W tensor.

```
"""Initialization of sites, MPS and MPO."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.networks.site import SpinHalfSite
from tenpy.networks.mps import MPS
from tenpy.networks.mpo import MPO
spin = SpinHalfSite(conserve="Sz")
print(spin.Sz.to_ndarray())
# [[ 0.5 0. ]
# [0. -0.5]]
N = 6 # number of sites
sites = [spin] * N # repeat entry of list N times
pstate = ["up", "down"] * (N // 2) # Neel state
psi = MPS.from_product_state(sites, pstate, bc="finite")
print("<Sz> =", psi.expectation_value("Sz"))
# <Sz> = [ lllll}0.5-0.5 0.5 -0.5]
print("<Sp_i Sm_j> =", psi.correlation_function("Sp", "Sm"), sep="\n")
# <Sp_i Sm_j> =
# [[1. 0. 0. 0. 0. 0.]
# [0.0.0.0.0.0.]
# [0.0.1. 0.0.0.]
# [0.0.0.0.0.0.]
# [0.0.0.0. 1. 0.]
# [0.0.0.0.0.0.]]
# define an MPO
Id, Sp, Sm, Sz = spin.Id, spin.Sp, spin.Sm, spin.Sz
J, Delta, hz = 1., 1., 0.2
W_bulk = [[Id, Sp, Sm, Sz, -hz * Sz], [None, None, None, None, 0.5 * J * Sm],
    [None, None, None, None, 0.5 * J * Sp], [None, None, None, None, J * Delta_
\hookrightarrow* Sz],
    [None, None, None, None, Id]]
W_first = [W_bulk[0]] # first row
W_last = [[row[-1]] for row in W_bulk] # last column
Ws = [W_first] + [W_bulk] * (N - 2) + [W_last]
H = MPO.from_grids([spin] * N, Ws, bc='finite', IdL=0, IdR=-1)
print("<psi|H|psi> =", H.expectation_value(psi))
# <psi|H|psi> = -1.25
```


Models

Note: See Introduction to models for more information on sites and how to define and extend models on your own.

Technically, the explicit definition of an MPO is already enough to call an algorithm like DMRG in $d m r g$. However, writing down the W tensors is cumbersome especially for more complicated models. Hence, TeNPy provides another layer of abstraction for the definition of models, which we discuss first. Different kinds of algorithms require different representations of the Hamiltonian. Therefore, the library offers to specify the model abstractly by the individual onsite terms and coupling terms of the Hamiltonian. The following example illustrates this, again for the Heisenberg model.

```
"""Definition of a model: the XXZ chain."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.networks.site import SpinSite
from tenpy.models.lattice import Chain
from tenpy.models.model import CouplingModel, NearestNeighborModel, MPOModel
class XXZChain(CouplingModel, NearestNeighborModel, MPOModel):
    def __init__(self, L=2, S=0.5, J=1., Delta=1., hz=0.):
        spin = SpinSite(S=S, conserve="Sz")
        # the lattice defines the geometry
        lattice = Chain(L, spin, bc="open", bc_MPS="finite")
        CouplingModel.__init___(self, lattice)
        # add terms of the Hamiltonian
        self.add_coupling(J * 0.5, 0, "Sp", 0, "Sm", 1) # Sp_i Sm_{i+1}
        self.add_coupling(J * 0.5, 0, "Sp", 0, "Sm", -1) # Sp_i Sm_{i-1}
        self.add_coupling(J * Delta, 0, "Sz", 0, "Sz", 1)
        # (for site dependent prefactors, the strength can be an array)
        self.add_onsite(-hz, 0, "Sz")
        # finish initialization
        # generate MPO for DMRG
        MPOModel.__init__(self, lat, self.calc_H_MPO())
        # generate H_bond for TEBD
        NearestNeighborModel.__init__(self, lat, self.calc_H_bond())
```

While this generates the same MPO as in the previous code, this example can easily be adjusted and generalized, for example to a higher dimensional lattice by just specifying a different lattice. Internally, the MPO is generated using a finite state machine picture. This allows not only to translate more complicated Hamiltonians into their corresponding MPOs, but also to automate the mapping from a higher dimensional lattice to the 1D chain along which the MPS winds. Note that this mapping introduces longer-range couplings, so the model can no longer be defined to be a NearestNeighborModel suited for TEBD if another lattice than the Chain is to be used. Of course, many commonly studied models are also predefined. For example, the following code initializes the Heisenberg model on a kagome lattice; the spin liquid nature of the ground state of this model is highly debated in the current literature.

```
"""Initialization of the Heisenberg model on a kagome lattice."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.models.spins import SpinModel
model_params = {
    "S": 0.5, # Spin 1/2
    "lattice": "Kagome",
```

```
    "bc_MPS": "infinite",
    "bc_y": "cylinder",
    "Ly": 2, # defines cylinder circumference
    "conserve": "Sz", # use Sz conservation
    "Jx": 1.,
    "Jy": 1.,
    "Jz": 1. # Heisenberg coupling
}
model = SpinModel(model_params)
```


Algorithms

The highest level in TeNPy is given by algorithms like DMRG and TEBD. Using the previous concepts, setting up a simulation running those algorithms is a matter of just a few lines of code. The following example runs a DMRG simulation, see $d m r g$, exemplary for the transverse field Ising model at the critical point.

```
"""Call of (finite) DMRG."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg
N = 16 # number of sites
model = TFIChain({"L": N, "J": 1., "g": 1., "bc_MPS": "finite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, ['up'] * N, "finite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10}, "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info['E'])
# E = -20.01638790048513
print("max. bond dimension =", max(psi.chi))
# max. bond dimension = 27
```

The switch from DMRG to gls \{iDMRG\} in TeNPy is simply accomplished by a change of the parameter "bc_MPS" from "finite" to "infinite", both for the model and the state. The returned E is then the energy density per site. Due to the translation invariance, one can also evaluate the correlation length, here slightly away from the critical point.

```
"""Call of infinite DMRG."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg
N = 2 # number of sites in unit cell
model = TFIChain({"L": N, "J": 1., "g": 1.1, "bc_MPS": "infinite"})
sites = model.lat.mps_sites()
psi = MPS.from_product_state(sites, ['up'] * N, "infinite")
dmrg_params = {"trunc_params": {"chi_max": 100, "svd_min": 1.e-10}, "mixer": True}
info = dmrg.run(psi, model, dmrg_params)
print("E =", info['E'])
# E = -1.342864022725017
```

(continued from previous page)

```
print("max. bond dimension =", max(psi.chi))
# max. bond dimension = 56
print("corr. length =", psi.correlation_length())
# corr. length = 4.915809146764157
```

Running time evolution with TEBD requires an additional loop, during which the desired observables have to be measured. The following code shows this directly for the infinite version of TEBD.

```
"""Call of (infinite) TEBD."""
# Copyright 2019 TeNPy Developers, GNU GPLv3
from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import tebd
M = TFIChain({"L": 2, "J": 1., "g": 1.5, "bc_MPS": "infinite"})
psi = MPS.from_product_state(M.lat.mps_sites(), [0] * 2, "infinite")
tebd_params = {
    "order": 2,
    "delta_tau_list": [0.1, 0.001, 1.e-5],
    "max_error_E": 1.e-6,
    "trunc_params": {
            "chi_max": 30,
            "svd_min": 1.e-10
    }
}
eng = tebd.Engine(psi, M, tebd_params)
eng.run_GS() # imaginary time evolution with TEBD
print("E =", sum(psi.expectation_value(M.H_bond)) / psi.L)
print("final bond dimensions: ", psi.chi)
```


Literature

This is a (by far non-exhaustive) list of some references for the various ideas behind the code, sorted by year and author. They can be cited from the python doc-strings using the format [Author\#\#\#\#] _.

TeNPy related sources

General reading

Further reviews are:

Algorithm developments

Related theory

Two-dimensional systems

Introduction to np_conserved

The basic idea is quickly summarized: By inspecting the Hamiltonian, you can identify symmetries, which correspond to conserved quantities, called charges. These charges divide the tensors into different sectors. This can be used to infer for example a block-diagonal structure of certain matrices, which in turn speeds up SVD or diagonalization a lot. Even for more general (non-square-matrix) tensors, charge conservation imposes restrictions which blocks of a tensor can be non-zero. Only those blocks need to be saved, and e.g. tensordot can be speeded up.

This introduction covers our implementation of charges; explaining mathematical details of the underlying symmetry is beyond its scope. We refer you to Ref. [Singh2009] for the general idea, which is more nicely explained for the example of a $U(1)$ symmetry in [Singh2010].

Notations

Lets fix the notation for this introduction and the doc-strings in np_conserved.
A Array is a multi-dimensional array representing a tensor with the entries:

$$
T_{a_{0}, a_{1}, \ldots a_{\text {rank-1 }}} \quad \text { with } \quad a_{i} \in\left\{0, \ldots, n_{i}-1\right\}
$$

Each leg a_{i} corresponds the a vector space of dimension $n_{-} i$.
An index of a leg is a particular value $a_{i} \in\left\{0, \ldots, n_{i}-1\right\}$.
The rank is the number of legs, the shape is $\left(n_{0}, \ldots, n_{\text {rank-1 }}\right)$.
We restrict ourselfes to abelian charges with entries in \mathbb{Z} or in \mathbb{Z}_{m}. The nature of a charge is specified by m; we set $m=1$ for charges corresponding to \mathbb{Z}. The number of charges is refered to as qnumber as a short hand, and the collection of m for each charge is called qmod. The qnumber, qmod and possibly descriptive names of the charges are saved in an instance of ChargeInfo.

To each index of each leg, a value of the charge(s) is associated. A charge block is a contiguous slice corresponding to the same charge(s) of the leg. A qindex is an index in the list of charge blocks for a certain leg. A charge sector is for given charge(s) is the set of all qindices of that charge(s). A leg is blocked if all charge sectors map one-to-one to qindices. Finally, a leg is sorted, if the charges are sorted lexiographically. Note that a sorted leg is always blocked. We can also speak of the complete array to be blocked by charges or legcharge-sorted, which means that all of its legs are blocked or sorted, respectively. The charge data for a single leg is collected in the class LegCharge. A LegCharge has also a flag qconj, which tells whether the charges point inward (+1) or outward (-1). What that means, is explained later in Which entries of the npc Array can be non-zero?.

For completeness, let us also summarize also the internal structure of an Array here: The array saves only non-zero blocks, collected as a list of np.array in self._data. The qindices necessary to map these blocks to the original leg indices are collected in self._qdata An array is said to be qdata-sorted if its self._qdata is lexiographically sorted. More details on this follow later. However, note that you usually shouldn't access _qdata and _data directly this is only necessary from within tensordot, $s v d$, etc. Also, an array has a total charge, defining which entries can be non-zero - details in Which entries of the npc Array can be non-zero?.

Finally, a leg pipe (implemented in LegPipe) is used to formally combine multiple legs into one leg. Again, more details follow later.

Physical Example

For concreteness, you can think of the Hamiltonian $H=-t \sum_{<i, j>}\left(c_{i}^{\dagger} c_{j}+H . c.\right)+U n_{i} n_{j}$ with $n_{i}=c_{i}^{\dagger} c_{i}$. This Hamiltonian has the global $U(1)$ gauge symmetry $c_{i} \rightarrow c_{i} e^{i \phi}$. The corresponding charge is the total number of particles $N=\sum_{i} n_{i}$. You would then introduce one charge with $m=1$.
Note that the total charge is a sum of local terms, living on single sites. Thus, you can infer the charge of a single physical site: it's just the value $q_{i}=n_{i} \in \mathbb{N}$ for each of the states.
Note that you can only assign integer charges. Consider for example the spin $1 / 2$ Heisenberg chain. Here, you can naturally identify the magnetization $S^{z}=\sum_{i} S_{i}^{z}$ as the conserved quantity, with values $S_{i}^{z}= \pm \frac{1}{2}$. Obviously, if S^{z} is conserved, then so is $2 S^{z}$, so you can use the charges $q_{i}=2 S_{i}^{z} \in\{-1,+1\}$ for the down and $u p$ states, respectively. Alternatively, you can also use a shift and define $q_{i}=S_{i}^{z}+\frac{1}{2} \in\{0,1\}$.
As another example, consider BCS like terms $\sum_{k}\left(c_{k}^{\dagger} c_{-k}^{\dagger}+\right.$ H.c. $)$. These terms break the total particle conservation, but they preserve the total parity, i.e., N

In the above examples, we had only a single charge conserved at a time, but you might be lucky and have multiple conserved quantities, e.g. if you have two chains coupled only by interactions. TeNPy is designed to handle the general case of multiple charges. When giving examples, we will restrict to one charge, but everything generalizes to multiple charges.

The different formats for LegCharge

As mentioned above, we assign charges to each index of each leg of a tensor. This can be done in three formats: qflat, as qind and as qdict. Let me explain them with examples, for simplicity considereing only a single charge (the most inner array has one entry for each charge).
qfat form: simply a list of charges for each index. An example:
qflat $=[[-2],[-1],[-1],[0],[0],[0],[0],[3],[3]]$

This tells you that the leg has size 9 , the charges for are [-2], [-1], [-1], ..., [3] for the indices 0 , $1,2,3, \ldots, 8$. You can identify four charge blocks slice (0,1), slice (1, 3), slice(3, 7), slice (7, 9) in this example, which have charges [-2], [-1], [0], [3]. In other words, the indices 1,2 (which are in slice (1,3)) have the same charge value $[-1]$. A qindex would just enumerate these blocks as $0,1,2,3$.
qind form: a 1D array slices and a 2D array charges. This is a more compact version than the qfat form: the slices give a partition of the indices and the charges give the charge values. The same example as above would simply be:

```
slices = [0, 1, 3, 7, 9]
charges = [[-2], [-1], [0], [3]]
```

Note that slices includes 0 as first entry and the number of indices (here 9) as last entries. Thus it has len block_number + 1, where block_number (given by block_number) is the number of charge blocks in the leg, i.e. a qindex runs from 0 to block_number-1. On the other hand, the 2D array charges has shape (block_number, qnumber), where qnumber is the number of charges (given by qnumber).

In that way, the qind form maps an qindex, say qi, to the indices slice (slices [qi], slices [qi+1]) and the charge(s) charges [qi].
qdict form: a dictionary in the other direction than qind, taking charge tuples to slices. Again for the same example:

```
{(-2,): slice(0, 1),
    (-1,): slice(1, 3),
    (0,) : slice(3, 7),
    (3,) : slice(7, 9)}
```

Since the keys of a dictionary are unique, this form is only possible if the leg is completely blocked.
The LegCharge saves the charge data of a leg internally in qind form, directly in the attribute slices and charges. However, it also provides convenient functions for conversion between from and to the qflat and qdict form.

The above example was nice since all charges were sorted and the charge blocks were 'as large as possible'. This is however not required.

The following example is also a valid qind form:

```
slices = [0, 1, 3, 5, 7, 9]
charges = [[-2], [-1], [0], [0], [3]]
```

This leads to the same qflat form as the above examples, thus representing the same charges on the leg indices. However, regarding our Arrays, this is quite different, since it diveds the leg into 5 (instead of previously 4) charge blocks. We say the latter example is not bunched, while the former one is bunched.

To make the different notions of sorted and bunched clearer, consider the following (valid) examples:

| charges | bunched | sorted | blocked |
| :--- | :--- | :--- | :--- | :--- |
| $[[-2],[-1],[0],[1],[3]]$ | True | True | True |
| $[[-2],[-1],[0],[0],[3]]$ | False | True | False |
| $[[-2],[0],[-1],[1],[3]]$ | True | False | True |
| $[[-2],[0],[-1],[0],[3]]$ | True | False | False |

If a leg is bunched and sorted, it is automatically blocked (but not vice versa). See also below for further comments on that.

Which entries of the npc Array can be non-zero?

The reason for the speedup with np_conserved lies in the fact that it saves only the blocks 'compatible' with the charges. But how is this 'compatible' defined?

Assume you have a tensor, call it T, and the LegCharge for all of its legs, say a, b, c, \ldots.
Remeber that the LegCharge associates to each index of the leg a charge value (for each of the charges, if qnumber $>$ 1). Let a.to_qflat () [ia] denote the charge(s) of index ia for leg a, and similar for other legs.

In addition, the LegCharge has a flag qcon j. This flag qconj is only a sign, saved as +1 or -1 , specifying whether the charges point 'inward' $(+1$, default) or 'outward' (-1) of the tensor.

Then, the total charge of an entry $\mathrm{T}[\mathrm{ia}$, ib, ic, . .] of the tensor is defined as:

```
qtotal[ia, ib, ic, ...] = a.to_qflat()[ia] * a.qconj + b.to_qflat()[ib] * b.qconj + c.
\hookrightarrowto_qflat()[ic] * c.qconj + ... modulo qmod
```

The rule which entries of the a Array can be non-zero (i.e., are 'compatible' with the charges), is then very simple:

Rule for non-zero entries

An entry ia, ib, ic, ... of a Array can only be non-zero, if qtotal[ia, ib, ic, ...] matches the unique qtotal attribute of the class.

In other words, there is a single total charge . qtotal attribute of a Array. All indices ia, ib, ic, ... for which the above defined qtotal[ia, ib, ic, ...] matches this total charge, are said to be compatible with the charges and can be non-zero. All other indices are incompatible with the charges and must be zero.

In case of multiple charges, qnumber >1, is a straigth-forward generalization: an entry can only be non-zero if it is compatible with each of the defined charges.

The pesky qconj - contraction as an example

Why did we introduce the qcon j flag? Remember it's just a sign telling whether the charge points inward or outward. So whats the reasoning?

The short answer is, that LegCharges actually live on bonds (i.e., legs which are to be contracted) rather than individual tensors. Thus, it is convenient to share the LegCharges between different legs and even tensors, and just adjust the sign of the charges with qconj.

As an example, consider the contraction of two tensors, $C_{i a, i c}=\sum_{i b} A_{i a, i b} B_{i b, i c}$. For simplicity, say that the total charge of all three tensors is zero. What are the implications of the above rule for non-zero entries? Or rather, how can we ensure that C complies with the above rule? An entry $\mathrm{C}[\mathrm{ia}, \mathrm{ic}$] will only be non-zero, if there is an ib such that both $A[i a, i b]$ and $B[i b, i c]$ are non-zero, i.e., both of the following equations are fullfilled:

```
A.qtotal == A.legs[0].to_qflat()[ia] * A.legs[0].qconj + A.legs[1].to_qflat()[ib] * A.
\hookrightarrowlegs[1].qconj modulo qmod
B.qtotal == B.legs[0].to_qflat()[ib] * B.legs[0].qconj + B.legs[1].to_qflat()[ic] * B.
\hookrightarrowlegs[1].qconj modulo qmod
```

(A. legs [0] is the LegCharge saving the charges of the first leg (with index ia) of A.)

For the uncontracted legs, we just keep the charges as they are:

```
C.legs = [A.legs[0], B.legs[1]]
```

It is then straight-forward to check, that the rule is fullfilled for C, if the following condition is met:

```
A.qtotal + B.qtotal - C.qtotal == A.legs[1].to_qflat()[ib] A.b.qconj + B.legs[0].to_
\hookrightarrowqflat()[ib] B.b.qconj modulo qmod
```

The easiest way to meet this condition is (1) to require that A.b and B.b share the same charges.b.to_qflat (), but have opposite qconj, and (2) to define C.qtotal =A.qtotal + B.qtotal. This justifies the introduction of qconj: when you define the tensors, you have to define the LegCharge for the b only once, say for A. legs [1]. For B. legs [0] you simply use A. legs [1].conj() which creates a copy of the LegCharge with shared slices and charges, but opposite qconj. As a more impressive example, all 'physical' legs of an MPS can usually share the same LegCharge (up to different qconj if the local Hilbert space is the same). This leads to the following convention:

Convention

When an npc algorithm makes tensors which share a bond (either with the input tensors, as for tensordot, or amongst the output tensors, as for SVD), the algorithm is free, but not required, to use the same LegCharge for the tensors
sharing the bond, without making a copy. Thus, if you want to modify a LegCharge, you must make a copy first (e.g. by using methods of LegCharge for what you want to acchive).

Assigning charges to non-physical legs

From the above physical examples, it should be clear how you assign charges to physical legs. But what about other legs, e.g, the virtual bond of an MPS (or an MPO)?

The charge of these bonds must be derived by using the 'rule for non-zero entries', as far as they are not arbitrary. As a concrete example, consider an MPS on just two spin $1 / 2$ sites:

The two legs p are the physical legs and share the same charge, as they both describe the same local Hilbert space. For better distincition, let me label the indices of them by $\uparrow=0$ and $\downarrow=1$. As noted above, we can associate the charges 1 ($p=\uparrow$) and -1 $(p=\downarrow)$, respectively, so we define:

```
chinfo = npc.ChargeInfo([1], ['2*Sz'])
p = npc.LegCharge.from_qflat(chinfo, [1, -1], qconj=+1)
```

For the qcon j signs, we stick to the convention used in our MPS code and indicated by the arrows in above 'picture': physical legs are incoming ($q \subset \circ \mathrm{n}=+1$), and from left to right on the virtual bonds. This is acchieved by using [p, $x, y \cdot \operatorname{conj}()]$ as legs for A, and $[p, y, z \cdot \operatorname{conj}()]$ for B, with the default $q c o n j=+1$ for all p, x, y, $z: y \cdot c o n j()$ has the same charges as y, but opposite $q c o n j=-1$.
The legs x and z of an L=2 MPS, are 'dummy' legs with just one index 0 . The charge on one of them, as well as the total charge of both A and B is arbitrary (i.e., a gauge freedom), so we make a simple choice: total charge 0 on both arrays, as well as for $x=0, \mathrm{x}=$ npc.LegCharge.from_qflat (chinfo, [0], qconj=+1).

The charges on the bonds y and z then depend on the state the MPS represents. Here, we consider a singlet $\psi=(\mid \uparrow \downarrow$ $\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}$ as a simple example. A possible MPS representation is given by:

```
A[up, :, :] = [[1/2.**0.5, 0]] B[up, :, :] = [[0], [-1]]
A[down, :, :] = [[0, 1/2.**0.5]] B[down, :, :] = [[1], [0]]
```

There are two non-zero entries in A, for the indices $(a, x, y)=(\uparrow, 0,0)$ and $(\downarrow, 0,1)$. For $(a, x, y)=(\uparrow, 0,0)$, we want:

```
A.qtotal = 0 = p.to_qflat()[up] * p.qconj + x.to_qflat()[0] * x.qconj + y.conj().to_
\hookrightarrowqflat()[0] * y.conj().qconj
\hookrightarrowqflat()[0] * (-1)
```

This fixes the charge of $\mathrm{y}=0$ to 1 . A similar calculation for $(a, x, y)=(\downarrow, 0,1)$ yields the charge -1 for $\mathrm{y}=1$. We have thus all the charges of the leg y and can define $y=n p c . L e g C h a r g e . f r o m _q f l a t(c h i n f o, ~[1, ~-1]$, qconj=+1) .

Now take a look at the entries of B. For the non-zero entry $(b, y, z)=(\uparrow, 1,0)$, we want:

```
B.qtotal = 0 = p.to_qflat()[up] * p.qconj + y.to_qflat()[1] * y.qconj + z.conj().to_
\hookrightarrowqflat()[0] * z.conj().qconj
=1 * (+1) + (-1) * (+1) + z.conj().to_-
```

This implies the charge 0 for $z=0$, thus $z=n p c . L e g C h a r g e . f o r m _q f l a t(c h i n f o, ~[0], ~ q c o n j=+1)$. Finally, note that the rule for $(b, y, z)=(\downarrow, 0,0)$ is automatically fullfilled! This is an implication of the fact that the singlet has a well defined value for $S_{a}^{z}+S_{b}^{z}$. For other states without fixed magnetization (e.g., $|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle$) this would not be the case, and we could not use charge conservation.

As an exercise, you can calculate the charge of z in the case that A. qtotal=5, B. qtotal $=-1$ and charge 2 for $x=0$. The result is -2 .

Note: This section is meant be an pedagogical introduction. In you program, you can use the functions detect_legcharge() (which does exactly what's described above) or detect_qtotal () (if you know all LegCharges, but not qtotal).

Array creation

Making an new Array requires both the tensor entries (data) and charge data.
The default initialization $a=$ Array (...) creates an empty Array, where all entries are zero (equivalent to zeros ()). (Non-zero) data can be provided either as a dense np.array to from_ndarray(), or by providing a numpy function such as np.random, np.ones etc. to from_func ().

In both cases, the charge data is provided by one ChargeInfo, and a LegCharge instance for each of the legs.

Note: The charge data instances are not copied, in order to allow it to be shared between different Arrays. Consequently, you must make copies of the charge data, if you manipulate it directly. (However, methods like sort () do that for you.)

Of course, a new Array can also created using the charge data from exisiting Arrays, for examples with zeros_like() or creating a (deep or shallow) copy(). Further, there are the higher level functions like tensordot () or svd (), which also return new Arrays.

Further, new Arrays are created by the various functions like tensordot or $s v d$ in np_conserved.

Complete blocking of Charges

While the code was designed in such a way that each charge sector has a different charge, the code should still run correctly if multiple charge sectors (for different qindex) correspond to the same charge. In this sense Array can act like a sparse array class to selectively store subblocks. Algorithms which need a full blocking should state that explicitly in their doc-strings. (Some functions (like svd and eigh) require complete blocking internally, but if necessary they just work on a temporary copy returned by as_completely_blocked ()).

If you expect the tensor to be dense subject to charge constraints (as for MPS), it will be most efficient to fully block by charge, so that work is done on large chunks.

However, if you expect the tensor to be sparser than required by charge (as for an MPO), it may be convenient not to completely block, which forces smaller matrices to be stored, and hence many zeroes to be dropped. Nevertheless, the algorithms were not designed with this in mind, so it is not recommended in general. (If you want to use it, run a benchmark to check whether it is really faster!)

If you haven't created the array yet, you can call sort () (with bunch=True) on each LegCharge which you want to block. This sorts by charges and thus induces a permution of the indices, which is also returned as an 1D array perm. For consistency, you have to apply this permutation to your flat data as well.
Alternatively, you can simply call sort_legcharge () on an existing Array. It calls sort () internally on the specified legs and performs the necessary permutations directly to (a copy of) self. Yet, you should keep in mind, that the axes are permuted afterwards.

Internal Storage schema of npc Arrays

The actual data of the tensor is stored in _data. Rather than keeping a single np.array (which would have many zeros in it), we store only the non-zero sub blocks. So _data is a python list of np.array's. The order in which they are stored in the list is not physically meaningful, and so not guaranteed (more on this later). So to figure out where the sub block sits in the tensor, we need the _qdata structure (on top of the LegCharges in legs).

Consider a rank 3 tensor T , with the first leg like:

```
legs[0].slices = np.array([0, 1, 4, ...])
legs[0].charges = np.array([[-2], [1], ...])
```

Each row of charges gives the charges for a charge block of the leg, with the actual indices of the total tensor determined by the slices. The qindex simply enumerates the charge blocks of a lex. Picking a qindex (and thus a charge block) from each leg, we have a subblock of the tensor.

For each (non-zero) subblock of the tensor, we put a (numpy) ndarray entry in the _data list. Since each subblock of the tensor is specified by rank qindices, we put a corresponding entry in _qdata, which is a 2D array of shape (\#stored_blocks, rank). Each row corresponds to a non-zero subblock, and there are rank columns giving the corresponding qindex for each leg.

Example: for a rank 3 tensor we might have:

```
T._data = [t1, t2, t3, t4, ...]
T. _qdata = np.array([[3, 2, 1],
    [1, 1, 1],
    [4, 2, 2],
    [2, 1, 2],
    ... ])
```

The third subblock has an ndarray $t 3$, and qindices $\left[\begin{array}{ccc}4 & 2 & 2\end{array}\right]$ for the three legs.

- To find the position of $t 3$ in the actual tensor you can use get_slice ():

```
T.legs[0].get_slice(4), T.legs[1].get_slice(2), T.legs[2].get_slice(2)
```

The function leg.get_charges(qi) simply returns slice(leg.slices[qi], leg. slices[qi+1])

- To find the charges of t 3 , we an use get_charge ():

```
T.legs[0].get_charge(2), T.legs[1].get_charge(2), T.legs[2].get_charge(2)
```

The function leg.get_charge (qi) simply returns leg.charges [qi]*leg.qconj.

Note: Outside of np_conserved, you should use the API to access the entries. If you really need to iterate over all blocks of an Array T, try for (block, blockslices, charges, qindices) in T : do_something().

The order in which the blocks stored in _datal_qdata is arbitrary (although of course _data and _qdata must be in correspondence). However, for many purposes it is useful to sort them according to some convention. So we include a flag ._qdata_sorted to the array. So, if sorted (with isort_qdata(), the _qdata example above goes to

```
_qdata = np.array([[1, 1, 1],
    [3, 2, 1],
    [2, 1, 2],
    [4, 2, 2],
    ... ])
```

Note that $n p$.lexsort chooses the right-most column to be the dominant key, a convention we follow throughout.
If _qdata_sorted == True, _qdata and _data are guaranteed to be lexsorted. If _qdata_sorted == False, there is no gaurantee. If an algorithm modifies _qdata, it must set_qdata_sorted = False (unless it gaurantees it is still sorted). The routine sort_qdata () brings the data to sorted form.

Indexing of an Array

Although it is usually not necessary to access single entries of an Array, you can of course do that. In the simplest case, this is something like A [0, 2, 1] for a rank-3 Array A. However, accessing single entries is quite slow and usually not recommended. For small Arrays, it may be convenient to convert them back to flat numpy arrays with to_ndarray().

On top of that very basic indexing, Array supports slicing and some kind of advanced indexing, which is however different from the one of numpy arrarys (described here). Unlike numpy arrays, our Array class does not broadcast existing index arrays - this would be terribly slow. Also, np.newaxis is not supported, since inserting new axes requires additional information for the charges.

Instead, we allow just indexing of the legs independent of each other, of the form $\mathrm{A}[\mathrm{i} 0, \mathrm{i} 1, \ldots \mathrm{l}$. If all indices i0, i1, ... are integers, the single corresponding entry (of type dtype) is returned.

However, the individual 'indices' io for the individual legs can also be one of what is described in the following list. In that case, a new Array with less data (specified by the indices) is returned.

The 'indices' can be:

- an int: fix the index of that axis, return array with one less dimension. See also take_slice ().
- a slice (None) or :: keep the complete axis
- an Ellipsis or . . . : shorthand for slice (None) for missing axes to fix the len
- an 1D bool ndarray mask: apply a mask to that axis, see iproject ().
- a slice (start, stop, step) or start:stop: step: keep only the indices specified by the slice. This is also implemented with iproject.
- an 1D int ndarray mask: keep only the indices specified by the array. This is also implemented with iproject.

For slices and 1D arrays, additional permuations may be perfomed with the help of permute ().
If the number of indices is less than rank, the remaining axes remain free, so for a rank 4 Array $A, A[i 0, i 1]==$ A[i0, i1, ...] == A[i0, i1, :, :].

Note that indexing always copies the data - even if int contains just slices, in which case numpy would return a view. However, assigning with $A[:,[3,5], 3]=B$ should work as you would expect.

Warning: Due to numpy's advanced indexing, for 1D integer arrays a 0 and $a 1$ the following holds
A[a0, al].to_ndarray () ==A.to_ndarray()[np.ix_(a0, a1)] ! =A.to_ndarray()[a0, a1]
For a combination of slices and arrays, things get more complicated with numpys advanced indexing. In that case, a simple np.ix_(...) doesn't help any more to emulate our version of indexing.

Introduction to combine_legs, split_legs and LegPipes

Often, it is necessary to "combine" multiple legs into one: for example to perfom a SVD, a tensor needs to be viewed as a matrix. For a flat array, this can be done with np. reshape, e.g., if A has shape $(10,3,7)$ then $B=n p$. reshape ($\mathrm{A},(30,7$)) will result in a (view of the) array with one less dimension, but a "larger" first leg. By default (order='C'), this results in
$B[i * 3+j, k]==A[i, j, k]$ for i in range(10) for j in range (3) for k in range (7)

While for a np.array, also a reshaping (10, 3, 7) $\rightarrow>(2,21,5)$ would be allowed, it does not make sense physically. The only sensible "reshape" operation on an Array are

1) to combine multiple legs into one leg pipe (LegPipe) with combine_legs (), or
2) to split a pipe of previously combined legs with split_legs ().

Each leg has a Hilbert space, and a representation of the symmetry on that Hilbert space. Combining legs corresponds to the tensor product operation, and for abelian groups, the corresponding "fusion" of the representation is the simple addition of charge.

Fusion is not a lossless process, so if we ever want to split the combined leg, we need some additional data to tell us how to reverse the tensor product. This data is saved in the class LegPipe, derived from the LegCharge and used as new leg. Details of the information contained in a LegPipe are given in the class doc string.

The rough usage idea is as follows:

1) You can call combine_legs () without supplying any LegPipes, combine_legs will then make them for you.

Nevertheless, if you plan to perform the combination over and over again on sets of legs you know to be identical [with same charges etc, up to an overall -1 in qconj on all incoming and outgoing Legs] you might make a LegPipe anyway to save on the overhead of computing it each time.
2) In any way, the resulting Array will have a LegPipe as a LegCharge on the combined leg. Thus, it - and all tensors inheriting the leg (e.g. the results of svd, tensordot etc.) - will have the information how to split the LegPipe back to the original legs.
3) Once you performed the necessary operations, you can call split_legs (). This uses the information saved in the LegPipe to split the legs, recovering the original legs.

For a LegPipe, conj` () changes qconj for the outgoing pipe and the incoming legs. If you need a LegPipe with the same incoming qconj, use outer_conj().

Leg labeling

It's convenient to name the legs of a tensor: for instance, we can name legs $0,1,2$ to be 'a', 'b', 'c': $T_{i_{a}, i_{b}, i_{c}}$. That way we don't have to remember the ordering! Under tensordot, we can then call

```
U = npc.tensordot(S, T, axes = [ [...], ['b'] ] )
```

without having to remember where exactly ' b ' is. Obviously U should then inherit the name of its legs from the uncontracted legs of S and T. So here is how it works:

- Labels can only be strings. The labels should not include the characters . or ?. Internally, the labels are stored as dict a.labels $=\{$ label: leg_position, ... \}. Not all legs need a label.
- To set the labels, call

```
A.set_labels(['a', 'b', None, 'c', ... ])
```

which will set up the labeling \{'a': 0, 'b': 1, 'c': $3 \ldots\}$.

- (Where implemented) the specification of axes can use either the labels or the index positions. For instance, the call tensordot (A, B, [['a', 2, 'c'], [...]]) will interpret 'a' and 'c' as labels (calling get_leg_indices () to find their positions using the dict) and 2 as 'the 2 nd leg'. That's why we require labels to be strings!
- Labels will be intelligently inherited through the various operations of $\boldsymbol{n p}$ _conserved.
- Under transpose, labels are permuted.
- Under tensordot, labels are inherited from uncontracted legs. If there is a collision, both labels are dropped.
- Under combine_legs, labels get concatenated with a . delimiter and sourrounded by brackets. Example: let a.labels = \{'a': 1, 'b': 2, 'c': 3\}. Then if b=a. combine_legs([[0, 1], [2]]), it will have b.labels = \{'(a.b)': 0, '(c)': 1 \}. If some sub-leg of a combined leg isn't named, then a '? \#' label is inserted (with \# the leg index), e.g., 'a.?0.c'.
- Under split_legs, the labels are split using the delimiters (and the ' ? \# ' are dropped).
- Under conj, iconj: take 'a' -> 'a*', 'a*' -> 'a', and '(a.(b*.c))' -> '(a*. (b. C*)) '
- Under $s v d$, the outer labels are inherited, and inner labels can be optionally passed.
- Under pinv, the labels are transposed.

See also

- The module tenpy.linalg.np_conserved should contain all the API needed from the point of view of the algorithms. It contians the fundamental Array class and functions for working with them (creating and manipulating).
- The module tenpy. Iinalg. charges contains implementations for the charge structure, for example the classes ChargeInfo, LegCharge, and LegPipe. As noted above, the 'public' API is imported to (and accessible from) np_conserved.

A full example code for spin-1/2

Below follows a full example demonstrating the creation and contraction of Arrays. (It's the file $a _n p _c o n s e r v e d . p y ~$ in the examples folder of the tenpy source.)

```
"""An example code to demonstrate the usage of :class:`~tenpy.linalg.np_conserved.
\hookrightarrowArray`.
This example includes the following steps:
1) create Arrays for an Neel MPS
2) create an MPO representing the nearest-neighbour AFM Heisenberg Hamiltonian
3) define 'environments' left and right
4) contract MPS and MPO to calculate the energy
5) extract two-site hamiltonian ``H2`` from the MPO
6) calculate ``exp(-1.j*dt*H2)`` by diagonalization of H2
7) apply ``exp(H2)`` to two sites of the MPS and truncate with svd
Note that this example uses only np_conserved, but no other modules.
Compare it to the example `b_mps.py`,
which does the same steps using a few predefined classes like MPS and MPO.
"""
# Copyright 2018-2019 TeNPy Developers, GNU GPLv3
import tenpy.linalg.np_conserved as npc
import numpy as np
# model parameters
Jxx, Jz = 1., 1.
L=20
dt = 0.1
cutoff = 1.e-10
print("Jxx={Jxx}, Jz={Jz}, L={L:d}".format(Jxx=Jxx, Jz=Jz, L=L))
print("1) create Arrays for an Neel MPS")
# vL ->--B-->- vR
# I
# ^
# p
# create a ChargeInfo to specify the nature of the charge
chinfo = npc.ChargeInfo([1], ['2*Sz']) # the second argument is just a descriptive
name
# create LegCharges on physical leg and even/odd bonds
p_leg = npc.LegCharge.from_qflat(chinfo, [[1], [-1]]) # charges for up, down
v_leg_even = npc.LegCharge.from_qflat(chinfo, [[0]])
v_leg_odd = npc.LegCharge.from_qflat(chinfo, [[1]])
B_even = npc.zeros([v_leg_even, v_leg_odd.conj(), p_leg])
B_odd = npc.zeros([v_leg_odd, v_leg_even.conj(), p_leg])
B_even[0, 0, 0] = 1. # up
B_odd[0, 0, 1] = 1. # down
for B in [B_even, B_odd]:
    B.iset_leg_labels(['vL', 'vR', 'p']) # virtual left/right, physical
```

```
Bs = [B_even, B_odd] * (L // 2) + [B_even] * (L % 2) # (right-canonical)
Ss}=[np.ones(1)] * L # SS[i] are singular values between Bs[i-1] and Bs[i]
# Side remark:
# An MPS is expected to have non-zero entries everywhere compatible with the charges.
# In general, we recommend to use `sort_legcharge` (or `as_completely_blocked`)
# to ensure complete blocking. (But the code will also work, if you don't do it.)
# The drawback is that this might introduce permutations in the indices of singlev
\hookrightarrowlegs,
# which you have to keep in mind when converting dense numpy arrays to and from npc.
Arrays.
print("2) create an MPO representing the AFM Heisenberg Hamiltonian")
```



```
Sz = npc.Array.from_ndarray([[0.5, 0.], [0., -0.5]], [p_leg, p_leg.conj()])
Sp = npc.Array.from_ndarray([[0., 1.], [0., 0.]], [p_leg, p_leg.conj()])
Sm = npc.Array.from_ndarray([[0., 0.], [1., 0.]], [p_leg, p_leg.conj()])
Id = npc.eye_like(Sz) # identity
for op in [Sz, Sp, Sm, Id]:
    op.iset_leg_labels(['p', 'p*']) # physical in, physical out
mpo_leg = npc.LegCharge.from_qflat(chinfo, [[0], [2], [-2], [0], [0]])
W_grid = [[Id, Sp, Sm, Sz, None ],
    [None, None, None, None, 0.5 * Jxx * Sm],
    [None, None, None, None, 0.5 * Jxx * Sp],
    [None, None, None, None, Jz * Sz ],
    [None, None, None, None, Id ]] # yapf:disable
W = npc.grid_outer(W_grid, [mpo_leg, mpo_leg.conj()])
W.iset_leg_labels(['wL', 'wR', 'p', 'p*']) # wL/wR = virtual left/right of the MPO
WS = [W] * L
print("3) define 'environments' left and right")
# .---->- vR vL ->----.
# 1 l
# envL->- wR wL ->-envR
# l l
# .---->- vR* VL*->---- .
envL = npc.zeros([W.get_leg('wL').conj(), Bs[0].get_leg('vL').conj(), Bs[0].get_leg(
\hookrightarrow'vL')])
envL.iset_leg_labels(['wR', 'vR', 'vR*'])
envL[0, :, :] = npc.diag(1., envL.legs[1])
```

(continues on next page)
(continued from previous page)

```
envR = npc.zeros([W.get_leg('wR').conj(), Bs[-1].get_leg('vR').conj(), Bs[-1].get_leg(
\hookrightarrow'vR')])
envR.iset_leg_labels(['wL', 'vL', 'vL*'])
envR[-1, :, :] = npc.diag(1., envR.legs[1])
print("4) contract MPS and MPO to calculate the energy <psi|H|psi>")
contr = envL
for i in range(L):
    # contr labels: wR, vR, vR*
    contr = npc.tensordot(contr, Bs[i], axes=('vR', 'vL'))
    # wR, vR*, vR, p
    contr = npc.tensordot(contr, Ws[i], axes=(['p', 'wR'], ['p*', 'wL']))
    # vR*, vR, wR, p
    contr = npc.tensordot(contr, Bs[i].conj(), axes=(['p', 'vR*'], ['p*', 'vL*']))
    # vR, wR, vR*
    # note that the order of the legs changed, but that's no problem with labels:
    # the arrays are automatically transposed as necessary
E = npc.inner(contr, envR, axes=(['vR', 'wR', 'vR*'], ['vL', 'wL', 'vL*']))
print("E =", E)
print("5) calculate two-site hamiltonian ``H2`` from the MPO")
# label left, right physical legs with p, q
WO = W.replace_labels(['p', 'p*'], ['p0', 'p0*'])
W1 = W.replace_labels(['p', 'p*'], ['p1', 'p1*'])
H2 = npc.tensordot(w0, W1, axes=('wR', 'wL')).itranspose(['wL', 'wR', 'p0', 'p1', 'p0*
->', 'p1*'])
H2 = H2[0, -1] # (If H has single-site terms, it's not that simple anymore)
print("H2 labels:", H2.get_leg_labels())
print("6) calculate exp(H2) by diagonalization of H2")
# diagonalization requires to view H2 as a matrix
H2 = H2.combine_legs([('p0', 'p1'), ('p0*', 'p1*')], qconj=[+1, -1])
print("labels after combine_legs:", H2.get_leg_labels())
E2, U2 = npc.eigh(H2)
print("Eigenvalues of H2:", E2)
U_expE2 = U2.scale_axis(np.exp(-1.j * dt * E2), axis=1) # scale_axis ~= apply an_
->diagonal matrix
exp_H2 = npc.tensordot(U_expE2, U2.conj(), axes=(1, 1))
exp_H2.iset_leg_labels(H2.get_leg_labels())
exp_H2 = exp_H2.split_legs() # by default split all legs which are `LegPipe`
# (this restores the originial labels ['pO', 'p1', 'p0*', 'p1*'] of `H2` in `exp_H2`)
print("7) apply exp(H2) to even/odd bonds of the MPS and truncate with svd")
# (this implements one time step of first order TEBD)
for even_odd in [0, 1]:
    for i in range(even_odd, L - 1, 2):
        B_L = Bs[i].scale_axis(Ss[i], 'vL').ireplace_label('p', 'p0')
        B_R = Bs[i + 1].replace_label('p', 'p1')
        theta = npc.tensordot(B_L, B_R, axes=('vR', 'vL'))
        theta = npc.tensordot(exp_H2, theta, axes=(['p0*', 'p1*'], ['p0', 'p1']))
        # view as matrix for SVD
        theta = theta.combine_legs([('vL', 'p0'), ('p1', 'vR')], new_axes=[0, 1], ь
Gqconj=[+1, -1])
    # now theta has labels '(vL.p0)', '(pI.vR)'
    U, S, V = npc.svd(theta, inner_labels=['vR', 'vL'])
    # truncate
    keep = S > cutoff
```

(continues on next page)

```
            (continued from previous page)
    S = S[keep]
    invsq = np.linalg.norm(S)
    Ss[i + 1] = S / invsq
    U = U.iscale_axis(S / invsq, 'vR')
    Bs[i] = U.split_legs('(vL.p0)').iscale_axis(Ss[i]**(-1), 'vL').ireplace_label(
\hookrightarrow'p0', 'p')
    Bs[i + 1] = V.split_legs('(pl.vR)').ireplace_label('pl', 'p')
print("finished")
```


Introduction to models

What is a model?

Abstractly, a model stands for some physical (quantum) system to be described. For tensor networks algorithms, the model is usually specified as a Hamiltonian written in terms of second quantization. For example, let us consider a spin-1/2 Heisenberg model described by the Hamiltonian

$$
H=J \sum_{i} S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} S_{i+1}^{z}
$$

Note that a few things are defined more or less implicitly.

- The local Hilbert space: it consists of Spin-1/2 degrees of freedom with the usual spin-1/2 operators S^{x}, S^{y}, S^{z}.
- The geometric (lattice) strucuture: above, we spoke of a 1D "chain".
- The boundary conditions: do we have open or periodic boundary conditions? The "chain" suggests open boundaries, which are in most cases preferable for MPS-based methods.
- The range of i : How many sites do we consider (for a 2D system: in each direction)?

Obviously, these things need to be specified in TeNPy in one way or another, if we want to define a model.
Ultimately, our goal is to run some algorithm. Each algorithm requires the model and Hamiltonian to be specified in a particular form. We have one class for each such required form. For example dmrg requires an MPOMOdel, which contains the Hamiltonian written as an $M P O$. On the other hand, if we want to evolve a state with tebd we need a NearestNeighborModel, in which the Hamiltonian is written in terms of two-site bond-terms to allow a Suzuki-Trotter decomposition of the time-evolution operator.

Implmenting you own model ultimatley means to get an instance of MPOModel or NearestNeighborModel. The predefined classes in the other modules under models are subclasses of at least one of those, you will see examples later down below.

The Hilbert space

The local Hilbert space is represented by a Site (read its doc-string!). In particular, the Site contains the local LegCharge and hence the meaning of each basis state needs to be defined. Beside that, the site contains the local operators - those give the real meaning to the local basis. Having the local operators in the site is very convenient, because it makes them available by name for example when you want to calculate expectation values. The most common sites (e.g. for spins, spin-less or spin-full fermions, or bosons) are predefined in the module tenpy.networks.site, but if necessary you can easily extend them by adding further local operators or completely write your own subclasses of Site.

The full Hilbert space is a tensor product of the local Hilbert space on each site.

Note: The LegCharge of all involved sites need to have a common ChargeInfo in order to allow the contraction of tensors acting on the various sites. This can be ensured with the function multi_sites_combine_charges().

An example where multi_sites_combine_charges () is needed would be a coupling of different types of sites, e.g., when a tight binding chain of fermions is coupled to some local spin degrees of freedom. Another use case of this function would be a model with a $\$ \mathrm{U}(1) \$$ symmetry involving only half the sites, say $\sum_{i=0}^{L / 2} n_{2 i}$.

Note: If you don't know about the charges and np_conserved yet, but want to get started with models right away, you can set conserve=None in the existing sites or use leg = tenpy.linalg.np_conserved.LegCharge. from_trivial (d) for an implementation of your custom site, where d is the dimension of the local Hilbert space. Alternatively, you can find some introduction to the charges in the Introduction to np_conserved.

The geometry : lattices

The geometry is usually given by some kind of lattice structure how the sites are arranged, e.g. implicitly with the sum over nearest neighbours $\sum_{<i, j>}$. In TeNPy, this is specified by a Lattice class, which contains a unit cell of a few Site which are shifted periodically by its basis vectors to form a regular lattice. Again, we have pre-defined some basic lattices like a Chain, two chains coupled as a Ladder or 2D lattices like the Square, Honeycomb and Kagome lattices; but you are also free to define your own generalizations. (More details on that can be found in the doc-string of Lattice, read it!)

Visualization of the lattice can help a lot to understand which sites are connected by what couplings. The methods plot_... of the Lattice can do a good job for a quick illustration. We include a small image in the documation of each of the lattices. For example, the following small script can generate the image of the Kagome lattice shown below:

```
import matplotlib.pyplot as plt
from tenpy.models.lattice import Kagome
ax = plt.gca()
lat = Kagome(4, 4, None, bc='periodic')
lat.plot_coupling(ax, lat.nearest_neighbors, linewidth=3.)
lat.plot_order(ax=ax, linestyle=':')
lat.plot_sites()
lat.plot_basis(ax, color='g', linewidth=2.)
ax.set_aspect('equal')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```


The lattice contains also the boundary conditions $b c$ in each direction. It can be one of the usual 'open' or 'periodic' in each direcetion. Instead of just saying "periodic", you can also specify a shift (except in the first direction). This is easiest to understand at its standard usecase: DMRG on a infinite cylinder. Going around the cylinder, you have a degree of freedom which sites to connect. The orange markers in the following figures illustrates sites identified for a Square lattice with $\mathrm{bc}=[$ 'periodic', shift] (see plot_bc_shift()):

$$
\text { shift }=-1
$$

Note that the "cylinder" axis (and direction for k_{x}) is perpendicular to the orange line connecting these sites. The line where the cylinder is "cut open" therefore winds around the the cylinder for a non-zero shift (or more complicated lattices without perpendicular basis).

MPS based algorithms like DMRG always work on purely 1D systems. Even if our model "lives" on a 2D lattice, these algorithms require to map it onto a 1D chain (probably at the cost of longer-range interactions). This mapping is also done in by the lattice, as it defines an order (order) of the sites. The methods mps2lat_idx () and lat 2 mps _idx () map indices of the MPS to and from indices of the lattice. If you obtained and array with expectation values for a given MPS, you can use mps2lat_values () to map it to lattice indices, thereby reverting the ordering.
Performing this mapping of the Hamiltonain from a 2D lattice to a 1D chain by hand can be a tideous process.

Therefore, we have automated this mapping in TeNPy as explained in the next section. (Nevertheless it's a good exercise you should do at least once in your life to understand how it works!)

Note: A suitable order is critical for the efficiency of MPS-based algorithms. On one hand, different orderings can lead to different MPO bond-dimensions, with direct impact on the complexity scaling. On the other hand, it influences how much entanglement needs to go through each bonds of the underlying MPS, e.g., the ground strate to be found in DMRG, and therefore influences the required MPS bond dimensions. For the latter reason, the "optimal" ordering can not be known a priori and might even depend on your coupling parameters (and the phase you are in). In the end, you can just try different orderings and see which one works best.

Implementing you own model

When you want to simulate a model not provided in models, you need to implement your own model class, lets call it MyNewModel. The idea is that you define a new subclass of one or multiple of the model base classes. For example, when you plan to do DMRG, you have to provide an MPO in a MPOModel, so your model class should look like this:

```
class MyNewModel(MPOModel):
    """General strucutre for a model suitable for DMRG.
    Here is a good place to document the represented Hamiltonian and parameters.
    In the models of TeNPy, we usually take a single dictionary `model_params
    containing all parameters, and read values out with ``tenpy.tools.params.get_
\leftrightarrowparameter(...)``,
    The model needs to provide default values if the parameters was not specified.
    """
    def __init__(self, model_params):
        # some code here to read out model parameters and generate H_MPO
        lattice = somehow_generate_lattice(model_params)
        H_MPO = somehow_generate_MPO(lattice, model_params)
        # initialize MPOModel
        MPOModel.__init__(self, lattice, H_MPO)
```

TEBD requires another representation of H in terms of bond terms H_{-}bond given to a NearestNeighborModel, so in this case it would look so like this instead:

```
class MyNewModel2(NearestNeighborModel):
    """General strucutre for a model suitable for TEBD."""
    def __init__(self, model_params):
        # some code here to read out model parameters and generate H_bond
        lattice = somehow_generate_lattice(model_params)
        H_bond = somehow_generate_H_bond(lattice, model_params)
        # initialize MPOModel
        NearestNeighborModel.__init__(self, lattice, H_bond)
```

Of course, the difficult part in these examples is to generate the $\mathrm{H} _\mathrm{MPO}$ and $\mathrm{H} _$bond. Moreover, it's quite annoying to write every model multiple times, just because we need different representations of the same Hamiltonian. Luckily, there is a way out in TeNPy: the CouplingModel!

The easy way to new models: the (Multi)CouplingModel

The CouplingModel provides a general, quite abstract way to specify a Hamiltonian of two-site couplings on a given lattice. Once initialized, its methods add_onsite() and add_coupling() allow to add onsite and coupling terms repeated over the different unit cells of the lattice. In that way, it basically allows a straight-forward translation of the Hamiltonian given as a math forumla $H=\sum_{i} A_{i} B_{i+d x}+\ldots$ with onsite operators A, B, \ldots into a model class.

The general structure for a new model based on the CouplingModel is then:

```
class MyNewModel3(CouplingModel,MPOModel,NearestNeighborModel):
    def __init__(self, ...):
        ... # follow the basic steps explained below
```

In the initialization method __init__(self, . . .) of this class you can then follow these basic steps:
0 . Read out the parameters.

1. Given the parameters, determine the charges to be conserved. Initialize the LegCharge of the local sites accordingly.
2. Define (additional) local operators needed.
3. Initialize the needed Site.

Note: Using pre-defined sites like the SpinHalfSite is recommended and can replace steps 1-3.
4. Initialize the lattice (or if you got the lattice as a parameter, set the sites in the unit cell).
5. Initialize the CouplingModel with CouplingModel.__init__(self, lat).
6. Use add_onsite() and add_coupling() to add all terms of the Hamiltonian. Here, the nearest_neighbors of the lattice (and its friends for next nearest neighbors) can come in handy, for example:

```
self.add_onsite(-np.asarray(h), 0, 'Sz')
for u1, u2, dx in self.lat.nearest_neighbors:
    self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

Note: The method add_coupling() adds the coupling only in one direction, i.e. not switching i and j in a $\sum_{\langle i, j\rangle}$. If you have terms like $c_{i}^{\dagger} c_{j}$ in your Hamiltonian, you need to add it in both directions to get a hermitian Hamiltonian! Simply add another line with switched, conjugated operatores, switched ($u 1, u 2$), and negative $d x$, for example when using the SpinHalfFermionSite:

```
self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx)
self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.
# ('Cdd' is h.c. of 'Cd', and 'Cu' is h.c. of 'Cdu'!)
```

See also the other examples in add_coupling().

Note that the strength arguments of these functions can be (numpy) arrays for site-dependent couplings. If you need to add or multipliy some parameters of the model for the strength of certain terms, it is recommended use np. asarray beforehand - in that way lists will also work fine.
7. Finally, if you derived from the MPOMOdel, you can call $C a I c _H _M P O$ () to build the MPO and use it for the initialization as MPOModel.__init__(self, lat, self.calc_H_MPO()).
8. Similarly, if you derived from the NearestNeighborModel, you can call calc_H_MPO () to initialze it as NearestNeighborModel.__init__(self, lat, self.calc_H_bond()). Calling self. calc_H_bond () will fail for models which are not nearest-neighbors (with respect to the MPS ordering), so you should only subclass the NearestNeighborModel if the lattice is a simple Chain.
The CouplingModel works for Hamiltonians which are a sum of terms involving at most two sites. The generalization MultiCouplingModel can be used for Hamlitonians with coupling terms acting on more than 2 sites at once. Follow the exact same steps in the initialization, and just use the add_multi_coupling () instead or in addition to the add_coupling(). A prototypical example is the exactly solvable ToricCode.

The code of the module tenpy.models.xxz_chain is included below as an illustrative example how to implemnet a Model. The implementation of the XXZChain directly follows the steps outline above. The XXZChain2 implements the very same model, but based on the CouplingMPOModel explained in the next section.

```
"""Prototypical example of a 1D quantum model: the spin-1/2 XXZ chain.
The XXZ chain is contained in the more general :class:`~tenpy.models.spins.SpinChain`;
the idea of
this module is more to serve as a pedagogical example for a model.
"""
# Copyright 2018-2019 TeNPy Developers, GNU GPLv3
import numpy as np
from .lattice import Site, Chain
from .model import CouplingModel, NearestNeighborModel, MPOModel, CouplingMPOModel
from ..linalg import np_conserved as npc
from ..tools.params import get_parameter, unused_parameters
from ..networks.site import SpinHalfSite # if you want to use the predefined site
__all__ = ['XXZChain', 'XXZChain2']
class XXZChain(CouplingModel, NearestNeighborModel, MPOModel):
    r"""Spin-1/2 XXZ chain with Sz conservation.
    The Hamiltonian reads:
    .. math ::
            H=\sum_i \mathtt {Jxx}/2 (S^{+}_i S^{-}_{i+1} + S S^{-}_i S S^{+}_{i+1})
                    + \mathtt{Jz} S S__i S S^__{i+1} \\
                        - \sum_i \mathtt{hz} S^z_i
    All parameters are collected in a single dictionary `model_params` and read out 
\hookrightarrowwith
    :func:`~tenpy.tools.params.get_parameter`.
    Parameters
    ----------
    L : int
        Length of the chain.
    Jxx, Jz, hz : float / array
        Couplings as defined for the Hamiltonian above.
    bc_MPS : {'finite' / 'infinte'}
        MPS boundary conditions. Coupling boundary conditions are chosen_
\hookrightarrowappropriately.
    """
    def __init__(self, model_params):
```

```
    # 0) read out/set default parameters
    name = "XXZChain"
    L = get_parameter(model_params, 'L', 2, name)
    Jxx = get_parameter(model_params, 'Jxx', 1., name, asarray=True)
    Jz = get_parameter(model_params, 'Jz', 1., name, True)
    hz = get_parameter(model_params, 'hz', 0., name, True)
    bc_MPS = get_parameter(model_params, 'bc_MPS', 'finite', name)
    unused_parameters(model_params, name) # checks for mistyped parameters
    # 1-3):
    USE_PREDEFINED_SITE = False
    if not USE_PREDEFINED_SITE:
        # 1) charges of the physical leg. The only time that we actually defines
Charges!
            leg = npc.LegCharge.from_qflat(npc.ChargeInfo([1], ['2*Sz']), [1, -1])
            # 2) onsite operators
            Sp}=[[0., 1.], [0., 0.]
            Sm}=[[0., 0.], [1., 0.]
            Sz = [[0.5, 0.], [0., -0.5]]
            # (Can't define Sx and Sy as onsite operators: they are incompatible with_
Sz charges.)
            # 3) local physical site
            site = Site(leg, ['up', 'down'], Sp=Sp, Sm=Sm, Sz=Sz)
            else:
            # there is a site for spin-1/2 defined in TeNPy, so just we can just use_
\hookrightarrowit
            # replacing steps 1-3)
            site = SpinHalfSite(conserve='Sz')
            # 4) lattice
            bc = 'periodic' if bc_MPS == 'infinite' else 'open'
            lat = Chain(L, site, bc=bc, bc_MPS=bc_MPS)
            # 5) initialize CouplingModel
            CouplingModel.__init__(self, lat)
            # 6) add terms of the Hamiltonian
            # (u is always 0 as we have only one site in the unit cell)
            self.add_onsite(-hz, 0, 'Sz')
            self.add_coupling(Jxx * 0.5, 0, 'Sp', 0, 'Sm', 1)
            self.add_coupling(np.conj(Jxx * 0.5), 0, 'Sp', 0, 'Sm', -1) # h.c.
            self.add_coupling(Jz, 0, 'Sz', 0, 'Sz', 1)
            # 7) initialize H_MPO
            MPOModel.__init__(self, lat, self.calc_H_MPO())
            # 8) initialize H_bond (the order of 7/8 doesn't matter)
            NearestNeighborModel.__init__(self, lat, self.calc_H_bond())
class XXZChain2(CouplingMPOModel, NearestNeighborModel):
    """Another implementation of the Spin-1/2 XXZ chain with Sz conservation.
    This implementation takes the same parameters as the :class:`XXZChain`, but is,
\hookrightarrowimplemented
    based on the :class:`~tenpy.models.model.CouplingMPOModel`.
    """
    def __init__(self, model_params):
        model_params.setdefault('lattice', "Chain")
        CouplingMPOModel.__init__(self, model_params)
    def init_sites(self, model_params):
    return SpinHalfSite(conserve='Sz') # use predefined Site
```

```
def init_terms(self, model_params):
    # read out parameters
    Jxx = get_parameter(model_params, 'Jxx', 1., self.name, True)
    Jz = get_parameter(model_params, 'Jz', l., self.name, True)
    hz = get_parameter(model_params, 'hz', 0., self.name, True)
    # add terms
    for u in range(len(self.lat.unit_cell)):
        self.add_onsite(-hz, u, 'Sz')
    for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
        self.add_coupling(Jxx * 0.5, u1, 'Sp', u2, 'Sm', dx)
        self.add_coupling(np.conj(Jxx * 0.5), u2, 'Sp', u1, 'Sm', -dx) # h.c.
        self.add_coupling(Jz, u1, 'Sz', u2, 'Sz', dx)
```


The easy easy way: the CouplingMPOModel

Since many of the basic steps above are always the same, we don't need to repeat them all the time. So we have yet another class helping to structure the initialization of models: the CouplingMPOMOdel. The general structure of the class is like this:

```
class CouplingMPOModel(CouplingModel,MPOModel):
    def __init__(self, model_param):
        # ... follow the basic steps I-8 using the methods
        lat = self.init_lattice(self, model_param) # for step 4
        # ...
        self.init_terms(self, model_param) # for step 6
        # ...
    def init_sites(self, model_param):
        # You should overwrite this
    def init_lattice(self, model_param):
        sites = self.init_sites(self, model_param) # for steps 1-3
        # initialize an arbitrary pre-defined lattice
        # using model_params['lattice']
    def init_terms(self, model_param):
        # does nothing.
        # You should overwrite this
```

The XXZChain2 included above illustrates, how it can be used. You need to implement steps 1-3) by overwriting the method init_sites () Step 4) is performed in the method init_lattice (), which initializes arbitrary 1D or 2D lattices; by default a simple 1D chain. If your model only works for specific lattices, you can overwrite this method in your own class. Step 6) should be done by overwriting the method init_terms (). Steps 5,7,8 and calls to the init_... methods for the other steps are done automatically if you just call the CouplingMPOModel. __init__(self, model_param).
The XXZChain and XXZChain2 work only with the Chain as lattice, since they are derived from the NearestNeighborModel. This allows to use them for TEBD in 1D (yeah!), but we can't get the MPO for DMRG on a e.g. a Square lattice cylinder - although it's intuitively clear, what the hamiltonian there should be: just put the nearest-neighbor coupling on each bond of the 2D lattice.

It's not possible to generalize a NearestNeighborModel to an arbitrary lattice where it's no longer nearest Neigbors in the MPS sense, but we can go the other way around: first write the model on an arbitrary 2D lattice and then restrict it to a 1D chain to make it a NearestNeighborModel.

Let me illustrate this with another standard example model: the transverse field Ising model, imlemented in the module tenpy.models.tf_ising included below. The TFIModel works for arbitrary 1D or 2D lattices. The TFIChain is then taking the exact same model making a NearestNeighborModel, which only works for the 1D chain.

```
"""Prototypical example of a quantum model: the transverse field Ising model.
Like the :class:`~tenpy.models.xxz_chain.XXZChain`, the transverse field ising chain
:class:`TFIChain` is contained in the more general :class:`~tenpy.models.spins.
\hookrightarrowSpinChain`;
the idea is more to serve as a pedagogical example for a 'model'.
We choose the field along z to allow to conserve the parity, if desired.
"""
# Copyright 2018-2019 TeNPy Developers, GNU GPLv3
from .model import CouplingMPOModel, NearestNeighborModel
from ..tools.params import get_parameter
from ..networks.site import SpinHalfSite
__all___ ['TFIModel', 'TFIChain']
class TFIModel(CouplingMPOModel):
    r"""Transverse field Ising model on a general lattice.
    The Hamiltonian reads:
    .. math ::
        H= - \sum_{\langle i,j\rangle, i < j} \mathtt{J} \sigma^x_i \sigma^x_{j}
            - \sum_{i} \mathtt{g} \sigma^z_i
    Here, :math:`\langle i,j \rangle, i< j` denotes nearest neighbor pairs, each pair,
\hookrightarrowappearing
    exactly once.
    All parameters are collected in a single dictionary `model_params` and read out,u
\hookrightarrowwith
    :func:`~tenpy.tools.params.get_parameter`.
    Parameters
    ----------
    conserve : None / 'parity'
        What should be conserved. See :class:`~tenpy.networks.Site.SpinHalfSite`.
    J, g : float / array
        Couplings as defined for the Hamiltonian above.
    lattice : str | :class:`~tenpy.models.lattice.Lattice
        Instance of a lattice class for the underlaying geometry.
        Alternatively a string being the name of one of the Lattices defined in
        :mod:`~tenpy.models.lattice`, e.g. ``"Chain", "Square", "HoneyComb", ...`. .
    bc_MPS : {'finite' / 'infinte'}
        MPS boundary conditions along the x-direction.
        For 'infinite' boundary conditions, repeat the unit cell in x-direction.
        Coupling boundary conditions in x-direction are chosen accordingly.
        Only used if `lattice` is a string.
    order : string
        Ordering of the sites in the MPS, e.g. 'default', 'snake';
        see :meth:`~tenpy.models.lattice.Lattice.ordering`.
        Only used if `lattice` is a string.
```

```
    L : int
    Lenght of the lattice.
    Only used if `lattice` is the name of a ID Lattice.
    Lx, Ly : int
    Length of the lattice in }x\mathrm{ - and }y\mathrm{ -direction.
    Only used if `lattice` is the name of a 2D Lattice.
    bc_y : 'ladder' / 'cylinder'
    Boundary conditions in y-direction.
    Only used if `lattice` is the name of a 2D Lattice.
    """
    def __init__(self, model_params):
    CouplingMPOModel.__init___(self, model_params)
    def init_sites(self, model_params)
    conserve = get_parameter(model_params, 'conserve', 'parity', self.name)
    assert conserve != 'Sz'
    if conserve == 'best':
            conserve = 'parity'
            if self.verbose >= 1.:
                print(self.name + ": set conserve to", conserve)
    site = SpinHalfSite(conserve=conserve)
    return site
    def init_terms(self, model_params):
    J = get_parameter(model_params, 'J', 1., self.name, True)
    g = get_parameter(model_params, 'g', 1., self.name, True)
    for u in range(len(self.lat.unit_cell)):
            self.add_onsite(-g, u, 'Sigmaz')
    for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
            self.add_coupling(-J, u1, 'Sigmax', u2, 'Sigmax', dx)
    # done
class TFIChain(TFIModel, NearestNeighborModel):
    """The :class:`TFIModel` on a Chain, suitable for TEBD.
    See the :class:`TFIModel` for the documentation of parameters.
    """
    def __init__(self, model_params):
        model_params.setdefault('lattice', "Chain")
        CouplingMPOModel.__init___(self, model_params)
```


Some final remarks

- Needless to say that we have also various predefined models under tenpy.models.
- Of course, an MPO is all you need to initialize a MPOModel to be used for DMRG; you don't have to use the CouplingModel or CouplingMPOModel. For example an exponentially decaying long-range interactions are not supported by the coupling model but straight-forward to include to an MPO, as demonstrated in the example examples/mpo_exponentially_decaying.py.
- If the model of your interest contains Fermions, you should read the Fermions and the Jordan-Wigner transformation.
- We suggest writing the model to take a single parameter dicitionary for the initialization, which is to be read out inside the class with get_parameter (). Read the doc-string of this function for more details on why this
is a good idea. The CouplingMPOModel.__init__(...) calls unused_parameters (), helping to avoid typos in the specified parameters.
- When you write a model and want to include a test that it can be at least constructed, take a look at tests/ test_model.py.

Fermions and the Jordan-Wigner transformation

The Jordan-Wigner tranformation maps fermionic creation- and annihilation operators to (bosonic) spin-operators.

Spinless fermions in 1D

Let's start by explicitly writing down the transformation. With the Pauli matrices $\sigma_{j}^{x, y, z}$ and $\sigma_{j}^{ \pm}=\left(\sigma_{j}^{x} \pm \mathrm{i} \sigma_{j}^{y}\right) / 2$ on each site, we can map

$$
\begin{aligned}
n_{j} & \leftrightarrow\left(\sigma_{j}^{z}+1\right) / 2 \\
c_{j} & \leftrightarrow(-1)^{\sum_{l<j} n_{l}} \sigma_{j}^{-} \\
c_{j}^{\dagger} & \leftrightarrow(-1)^{\sum_{l<j} n_{l}} \sigma_{j}^{+}
\end{aligned}
$$

The n_{l} in the second and third row are defined in terms of Pauli matrices according to the first row. We do not interpret the Pauli matrices as spin- $1 / 2$; they have nothing to do with the spin in the spin-full case. If you really want to interpret them physically, you might better think of them as hard-core bosons ($b_{j}=\sigma_{j}^{-}, b_{j}^{\dagger}=\sigma_{j}^{+}$), with a spin of the fermions mapping to a spin of the hard-core bosons.
Note that this transformation maps the fermionic operators c_{j} and c_{j}^{\dagger} to global operators; although they carry an index j indicating a site, they actually act on all sites $1<=j$! Thus, clearly the operators C and Cd defined in the Fermionsite do not directly correspond to c_{j} and c_{j}^{\dagger}. The part $(-1)^{\sum_{l<j}{ }^{n l}}$ is called Jordan-Wigner string and in the Fermionsite is given by the local operator $J W:=(-1)^{n_{l}}$ acting all sites $1<j$. Since this important, let me stress it again:

Warning: The fermionic operator c_{j} (and similar c_{j}^{\dagger}) maps to a global operator consisting of the Jordan-Wigner string built by the local operator JW on sites $1<j$ and the local operator C (or Cd, respectively) on site j.

On the sites itself, the onsite operators C and Cd in the FermionSite fulfill the correct anti-commutation relation, without the need to include JW strings. The JW string is necessary to ensure the anti-commutation for operators acting on different sites.

Written in terms of onsite operators defined in the FermionSite, with the i-th entry entry in the list acting on site i, the relations are thus:

```
["JW", ..., "JW", "C", "Id", ..., "Id"] # for the annihilation operator
["JW", ..., "JW", "Cd", "Id", ..., "Id"] # for the creation operator
```

Note that "JW" squares to the identity, "JW JW" == "Id", which is the reason that the Jordan-wigner string completely cancels in $n_{j}=c_{j}^{\dagger} c_{j}$. In the above notation, this can be written as:

```
["JW", ..., "JW", "Cd", "Id", ..., "Id"] * ["JW", ..., "JW", "C", "Id", ..., "Id"]
== ["JW JW", ..., "JW JW", "Cd C", "Id Id", ..., "Id Id"] # by definition of_
\hookrightarrowthe tensorproduct
== ["Id", ..., "Id", "N", "Id", ..., "Id"] # by definition of_
\hookrightarrowthe local operators
# ("X Y" stands for the local operators X and Y applied on the same site. We assume
\hookrightarrowthat the "Cd" and "C" on the first line act on the same site.)
```

For a pair of operators acting on different sites, JW strings have to be included for every site between the operators. For example, taking i $<j, c_{i}^{\dagger} c_{j} \leftrightarrow \sigma_{i}^{+}(-1)^{\sum_{i<=l<j} n_{l}} \sigma_{j}^{-}$. More explicitly, for $j=i+2$ we get:

```
["JW", ..., "JW", "Cd", "Id", "Id", "Id", ..., "Id"] * ["JW", ..., "JW", "JW", "JW",
↔"C", "Id", ..., "Id"]
== ["JW JW", ..., "JW JW", "Cd JW", "Id JW", "Id C", ..., "Id"]
== ["Id", ..., "Id", "Cd JW", "JW", "C", ..., "Id"]
```

In other words, the Jordan-Wigner string appears only in the range $i<=1<j$, i.e. between the two sites and on the smaller/left one of them. (You can easily generalize this rule to cases with more than two c or c^{\dagger}.)

This last line (as well as the last line of the previous example) can be rewritten by changing the order of the operators Cd JW to "JW Cd" == - "Cd". (This is valid because either site i is occupied, yielding a minus sign from the JW , or it is empty, yielding a 0 from the Cd.)
This is also the case for $j<i$, say $j=i-2: c_{i}^{\dagger} c_{j} \leftrightarrow(-1)^{\sum_{j<=l<i} n_{l}} \sigma_{i}^{+} \sigma_{j}^{-}$. As shown in the following, the JW again appears on the left site, but this time acting after C :

```
["JW", ..., "JW", "JW", "JW", "Cd", "Id", ..., "Id"] * ["JW", ..., "JW", "C", "Id",
\hookrightarrow"Id", "Id", . . ., "Id"]
== ["JW JW", . .., "JW JW", "JW C", "JW", "Cd Id", ..., "Id"]
== ["Id", ..., "Id", "JW C", "JW", "Cd", ..., "Id"]
```


Higher dimensions

For an MPO or MPS, you always have to define an ordering of all your sites. This ordering effectifely maps the higherdimensional lattice to a 1D chain, usually at the expence of long-range hopping/interactions. With this mapping, the Jordan-Wigner transformation generalizes to higher dimensions in a straight-forward way.

Spinful fermions

As illustrated in the above picture, you can think of spin- $1 / 2$ fermions on a chain as spinless fermions living on a ladder (and analogous mappings for higher dimensional lattices). Each rung (a blue box in the picture) forms a SpinHalfFermionSite which is composed of two FermionSite (the circles in the picture) for spin-up and spin-down. The mapping of the spin-1/2 fermions onto the ladder induces an ordering of the spins, as the final result must again be a one-dimensional chain, now containing both spin species. The solid line indicates the convention for the ordering, the dashed lines indicate spin-preserving hopping $c_{s, i}^{\dagger} c_{s, i+1}+h . c$. and visualize the ladder structure. More generally, each species of fermions appearing in your model gets a separate label, and its Jordan-Wigner string includes the signs $(-1)^{n_{l}}$ of all species of fermions to the 'left' of it (in the sense of the ordering indicated by the solid line in the picture).
In the case of spin- $1 / 2$ fermions labeled by \uparrow and \downarrow on each site, the complete mapping is given (where j and l are
indices of the FermionSite):

$$
\begin{aligned}
& n_{\uparrow, j} \leftrightarrow\left(\sigma_{\uparrow, j}^{z}+1\right) / 2 \\
& n_{\downarrow, j} \leftrightarrow\left(\sigma_{\downarrow, j}^{z}+1\right) / 2 \\
& c_{\uparrow, j} \leftrightarrow(-1)^{\sum_{l<j} n_{\uparrow, l}+n_{\downarrow, l}} \sigma_{\uparrow, j}^{-} \\
& c_{\uparrow, j}^{\dagger} \leftrightarrow(-1)^{\sum_{l<j} n_{\uparrow, l}+n_{\downarrow, l}} \sigma_{\uparrow, j}^{+} \\
& c_{\downarrow, j} \leftrightarrow(-1)^{\sum_{l<j} n_{\uparrow, l}+n_{\downarrow, l}}(-1)^{n_{\uparrow, j}} \sigma_{\downarrow, j}^{-} \\
& c_{\downarrow, j}^{\dagger} \leftrightarrow(-1)^{\sum_{l<j} n_{\uparrow, l}+n_{\downarrow, l}}(-1)^{n_{\uparrow, j}} \sigma_{\downarrow, j}^{+}
\end{aligned}
$$

In each of the above mappings the operators on the right hand sides commute; we can rewrite $(-1)^{\sum_{l<j} n_{\uparrow, l}+n_{\downarrow, l}}=$ $\prod_{l<j}(-1)^{n_{\uparrow, l}}(-1)^{n_{\downarrow, l}}$, which resembles the actual structure in the code more closely. The parts of the operator acting in the same box of the picture, i.e. which have the same index j or l, are the 'onsite' operators in the SpinHalfFermionSite: for example JW on site j is given by $(-1)^{n_{\uparrow, j}}(-1)^{n_{\downarrow, j}}$, Cu is just the $\sigma_{\uparrow, j}^{-}$, Cdu is $\sigma_{\uparrow, j}^{+}$, Cd is $(-1)^{n_{\uparrow, j}} \sigma_{\downarrow, j}^{-}$. and Cdd is $(-1)^{n_{\uparrow, j}} \sigma_{\downarrow, j}^{+}$. Note the asymmetry regarding the spin in the definition of the onsite operators: the spin-down operators include Jordan-Wigner signs for the spin-up fermions on the same site. This asymetry stems from the ordering convention introduced by the solid line in the picture, according to which the spin-up site is "left" of the spin-down site. With the above definition, the operators within the same SpinHalfFermionSite fulfill the expected commutation relations, for example " $\mathrm{Cu} \mathrm{Cdd} "==-\mathrm{Cdd} \mathrm{Cu} "$, but again the JW on sites left of the operator pair is crucial to get the correct commutation relations globally.

Warning: Again, the fermionic operators $c_{\downarrow, j}, c_{\downarrow, j}^{\dagger}, c_{\downarrow, j}, c_{\downarrow, j}^{\dagger}$ correspond to global operators consisting of the Jordan-Wigner string built by the local operator JW on sites $1<j$ and the local operators 'Cu', 'Cdu', 'Cd', 'Cdd' on site j.

Written explicitly in terms of onsite operators defined in the FermionSite, with the j-th entry entry in the list acting on site j, the relations are:

```
["JW", ..., "JW", "Cu", "Id", ..., "Id"] # for the annihilation operator spin-up
["JW", ..., "JW", "Cd", "Id", ..., "Id"] # for the annihilation operator spin-down
["JW", ..., "JW", "Cdu", "Id", ..., "Id"] # for the creation operator spin-up
["JW", ..., "JW", "Cdd", "Id", ...,"Id"] # for the creation operator spin-down
```

As you can see, the asymmetry regaring the spins in the definition of the local onsite operators " Cu ", " Cd ", "Cdu", "Cdd" lead to a symmetric definition in the global sense. If you look at the definitions very closely, you can see that in terms like ["Id", "Cd JW", "JW", "Cd"] the Jordan-Wigner sign $(-1)^{n_{\uparrow}, 2}$ appears twice (namely once in the definition of " Cd " and once in the "JW" on site 2) and could in principle be canceled, however in favor of a simplified handling in the code we do not recommend you to cancel it. Similar, within a spinless FermionSite, one can simplify "Cd JW" == "Cd" and "JW C" == "C", but these relations do not hold in the SpinHalfSite, and for consistency we recommend to explicitly keep the "JW" operator string even in nearest-neighbor models where it is not strictly necessary.

How to handle Jordan-Wigner strings in practice

There are only a few pitfalls where you have to keep the mapping in mind: When building a model, you map the physical fermionic operators to the usual spin/bosonic operators. The algorithms don't care about the mapping, they just use the given Hamiltonian, be it given as MPO for DMRG or as nearest neighbor couplings for TEBD. Only when you do a measurement (e.g. by calculating an expectation value or a correlation function), you have to reverse this mapping. Be aware that in certain cases, e.g. when calculating the entanglement entropy on a certain bond, you cannot reverse this mapping (in a straightforward way), and thus your results might depend on how you defined the Jordan-Wigner string.

Whatever you do, you should first think about if (and how much of) the Jordan-Wigner string cancels. For example for many of the onsite operators (like the particle number operator N or the spin operators in the SpinHalfFermionSite) the Jordan-Wigner string cancels completely and you can just ignore it both in onsiteterms and couplings. To check, whether the Jordan-Wigner string cancels for a given operator, take a look at need_JW_string and op_needs_JW (). In case of operators acting on different sites, you typically have a Jordan-Wigner string inbetween (e.g. for the $c_{i}^{\dagger} c_{j}$ examples described above and below) or no Jordan-Wigner strings at all (e.g. for density-density interactions $n_{i} n_{j}$). In fact, the case that the Jordan Wigner string on the left of the first non-trivial operator does not cancel is currently not supported for models and expectation values, as it usually doesn't appear in practice.

When building a model with the CouplingModel, onsite terms for which the Jordan-Wigner string cancels can be added directly. Care has to be taken when adding couplings with add_coupling(). When you need a JordanWigner string inbetween the operators, set the optional arguments op_string='JW', str_on_first=True. Then, the function automatically takes care of the Jordan-Wigner string in the correct way, adding it on the left operator. With the default arguments, it is checked automatically whether the model
Obviously, you should be careful about the convention which of the two coupling terms is applied first (in a physical sense as an operator acting on a state), as this corresponds to a sign. We follow the convention that the operator given as argument op2 is applied first, independent of wheter it ends up left or right in the MPS ordering sense.
As a concrete example, let us specify a hopping $\sum_{\langle i, j\rangle}\left(c_{i}^{\dagger} c_{j}+h . c.\right)=\sum_{\langle i, j\rangle}\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)$ in a 1D chain of FermionSite with add_coupling():

```
add_coupling(strength, 0, 'Cd', 0, 'C', 1, 'JW', True)
add_coupling(strength, 0, 'Cd', 0, 'C', -1, 'JW', True)
# (without the last 2 arguments, add_coupling checks for necessary JW strings_
->automatically)
```

Slightly more complicated, to specify the hopping $\sum_{\langle i, j\rangle, s}\left(c_{s, i}^{\dagger} c_{s, j}+h . c.\right)$ in the Fermi-Hubbard model on a 2D square lattice, we would need more terms:

```
for (dx, dy) in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
    add_coupling(strength, 0, 'Cdu', 0, 'Cu', (dx, dy), 'JW', True)
    add_coupling(strength, 0, 'Cdd', 0, 'Cd', (dx, dy), 'JW', True)
```

If you want to build a model directly as an MPO or with nearest-neighbor bonds only, you have to care about how to handle the Jordan-Wigner string correctly.

The most important functions for doing measurements are probably expectation_value() and correlation_function (). Again, if all the Jordan-Wigner strings cancel, you don't have to worry about them at all, e.g. for many onsite operators or correlation functions involving only number operators. If you measure operators involving multiple sites with expectation_value, take care to include the Jordan-Wigner string correctly while building these operators.

The correlation_function () supports a Jordan-Wigner string in between the two operators to be measured. As for add_coupling(), you should set the optional arguments op_string='JW', str_on_first=True in that case. Functions like expectation_value_term () also care about the Jordan Wigner string (if specified in the documentation).

Contributing

The code is maintained in a git repository, the official repository is on github. You're welcome to contribute and submit pull requests on github. If you're unsure how or what to do, you can ask for help in the community forum. If you want to become a member of the developer team, just ask ;-)
To keep consistency, we ask you to comply with the following guidelines for contributions:

- Use a code style based on PEP 8. The git repo includes a config file . style.yapf for the python package yapf. yapf is a tool to auto-format code, e.g., by the command yapf -i some/file (-i for "in place"). We run yapf on a regular basis on the github master branch. If your branch diverged, it might help to run yapf before merging.

Note: Since no tool is perfect, you can format some regions of code manually and enclose them with the special comments \# yapf: disable and \# yapf: enable.

- Every function/class/module should be documented by its doc-string (c.f. PEP 257), additional documentation is in doc/. The documentation uses reStructuredText. If you're new to reStructuredText, read this introduction. We use the numpydoc extension to sphinx, so please read and follow these Instructions for the doc strings. In addition, you can take a look at the following example file. Helpful hints on top of that:

```
r"""<- this r makes me a raw string, thus '\' has no special meaning.
Otherwise you would need to escape backslashes, e.g. in math formulas.
You can include cross references to classes, methods, functions, modules like
:class:` ~tenpy.linalg.np_conserved.Array`, :meth:` ~tenpy.linalg.np_conserved.
\hookrightarrowArray.to_ndarray`,
:func:`tenpy.tools.math.toiterable`, :mod:`tenpy.linalg.np_conserved`.
The ~ in the beginning makes only the last part of the name appear in the,
\hookrightarrowgenerated documentation.
Documents of the userguide can be referenced with :doc:`/intro_npc` even from,s
uinside the doc-strings.
You can also cross-link to other documentations, e.g. :class:`numpy.ndarray`, r
\hookrightarrow:func`scipy.linalg.svd` and :mod: will work.
Moreover, you can link to github issues, arXiv papers, dois, and topics in the,
Community forum with
e.g. :issue:`5`, :arxiv:`1805.00055`, :doi:`10.1000/1` and :forum:`3`.
Write inline formulas as :math:`H /\Psi\rangle = E /\Psi\rangle` or displayed
\hookrightarrowequations as
.. math : :
    e^{i\pi}+1=0
In doc-strings, math can only be used in the Notes section.
To refer to variables within math, use '\mathtt{varname}`.
..todo : :
    This block can describe things which need to be done and is automatically,
\hookrightarrowincluded in a section of :doc:`todo`.
" " "
```

- Use relative imports within TeNPy. Example:

```
from ..linalg import np_conserved as npc
```

- Use the python package pytest for testing. Run it simply with pytest in tests/. You should make sure that all tests run through, before you git push back into the public repo. Long-running tests are marked with the attribute slow; for a quick check you can also run pytest $-m$ "not slow".
- Reversely, if you write new functions, please also include suitable tests!
- During development, you might introduce \# TODO comments. But also try to remove them again later! If you're not 100% sure that you will remove it soon, please add a doc-string with a . . todo : : block, such that we can keep track of it as explained in the previous point.

Unfinished functions should raise NotImplementedError().

- if you want to try out new things in temporary files: any folder named playground is ignored by git.

Thank You for helping with the development!

Bulding the documentation

You can use Sphinx to generate the full documentation in various formats (including HTML or PDF) yourself, as described in the following. First, install Sphinx and the extension numpydoc with:

```
pip install --upgrade sphinx numpydoc
```

Afterwards, simply go to the folder $d o c /$ and run the following command:

```
make html
```

This should generate the $h t m l$ documentation in the folder $d o c / s p h i n x _b u i l d / h t m l$. Open this folder (or to be precise: the file index.html in it) in your webbroser and enjoy this and other documentation beautifully rendered, with cross links, math formulas and even a search function. Other output formats are available as other make targets, e.g., make latexpdf.

Note: Building the documentation with sphinx requires loading the modules. Thus make sure that the folder tenpy is included in your \$PYTHONPATH, as described in doc/INSTALL.rst.

To-Do list

Primary goals for the coming release

- finish documentation and tests on existing stuff

Concrete things to be fixed in different files

- The MPO class has no function for expectation value with MPS
- Since we switched to python 3 completely, there's no need to subclass 'object' anymore.
- npc.Array: comparison with $==$, pickle, hashable?
- MPS class: group_sites, split_sites, pad
- MPS class: probability_per_charge, charge_variance
- MPS class: string correlation function

To be done at some point for the next releases

- remove this file: use GitHub issues instead
- overview and usage introduction to the overall library
- trace: allow multiple axes to be traced over; optimize
- Summary of defined classes/functions at the beginning of a module in the reference
- Inconsistency: NearestNeighborModel.H_bond with bc_MPS='infinite' has bonds [(L, 0), (0, $1), \ldots]$, but expectation_value () takes two-site operators on bonds $[(0,1),(1,2)$, .. . (L, 0)].

Wish-list

- logging mechanism?
- Johannes Motruk: extend simulation class: save standard variables like entropy, energy, etc?
- Ruben: extend MPS TransferMatrix class
- Jakob: function for Arrays: Perfrom trace over multiple pairs of legs at once. Tracing one after the other calculates unnecessary "off-diagonal" elements.

Auto-generated To-Do list

The following list is auto-generated by sphinx, extracting . . todo : : blocks from doc-strings of the code.

Todo: Write UserGuide!!!
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/algorithms/dmrg.py:dc of tenpy.algorithms.dmrg, line 30.)

Todo: Rebuild TDVP engine as subclasses of sweep Do testing
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/algorithms/mps_sweep of tenpy.algorithms.mps_sweeps, line 18.)

Todo:

- implement or wrap netcon.m, a function to find optimal contractionn sequences (arXiv:1304.6112)
- improve helpfulness of Warnings
- _do_trace: trace over all pairs of legs at once. need the corresponding npc function first.
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/algorithms/network_cc of tenpy.algorithms.network_contractor, line 8.)

Todo: This is still a beta version, use with care. The interface might still change.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/algorithms/tdvp.py:do of tenpy.algorithms.tdvp, line 12.)

Todo: long-term: Much of the code is similar as in DMRG. To avoid too much duplicated code, we should have a general way to sweep through an MPS and updated one or two sites, used in both cases.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/algorithms/tdvp.py:do of tenpy.algorithms.tdvp, line 16.)

Todo: -add further terms (e.g. c^{\wedge} dagger c^{\wedge} dagger + h.c. $)$ to the Hamiltonian.
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/fermions_spin of tenpy.models.fermions_spinless, line 3.)

Todo: WARNING: These models are still under development and not yet tested for correctness. Use at your own risk! Replicate known results to confirm models work correctly. Long term: implement different lattices. Long term: implement variable hopping strengths Jx_{x}, Jy.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/hofstadter.py:d of tenpy.models.hofstadter, line 3.)

Todo: make sure this function is used for expectation values...
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.Honeycomb.mps2lat_values, line 69.)

Todo:

- this doesn't fully work yet...
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.IrregularLattice, line 4.)

Todo: make sure this function is used for expectation values...
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.IrregularLattice.mps2lat_values, line 69.)

Todo: make sure this function is used for expectation values...
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.Kagome.mps2lat_values, line 69.)

Todo: make sure this function is used for expectation values. . .
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.Ladder.mps2lat_values, line 69.)

Todo: make sure this function is used for expectation values. . .
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.Lattice.mps2lat_values, line 69.)

Todo: make sure this function is used for expectation values. . .
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/lattice.py:docs of tenpy.models.lattice.TrivialLattice.mps2lat_values, line 69.)

Todo: implement MPO for time evolution. . .
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/model.py:docs of tenpy.models.model.MPOModel, line 8.)

Todo: make sure this function is used for expectation values. . .
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/models/toric_code.py: of tenpy.models.toric_code.DualSquare.mps2lat_values, line 69.)

Todo: might be useful to add a "cleanup" function which removes operators cancelling each other and/or unused states. Or better use a 'compress' of the MPO?
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/networks/mpo.py:docs of tenpy.networks.mpo.MPOGraph, line 18.)

Todo: Make more general: it should be possible to specify states as strings.
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/networks/mps.py:docs of tenpy.networks.mps.build_initial_state, line 14.)

Todo: One can also look at the canonical ensembles by defining the conserved quantities differently, see Barthel (2016), arXiv:1607.01696 for details. Idea: usual charges on p, trivial charges on q; fix total charge to desired value. I think it should suffice to implement another from_infiniteT.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/networks/purification_ of tenpy.networks.purification_mps, line 104.)

Todo: Check if Jordan-Wigner strings for 4 x 4 operators are correct.
(The original entry is located in/home/docs/checkouts/readthedocs.org/user_builds/tenpy/checkouts/v0.5.0/tenpy/networks/site.py:docst of tenpy.networks.site.SpinHalfFermionSite, line 62.)

CHANGELOG

All notable changes to the project will be documented in this file. The project adheres semantic versioning

[0.5.0] - 2019-12-18

Backwards incompatible changes

- Major rewriting of the DMRG Engines, see issue \#39 and issue \#85 for details. The EngineCombine and EngineFracture have been combined into a single TwoSiteDMRGEngine with an The run function works as before. In case you have directly used the EngineCombine or EngineFracture, you should update your code and use the TwoSiteEngine instead.
- Moved init_LP and init_RP method from MPS into MPSEnvironment and MPOEnvironment.

Changed

- Addition/subtraction of Array: check whether the both arrays have the same labels in differnt order, and in that case raise a warning that we will transpose in the future.
- Made tenpy. Iinalg.np_conserved.Array.get_block() public (previously tenpy.linalg. np_conserved.Array._get_block).
- groundstate () now returns a tuple (E0, psiO) instead of just psi0. Moreover, the argument charge_sector was added.
- Simplification in the Lattice: Instead of having separate arguments/attributes/functions for 'nearest_neighbors', 'next_nearest_neighbors', 'next_next_nearest_neighbors' and possibly (Honeycomb) even 'fourth_nearest_neighbors', 'fifth_nearest_neighbors', collect them in a dictionary called pairs. Old call structures still allowed, but deprecated.
- issue \#94: Array addition and inner () should reflect the order of the labels, if they coincided. Will change the default behaviour in the future, raising FutureWarning for now.
- Default parameter for DMRG params: increased precision by setting P _tol_min down to the maximum of $1 . e-30$, lanczos_params['svd_min']**2 * P_tol_to_trunc, lanczos_params['trunc_cut']**2 * P_tol_to_trunc by default.

Added

- tenpy.algorithms.mps_sweeps with the Sweep class and EffectiveH to be a OneSiteH or TwoSiteH.
- Single-Site DMRG with the SingleSiteDMRG.
- Example function in examples/c_tebd.py how to run TEBD with a model originally having next-nearest neighbors.
- increase_L() to allow increasing the unit cell of an MPS.
- Additional option order='folded' for the Chain.
- tenpy.algorithms.exact_diag.ExactDiag.from_H_mpo() wrapper as replacement for tenpy.networks.mpo.MPO.get_full_hamiltonian() and tenpy.networks.mpo.MPO. get_grouped_mpo (). The latter are now deprecated.
- Argument max_size to limit the matrix dimension in ExactDiag.
- tenpy.linalg.sparse.FlatLinearoperator.from_guess_with_pipe() to allow quickly converting matvec functions acting on multi-dimensional arrays to a FlatLinearOperator by combining the legs into a LegPipe.
- tenpy.tools.math.speigsh() for hermitian variant of speigs()
- Allow for arguments 'LA', 'SA' in argsort().
- tenpy.linalg.lanczos.lanczos_arpack() as possiple replacement of the self-implemented lanczos function.
- tenpy.algorithms.dmrg.full_diag_effH() as another replacement of lanczos().
- The new DMRG parameter 'diag_method ' allows to select a method for the diagonalization of the effective Hamiltonian. See tenpy.algorithms.dmrg.DMRGEngine.diag() for details.
- dtype attribute in EffectiveH.
- tenpy.linalg.charges.LegCharge.get_qindex_of_charges() to allow selecting a block of an Array from the charges.
- tenpy.algorithms.mps_sweeps.EffectiveH.to_matrix to allow contracting an EffectiveH to a matrix, as well as metadata tenpy.linalg.sparse.NpcLinearOperator.acts_on and tenpy. algorithms.mps_sweeps.EffectiveH.N.
- argument only_physical_legs in tenpy.networks.mps.MPS.get_total_charge ()

Fixed

- MPO expectation_value () did not work for finite systems.
- Calling compute_K () repeatedly with default parameters but on states with different chi would use the chi of the very first call for the truncation parameters.
- allow MPSEnvironment and MPOEnvironment to have MPS/MPO with different length
- group_sites () didn't work correctly in some situations.
- matvec_to_array () returned the transposed of A.
- tenpy.networks.mps.MPS.from_full () messed up the form of the first array.
- issue \#95: blowup of errors in DMRG with update_env >0. Turns out to be a problem in the precision of the truncation error: TruncationErroreps was set to 0 if it would be smaller than machine precision. To fix it, I added from_S ().

[0.4.1] - 2019-08-14

Backwards incompatible changes

- Switch the sign of the BoseHubbardModel and FermiHubbardModel to hopping and chemical potential having negative prefactors. Of course, the same adjustment happens in the BoseHubbardChain and FermiHubbardChain.
- moved BoseHubbardModel and BoseHubbardChain as well as FermiHubbardModel and FermiHubbardChain into the new module tenpy.models.hubbard.
- Change arguments of coupling_term_handle_JW() and multi_coupling_term_handle_JW() to use strength and sites instead of op_needs_JW.
- Only accept valid identifiers as operator names in add_op ().

Changed

- grid_concat () allows for None entries (representing zero blocks).
- from_full () allows for 'segment' boundary conditions.
- apply_Iocal_op () allows for n-site operators.

Added

- max_range attribute in MPO and MPOGraph.
- is_hermitian()
- Nearest-neighbor interaction in BoseHubbardModel
- multiply_op_names() to replace ' '.join(op_names) and allow explicit compression/multiplication.
- order_combine_term() to group operators together.
- dagger () of MPO's (and to implement that also flip_charges_qconj()).
- has_label () to check if a label exists
- qr_li() and rq_li()
- Addition of MPOs
- 3 additional examples for chern insulators in examples/chern_insulators/.
- FermionicHaldaneModel and BosonichaldaneModel.
- from_MPOModel () for initializing nearest-neighbor models after grouping sites.

Fixed

- issue \#36: long-range couplings could give IndexError.
- issue \#42: Onsite-terms in Fermi HubbardModel were wrong for lattices with non-trivial unit cell.
- Missing a factor 0.5 in GUE () .
- Allow TermList to have terms with multiple operators acting on the same site.
- Allow MPS indices outside unit cell in mps2lat_idx() and lat2mps_idx().
- expectation_value () did not work for n-site operators.

[0.4.0] - 2019-04-28

Backwards incompatible changes

- The argument order of tenpy.models.lattice.Lattice could be a tuple (priority, snake_winding) before. This is no longer valid and needs to be replaced by ("standard", snake_winding, priority).
- Moved the boundary conditions bc_coupling from the tenpy.models.model. CouplingModel into the tenpy.models.Iattice.Lattice (as bc). Using the parameter bc_coupling will raise a FutureWarning, one should set the boundary conditions directly in the lattice.
- Added parameter permute (True by default) in tenpy. networks.mps.MPS.from_product_state () and tenpy.networks.mps.MPS.from_Bflat (). The resulting state will therefore be independent of the "conserve" parameter of the Sites - unlike before, where the meaning of the p_state argument might have changed.
- Generalize and rename tenpy.networks.site.DoubleSite to tenpy.networks.site. GroupedSite, to allow for an arbitrary number of sites to be grouped. Arguments site0, site1, label0, label1 of the __init__ can be replaced with [site0, site1], [label0, label1] and op0, op1 of the kronecker_product with [op0, op1] ; this will recover the functionality of the DoubleSite.
- Restructured callstructure of Mixer in DMRG, allowing an implementation of other mixers. To enable the mixer, set the DMRG parameter "mixer" to True or 'DensityMatrixMixer' instead of just 'Mixer'.
- The interaction parameter in the tenpy.models.bose_hubbbard_chain. BoseHubbardModel (and tenpy.models.bose_hubbbard_chain. BoseHubbardChain) did not correspond to $U / 2 N(N-1)$ as claimed in the Hamiltonian, but to $U N^{2}$. The correcting factor $1 / 2$ and change in the chemical potential have been fixed.
- Major restructuring of tenpy.linalg.np_conserved and tenpy.linalg.charges. This should not break backwards-compatibility, but if you compiled the cython files, you need to remove the old binaries in the source directory. Using bash cleanup. sh might be helpful to do that, but also remove other files within the repository, so be careful and make a backup beforehand to be on the save side. Afterwards recompile with bash compile.sh.
- Changed structure of tenpy.models.model.CouplingModel.onsite_terms and tenpy. models.model.CouplingModel.coupling_terms: Each of them is now a dictionary with category strings as keys and the newly introduced tenpy.networks.terms.OnsiteTerms and tenpy. networks.terms. CouplingTerms as values.
- tenpy.models.model.CouplingModel.calc_H_onsite() is deprecated in favor of new methods.
- Argument raise_op2_left of tenpy.models.model.CouplingModel.add_coupling() is deprecated.

Added

- tenpy.networks.mps.MPS.canonical_form_infinite().
- tenpy.networks.mps.MPS.expectation_value_term(), tenpy.networks. mps.MPS.expectation_value_terms_sum() and tenpy.networks.mps.MPS. expectation_value_multi_sites() for expectation values of terms.
- tenpy.networks.mpo.MPO.expectation_value() for an MPO.
- tenpy.Iinalg.np_conserved.Array.extend() and tenpy.Iinalg.charges.LegCharge. extend(), allowing to extend an Array with zeros.
- DMRG parameter 'orthogonal_to' allows to calculate excited states for finite systems.
- possibility to change the number of charges after creating LegCharges/Arrays.
- more general way to specify the order of sites in a tenpy.models. Iattice. Lattice.
- new tenpy.models.lattice. Triangular, tenpy.models.lattice. Honeycomb and tenpy. models.lattice. Kagome lattice
- a way to specify nearest neighbor couplings in a Lattice, along with methods to count the number of nearest neighbors for sites in the bulk, and a way to plot them (plot_coupling() and friends)
- tenpy.networks.mpo.MPO. from_grids () to generate the MPO from a grid.
- tenpy.models.model.MultiCouplingModel for couplings involving more than 2 sites.
- request \#8: Allow shift in boundary conditions of CouplingModel.
- Allow to use state labels in tenpy. networks.mps.MPS. from_product_state ().
- tenpy.models.model. CouplingMPOModel structuring the default initialization of most models.
- Allow to force periodic boundary conditions for finite MPS in the CouplingMPOModel. This is not recommended, though.
- tenpy.models.model.NearestNeighborModel.calc_H_MPO_from_bond() and tenpy. models.model.MPOModel.calc_H_bond_from_MPO() for conversion of H_bond into H_MPO and vice versa.
- tenpy.algorithms.tebd.RandomUnitaryEvolution for random unitary circuits
- Allow documentation links to github issues, arXiv, papers by doi and the forum with e.g. : issue: ` 5 , , :arxiv:`1805.00055`, :doi:`10.21468/SciPostPhysLectNotes.5`, :forum: 3 `
- tenpy.models.model.CouplingModel.coupling_strength_add_ext_flux() for adding hoppings with external flux.
- tenpy.models.model.CouplingModel.plot_coupling_terms() to visualize the added coupling terms.
- tenpy.networks.terms.OnsiteTerms, tenpy.networks.terms.CouplingTerms, tenpy. networks.terms.MultiCouplingTerm containing the of terms for the CouplingModel and MultiCouplingModel. This allowed to add the category argument to add_onsite, add_coupling and add_multi_coupling.
- tenpy. networks.terms. TermList as another (more human readable) representation of terms with conversion from and to the other $*$ Term classes.
- tenpy.networks.mps.MPS.init_LP() and tenpy.networks.mps.MPS.init_RP() to initialize left and right parts of an Environment.
- tenpy.networks.mpo.MPOGraph. from_terms() and tenpy.networks.mpo.MPOGraph. from_term_list().
- argument charge_sector in tenpy.networks.mps.MPS. correlation_length ().

Changed

- moved toycodes from the folder examples / to a new folder toycodes / to separate them clearly.
- major remodelling of the internals of tenpy. linalg.np_conserved and tenpy. linalg. charges.
- Introduced the new module tenpy/linalg/_npc_helper.pyx which contains all the Cython code, and gets imported by
- Array now rejects addition/subtraction with other types
- Array now rejects multiplication/division with non-scalar types
- By default, make deep copies of npc Arrays.
- Restructured lanczos into a class, added time evolution calculating exp (A*dt) |psi0>
- Warning for poorly conditioned Lanczos; to overcome this enable the new parameter reortho.
- Simplified call strucutre of extend(), and extend().
- Restructured tenpy.algorithms.dmrg:
- run() is now just a wrapper around the new run(), run(psi, model, pars) is roughly equivalent to eng = EngineCombine(psi, model, pars); eng.run().
- Added init_env() and reset_stats() to allow a simple restart of DMRG with slightly different parameters, e.g. for tuning Hamiltonian parameters.
- Call canonical_form () for infinite systems if the final state is not in canonical form.
- Changed default values for some parameters:
- set trunc_params['chi_max'] = 100. Not setting a chi_max at all will lead to memory problems. Disable DMRG_params['chi_list'] = None by default to avoid conflicting settings.
- reduce to mixer_params['amplitude'] = 1.e-5. A too strong mixer screws DMRG up pretty bad.
- increase Lanczos_params['N_cache'] = N_max (i.e., keep all states)
- set DMRG_params['P_tol_to_trunc'] = 0.05 and provide reasonable ..._min and ..._max values.
- increased (default) DMRG accuracy by setting DMRG_params['max_E_err'] = $1 . e-8$ and DMRG_params['max_S_err'] = 1.e-5.
- don't check the (absolute) energy for convergence in Lanczos.
- set DMRG_params ['norm_tol'] = $1 . e-5$ to check whether the final state is in canonical form.
- Verbosity of get_parameter () reduced: Print parameters only for verbosity $>=1$. and default values only for verbosity $>=2$.
- Don't print the energy during real-time TEBD evolution - it's preserved up to truncation errors.
- Renamed the SquareLattice class to tenpy.models.lattice. Square for better consistency.
- auto-determine whether Jordan-Wigner strings are necessary in add_coupling().
- The way the labels of npc Arrays are stored internally changed to a simple list with None entries. There is a deprecated propery setter yielding a dictionary with the labels.
- renamed first_LP and last_RP arguments of MPSEnvironment and MPOEnvironment to init_LP and init_RP.
- Testing: insetad of the (outdated) nose, we now use pytest https://pytest.org for testing.

Fixed

- issue \#22: Serious bug in tenpy. linalg.np_conserved.inner(): if do_conj=True is used with non-zero qtotal, it returned 0 . instead of non-zero values.
- avoid error in tenpy.networks.mps.MPS.apply_local_op()
- Don't carry around total charge when using DMRG with a mixer
- Corrected couplings of the FermionicHubbardChain
- issue \#2: memory leak in cython parts when using intelpython/anaconda
- issue \#4: incompatible data types.
- issue \#6: the CouplingModel generated wrong Couplings in some cases
- issue \#19: Convergence of energy was slow for infinite systems with N_sweeps_check=1
- more reasonable traceback in case of wrong labels
- wrong dtype of npc.Array when adding/subtracting/... arrays of different data types
- could get wrong H_bond for completely decoupled chains.
- SVD could return outer indices with different axes
- tenpy.networks.mps.MPS.overlap () works now for MPS with different total charge (e.g. after psi. apply_local_op(i, 'Sp')).
- skip existing graph edges in MPOGraph.add() when building up terms without the strength part.

Removed

- Attribute chinfo of Lattice.

[0.3.0] - 2018-02-19

This is the first version published on github.

Added

- Cython modules for np_conserved and charges, which can optionally be compiled for speed-ups
- tools.optimization for dynamical optimization
- Various models.
- More predefined lattice sites.
- Example toy-codes.
- Network contractor for general networks

Changed

- Switch to python3

Removed

- Python 2 support.

[0.2.0] - 2017-02-24

- Compatible with python 2 and python 3 (using the 2 to 3 tool).
- Development version.
- Includes TEBD and DMRG.

Changes compared to previous TeNPy

This library is based on a previous (closed source) version developed mainly by Frank Pollmann, Michael P. Zaletel and Roger S. K. Mong. While allmost all files are completely rewritten and not backwards compatible, the overall structure is similar. In the following, we list only the most important changes.

Global Changes

- syntax style based on PEP8. Use \$>yapf -r -i ./ to ensure consitent formatting over the whole project. Special comments \# yapf: disable and \# yapf: enable can be used for manual formatting of some regions in code.
- Following PEP8, we distinguish between 'private' functions, indicated by names starting with an underscore and to be used only within the library, and the public API. The puplic API should be backwards-compatible with different releases, while private functions might change at any time.
- all modules are in the folder tenpy to avoid name conflicts with other libraries.
- withing the library, relative imports are used, e.g., from ..tools.math import (toiterable, tonparray) Exception: the files in tests/ and examples/ run as \qquad main \qquad and can't use relative imports

Files outside of the library (and in tests/, examples/) should use absolute imports, e.g. import tenpy. algorithms.tebd

- renamed tenpy/mps/ to tenpy/networks, since it containes various tensor networks.
- added Site describing the local physical sites by providing the physical LegCharge and onsite operators.

np_conserved

- pure python, no need to compile!
- in module tenpy. linalg instead of algorithms/linalg.
- moved functionality for charges to charges
- Introduced the classes ChargeInfo (basically the old q_number, and mod_q) and LegCharge (the old qind, qconj).
- Introduced the class LegPipe to replace the old leg_pipe. It is derived from LegCharge and used as a leg in the array class. Thus any inherited array (after tensordot etc still has all the necessary information to split the legs. (The legs are shared between different arrays, so it's saved only once in memory)
- Enhanced indexing of the array class to support slices and 1D index arrays along certain axes
- more functions, e.g. grid_outer()

TEBD

- Introduced TruncationError for easy handling of total truncation error.
- some truncation parameters are renamed and may have a different meaning, e.g. svd_max -> svd_min has no ' ${ }^{\prime}$ 'g' in the definition.

DMRG

- separate Lanczos module in tenpy/linalg/. Strangely, the old version orthoganalized against the complex conjugates of orthogonal_to (contrary to it's doc string!) (and thus calculated 'theta_o' as bra, not ket).
- cleaned up, provide prototypes for DMRG engine and mixer.

Tools

- added tenpy.tools.misc, which contains 'random stuff' from old tools.math like to_iterable and to_array (renamed to follow PEP8, documented)
- moved stuff for fitting to tenpy.tools.fit
- enhanced tenpy.tools.string.vert_join() for nice formatting
- moved (parts of) old cluster/omp.py to tenpy.tools.process
- added tenpy.tools.params for a simplified handling of parameter/arguments for models and/or algorithms. Similar as the old models.model.set_var, but use it also for algorithms. Also, it may modify the given dictionary.

TeNPy developer team

```
The following people are part of the TeNPy developer team.
The full list of contributors can be obtained from the git repository with ``gits
@shortlog -sn``.
Johannes Hauschild tenpy@johannes-hauschild.de
Frank Pollmann
Michael P. Zaletel
Maximilian Schulz
Leon Schoonderwoerd
Kévin Hémery
Gunnar Moeller
Jakob Unfried
Yu-Chin Tzeng
Further, the code is based on an earlier version of the library, mainly developed by
Frank Pollmann, Michael P. Zaletel and Roger S. K. Mong.
```


License

The source code documented here is published under a GPL v3 license, which we include below.

```
    GNU GENERAL PUBLIC LICENSE
    Version 3, 29 June 2007
    Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
    Everyone is permitted to copy and distribute verbatim copies
    of this license document, but changing it is not allowed.
                    Preamble
    The GNU General Public License is a free, copyleft license for
software and other kinds of works.
    The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.
```

(continues on next page)
(continued from previous page)

```
    For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
    Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
    For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based on the Program.
```

(continues on next page)

```
To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
```

1. Source Code.

The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users
(continues on next page)
can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

> 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.
(continues on next page)

```
    You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
    5. Conveying Modified Source Versions.
    You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
    a) The work must carry prominent notices stating that you modified
    it, and giving a relevant date.
    b) The work must carry prominent notices stating that it is
    released under this License and any conditions added under section
    7. This requirement modifies the requirement in section 4 to
    "keep intact all notices".
    c) You must license the entire work, as a whole, under this
    License to anyone who comes into possession of a copy. This
    License will therefore apply, along with any applicable section 7
    additional terms, to the whole of the work, and all its parts,
    regardless of how they are packaged. This License gives no
    permission to license the work in any other way, but it does not
    invalidate such permission if you have separately received it.
    d) If the work has interactive user interfaces, each must display
    Appropriate Legal Notices; however, if the Program has interactive
    interfaces that do not display Appropriate Legal Notices, your
    work need not make them do so.
A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:
a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a
```

copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection $6 b$.
d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection $6 d$.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.
"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or
(continues on next page)

```
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
C) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
```

(continues on next page)

```
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
```

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same
(continues on next page)
material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007 .

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may
(continues on next page)

```
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
    13. Use with the GNU Affero General Public License.
    Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
    14. Revised Versions of this License.
    The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
    Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
    If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
    Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
```

(continues on next page)
(continued from previous page)

```
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
    17. Interpretation of Sections 15 and 16.
    If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
    If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
    To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year> <name of author>
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY Or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
    If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
    <program> Copyright (C) <year> <name of author>
    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.
The hypothetical commands 'show w' and 'show c' should show the appropriate
```

(continues on next page)

```
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
    You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
    The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.
```


7.2 Tenpy Reference

TeNPy - a Python library for Tensor Network Algorithms
TeNPy is a library for algorithms working with tensor networks, e.g., matrix product states and -operators, designed to study the physics of strongly correlated quantum systems. The code is intended to be accessible for newcommers and yet powerful enough for day-to-day research.

Submodules

algorithms	A collection of algorithms such as TEBD and DMRG.
linalg	Linear-algebra tools for tensor networks.
models	Definition of the various models.
networks	Definitions of tensor networks like MPS and MPO.
tools	A collection of tools: mostly short yet quite useful func- tions.
version	Access to version of this library.

7.2.1 algorithms

- full name: tenpy.algorithms
- parent module: tenpy
- type: module

Module description

A collection of algorithms such as TEBD and DMRG.

Submodules

truncation	Truncation of Schmidt values.
dmrg	Density Matrix Renormalization Group (DMRG).
mps_sweeps	'Sweep' algorithm and effective Hamiltonians.
tebd	Time evolving block decimation (TEBD).
tdvp	Time Dependant Variational Principle (TDVP) with
	MPS (finite version only).
purification_tebd	Time evolving block decimation (TEBD) for MPS of
	purification.
network_contractor	Network Contractor.
exact_diag	Full diagonalization (ED) of the Hamiltonian.

truncation

- full name: tenpy.algorithms.truncation
- parent module: tenpy.algorithms
- type: module

Classes

TruncationError([eps, ov]) Class representing a truncation error.

TruncationError

- full name: tenpy.algorithms.truncation.TruncationError
- parent module: tenpy.algorithms.truncation
- type: class
class tenpy.algorithms.truncation.TruncationError (eps=0.0, ov=1.0)
Bases: ob ject
Class representing a truncation error.
The default initialization represents "no truncation".

Warning: For imaginary time evolution, this is not the error you are interested in!

Parameters

eps, ov [float] See below.

Examples

```
>>> TE = TruncationError()
>>> TE += tebd.time_evolution(...) # add `eps`, multiply `ov
```


Attributes

ov_err Error 1.-ov of the overlap with the correct state.
eps [float] The total sum of all discared Schmidt values squared. Note that if you keep singular values up to 1.e-14 (= a bit more than machine precision for 64 bit floats), eps is on the order of $1 . e-28$ (due to the square)!
ov [float] A lower bound for the overlap $\left|\left\langle\psi_{\text {trunc }} \mid \psi_{\text {correct }}\right\rangle\right|^{2}$ (assuming normalization of both states). This is probably the quantity you are actually interested in. Takes into account the factor 2 explained in the section on Errors in the TEBD Wikipedia article https://en.wikipedia.org/wiki/Time-evolving_block_decimation.

Methods

copy(self)	Return a copy of self.
from_S(S_discarded[, norm_old])	Construct TruncationError from discarded singular
values.	
from_norm(norm_new[, norm_old])	Construct TruncationError from norm after and be- fore the truncation.

copy (self)

Return a copy of self.
classmethod from_norm (norm_new, norm_old=1.0)
Construct TruncationError from norm after and before the truncation.

Parameters

norm_new [float] Norm of Schmidt values kept, $\sqrt{\sum_{a k e p t} \lambda_{a}^{2}}$ (before re-normalization).
norm_old [float] Norm of all Schmidt values before truncation, $\sqrt{\sum_{a} \lambda_{a}^{2}}$.
classmethod from_S (S_discarded, norm_old=None)
Construct TruncationError from discarded singular values.

Parameters

S_discarded [1D numpy array] The singular values discarded.
norm_old [float] Norm of all Schmidt values before truncation, $\sqrt{\sum_{a} \lambda_{a}^{2}}$. Default (None) is 1 .
property ov_err
Error 1.-ov of the overlap with the correct state.

Functions

Svd_theta(theta, trunc_par[, qtotal_LR, ...])	Performs SVD of a matrix theta $(=$ the wavefunction) and truncates it.
truncate(S, trunc_par)	Given a Schmidt spectrum S, determine which values to keep.

svd_theta

- full name: tenpy.algorithms.truncation.svd_theta
- parent module: tenpy.algorithms.truncation
- type: function
tenpy.algorithms.truncation.svd_theta(theta, trunc_par, qtotal_LR=[None, None], inner_labels $=\left[' v R\right.$ ', ' $\left.\left.v L^{\prime}\right]\right)$
Performs SVD of a matrix theta (= the wavefunction) and truncates it.
Perform a singular value decomposition (SVD) with svd() and truncates with truncate (). The result is an approximation theta $\sim=$ tensordot (U.scale_axis(S*renormalization, 1), VH, axes=1)

Parameters

theta [Array, shape (M, N)] The matrix, on which the singular value decomposition (SVD) is performed. Usually, theta represents the wavefunction, such that the SVD is a Schmidt decomposition.
trunc_par [dict] truncation parameters as described in truncate ().
qtotalLR [(charges, charges)] The total charges for the returned U and $V H$.
inner_labels [(string, string)] Labels for the U and $V H$ on the newly-created bond.

Returns

\mathbf{U} [Array] Matrix with left singular vectors as columns. Shape (M, M) or (M, K) depending on full_matrices.
\mathbf{S} [1D ndarray] The singluar values of the array. If no cutoff is given, it has lenght min (M , N) . Normalized to np. linalg. $\operatorname{norm}(S)==1$.

VH [Array] Matrix with right singular vectors as rows. Shape (N, N) or (K, N) depending on full_matrices.
err [TruncationError] The truncation error introduced.
renormalization [float] Factor, by which S was renormalized.

truncate

- full name: tenpy.algorithms.truncation.truncate
- parent module: tenpy.algorithms.truncation
- type: function
tenpy.algorithms.truncation.truncate (S, trunc_par)
Given a Schmidt spectrum S, determine which values to keep.

Parameters

S [1D array] Schmidt values (as returned by an SVD), not necessarily sorted. Should be normalized to $n p . \operatorname{sum}(S * S)==1 \ldots$
trunc_par: dict Parameters giving constraints for the truncation. If a constraint can not be fullfilled (without violating a previous one), it is ignored. A value None indicates that the constraint should be ignored.

key	type	constraint	
chi_maxint		Keep at most chi_max Schmidt values.	
chi_minint		Keep at least chi_min Schmidt values.	
sym-metry_to	float	Don't cut between Schmidt values with \|log(S[i]/S[j])	< \log (symmetry_tol) (i.e. either keep either both i and j or none). This is useful to prevent discarding (nearly) degenerate pairs in case of symmetries.
svd_miffloat		Discard all small Schmidt values S [i] < svd_min.	
trunc_	caflioat	Discard all small Schmidt values as long as sum_\{i discarded \} S[i]**2 <= trunc_cut**2.	

Returns

mask [1D bool array] Index mask, True for indices which should be kept.
norm_new [float] The norm of the truncated Schmidt values, np.linalg. norm (S [mask]). Useful for re-normalization.
err [TruncationError] The error of the represented state which is introduced due to the truncation.

Module description

Truncation of Schmidt values.
Often, it is necessary to truncate the number of states on a virtual bond of an MPS, keeping only the state with the largest Schmidt values. The function truncate () picks exactly those from a given Schmidt spectrum λ_{a}, depending on some parameters explained in the doc-string of the function.

Further, we provide TruncationError for a simple way to keep track of the total truncation error.
The SVD on a virtual bond of an MPS actually gives a Schmidt decomposition $|\psi\rangle=\sum_{a} \lambda_{a}\left|L_{a}\right\rangle\left|R_{a}\right\rangle$ where $\left|L_{a}\right\rangle$ and $\left|R_{a}\right\rangle$ form orthonormal bases of the parts left and right of the virtual bond. Let us assume that the state is properly normalized, $\langle\psi \mid \psi\rangle=\sum_{a} \lambda_{a}^{2}=1$. Assume that the singular values are ordered descending, and that we keep the first χ_{c} of the initially χ Schmidt values.

Then we decompose the untruncated state as $|\psi\rangle=\sqrt{1-\epsilon}\left|\psi_{t r}\right\rangle+\sqrt{\epsilon}\left|\psi_{t r}^{\perp}\right\rangle$ where $\left|\psi_{t r}\right\rangle=\frac{1}{\sqrt{1-\epsilon}} \sum_{a<\chi_{c}} \lambda_{a}\left|L_{a}\right\rangle\left|R_{a}\right\rangle$ is the truncated state kept (normalized to 1), $\left|\psi_{t r}^{\perp}\right\rangle=\frac{1}{\sqrt{\epsilon}} \sum_{a>=\chi_{c}} \lambda_{a}\left|L_{a}\right\rangle\left|R_{a}\right\rangle$ is the discarded part (orthogonal to the kept part) and the truncation error of a single truncation is defined as $\epsilon=1-\left|\left\langle\psi \mid \psi_{t r}\right\rangle\right|^{2}=\sum_{a>=\chi_{c}} \lambda_{a}^{2}$.

Warning: For imaginary time evolution (e.g. with TEBD), you try to project out the ground state. Then, looking at the truncation error defined in this module does not give you any information how good the found state coincides with the actual ground state! (Instead, the returned truncation error depends on the overlap with the initial state, which is arbitrary >0)

Warning: This module takes only track of the errors coming from the truncation of Schmidt values. There might be other sources of error as well, for example TEBD has also an discretisation error depending on the chosen time step.

dmrg

- full name: tenpy.algorithms.dmrg
- parent module: tenpy.algorithms
- type: module

Classes

DMRGEngine(psi, model, engine_params)	Generic 'Engine' for the single-site DMRG algorithm.
DensityMatrixMixer(mixer_params)	Mixer based on density matrices.
EngineCombine(psi, model, DMRG_params)	Engine which combines legs into pipes as far as possible.
EngineFracture(psi, model, DMRG_params)	Engine which keeps the legs separate.
Mixer(mixer_params)	Base class of a general Mixer.
SingleSiteDMRGEngine(psi, model, engine_params)	'Engine' for the single-site DMRG algorithm.
SingleSiteMixer(mixer_params)	Mixer for single-site DMRG.
TwoSiteDMRGEngine(psi, model, engine_params)	'Engine' for the two-site DMRG algorithm.
TwoSiteMixer(mixer_params)	Mixer for two-site DMRG.

DMRGEngine

- full name: tenpy.algorithms.dmrg.DMRGEngine
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.DMRGEngine (psi, model, engine_params)
Bases: tenpy.algorithms.mps_sweeps.Sweep
Generic 'Engine' for the single-site DMRG algorithm.
This engine is implemented as a subclass of Sweep. It contains all methods that are generic between SingleSiteDMRGEngine and TwoSiteDMRGEngine.

Parameters

psi [MPS] Initial guess for the ground state, which is to be optimized in-place.
model [MPOMOdel] The model representing the Hamiltonian for which we want to find the ground state.
engine_params [dict] Further optional parameters. These are usually algorithm-specific, and thus should be described in subclasses.

Attributes

EffectiveH [class type] Class for the effective Hamiltonian (i.e., a subclass of $E f f e c t i v e H$. Has a length class attribute which specifies the number of sites updated at once (e.g., whether we do single-site vs. two-site DMRG).
chi_list [dict I None] A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting from which sweep chi_max is set to the value, e.g. $\{0: 50,20: 100\}$ uses chi_max=50 for the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params['chi_list']'. By default (None) this feature is disabled.
eff_H [EffectiveH] Effective two-site Hamiltonian.
mixer [Mixer I None] If None, no mixer is used (anymore), otherwise the mixer instance.
shelve [bool] If a simulation runs out of time (time.time() - start_time > max_seconds), the run will terminate with shelve $=$ True .
sweeps [int] The number of sweeps already performed. (Useful for re-start).
time 0 [float] Time marker for the start of the run.
update_stats [dict] A dictionary with detailed statistics of the convergence at local update-level. For each key in the following table, the dictionary contains a list where one value is added each time DMRGEngine.update_bond () is called.

key	description	
i0	An update was performed on sites i0, i0+1.	
age	The number of physical sites involved in the simulation.	
E_total The total energy before truncation.		
N_lanctDismension of the Krylov space used in the lanczos diagonalization.		
time	Wallclock time evolved since time0 (in seconds).	
ov_change - abs (<theta_guess \| theta_diag>), where	theta_guess> is	
the initial guess for the wave function and \| theta_diag> is the untruncated		
wave function returned by diag ().		

sweep_stats [dict] A dictionary with detailed statistics at the sweep level. For each key in the following table, the dictionary contains a list where one value is added each time Engine. sweep () is called (with optimize=True).

key	description
sweep	Number of sweeps (excluding environment sweeps) performed so far.
N_updates	Number of updates (including environment sweeps) performed so far.
E	The energy before truncation (as calculated by Lanczos).
S	Maximum entanglement entropy.
time	Wallclock time evolved since time0 (in seconds).
max_trunc_err	The maximum truncation error in the last sweep
max_E_trunc	Maximum change or Energy due to truncation in the last sweep.
max_chi	Maximum bond dimension used.
norm_err	Error of canonical form np.linalg.norm (psi. norm_test()).

Methods

diag(self, theta_guess)	Diagonalize the effective Hamiltonian represented by self.
environment_sweeps(self, N_sweeps)	Perform N_sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixer_activate(self)	Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
plot_sweep_stats(self[, axes, xaxis, yaxis, ...])	Plot sweep_stats to display the convergence with the sweeps.
plot_update_stats(self, axes[, xaxis, ...])	Plot update_stats to display the convergence during the sweeps.
post_update_local(self, update_data[, ...])	Perform post-update actions.
prepare_update(self)	Prepare everything algorithm-specific to perform a local update.
reset_stats(self)	Reset the statistics, useful if you want to start a new sweep run.
run(self)	Run the DMRG simulation to find the ground state.
sweep(self[, optimize, meas_E_trunc])	One 'sweep' of a sweeper algorithm.
update_local(self, theta, *\|*kwargs)	Perform algorithm-specific local update.

run (self)
Run the DMRG simulation to find the ground state.

Returns

\mathbf{E} [float] The energy of the resulting ground state MPS.
psi [MPS] The MPS representing the ground state after the simluation, i.e. just a reference to psi.
reset_stats (self)
Reset the statistics, useful if you want to start a new sweep run.
post_update_local (self, update_data, meas_E_trunc=False)
Perform post-update actions.
Compute truncation energy, remove $L P / R P$ that are no longer needed and collect statistics.

Parameters

update_data [dict] Data computed during the local update, as described in the following list.
meas_E_trunc [bool, optional] Wheter to measure the energy after truncation.
diag (self, theta_guess)
Diagonalize the effective Hamiltonian represented by self.
The method used depends on the DMRG parameter diag_method.

diag	rfferthection, comment
$\begin{aligned} & \text { 'lanc } \\ & \text { zos' } \end{aligned}$	lanczos () Default, the Lanczos implementation of TeNPy
'arpa	cklanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than 'lanczos', since it needs to convert the npc arrays to numpy arrays during each matvec, and possibly does many more iterations.
	block'I_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize the block in the charge sector of the initial state. Preserves the charge sector of the explicitly conserved charges. However, if you don't preserve a charge explicitly, it can break it. For example if you use a SpinChain(\{'conserve': 'parity'\}), it could change the total "Sz", but not the parity of 'Sz'.
'EL	alfull_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize it completely. Allows to change the charge sector even for explicitly conserved charges. For example if you use a SpinChain (${ }^{\prime}$ 'conserve': 'Sz'\}), it can change the total "Sz".

Parameters

theta_guess [Array] Initial guess for the ground state of the effective Hamiltonian.

Returns

E0 [float] Energy of the found ground state.
theta [Array] Ground state of the effective Hamiltonian.
\mathbf{N} [int] Number of Lanczos iterations used. -1 if unknown.
ov_change [float] Change in the wave function 1. abs (<theta_guess|theta_diag>)
plot_update_stats (self, axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis ['N_updates' | 'sweep' | keys of update_stats] Key of update_stats to be used for the x-axis of the plots. 'N_updates' is just enumerating the number of bond updates, and 'sweep' corresponds to the sweep number (including environment sweeps).
yaxis ['E'| keys of update_stats] Key of update_stats to be used for the y-axisof the plots. For ' E ', use the energy (per site for infinite systems).
$\mathbf{y}_{\mathbf{\prime}}$ exact [float] Exact value for the quantity on the y -axis for comparison. If given, plot abs ((y-y_exact)/y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (...).
plot_sweep_stats (self, axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis, yaxis [key of sweep_stats] Key of sweep_stats to be used for the x-axis and y-axis of the plots.
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact)/y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (...).
environment_sweeps (self, N_{-}sweeps)
Perform N _sweeps sweeps without optimization to update the environment.

Parameters

N_sweeps [int] Number of sweeps to run without optimization
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry is (i0, move_right, (update_LP, update_RP)), where $i 0$ is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update_ $L P$, update_ $R P$ indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.
init_env (self, model=None)
(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats ().

Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
mixer_activate (self)
Set self.mixer to the class specified by engine_params['mixer'].
It is expected that different algorithms have differen ways of implementing mixers (with different defaults). Thus, this is algorithm-specific.
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep () with an enabled Mixer leaves the MPS psi with 2D arrays in S. To recover the originial form, this function simply performs one sweep with disabled mixer.
prepare_update (self)
Prepare everything algorithm-specific to perform a local update.
sweep $($ self, optimize $=$ True, meas_E_trunc $=$ False $)$
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize=False, don't actually diagonalize the effective hamiltonian, but only update the environment.

Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

Returns

max_trunc_err [float] Maximal truncation error introduced.
$\boldsymbol{m a x}$ _E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.
update_local (self, theta, **kwargs)
Perform algorithm-specific local update.

DensityMatrixMixer

- full name: tenpy.algorithms.dmrg.DensityMatrixMixer
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.DensityMatrixMixer (mixer_params)
Bases: tenpy.algorithms.dmrg.Mixer
Mixer based on density matrices.
This mixer constructs density matrices as described in the original paper [White2005].

Methods

get_xL(self, wL_leg, Id_L, Id_R)	Generate the coupling of the MPO legs for the re- duced density matrix.
get_xR(self, wR_leg, Id_L, Id_R)	Generate the coupling of the MPO legs for the re- duced density matrix.
mix_rho_L(self, engine, theta, i0, mix_enabled)	Calculated mixed reduced density matrix for left site.
mis_rho_R(self, engine, theta, i0, mix_enabled)	Calculated mixed reduced density matrix for left site.
perturb_svd(self, engine, theta, i0,...)	Mix extra terms to theta and perform an SVD.
update_amplitude(self, sweeps)	Update the amplitude, possibly disable the mixer.

[^0]Mix extra terms to theta and perform an SVD.
We calculate the left and right reduced density using the mixer (which might include applications of H). These density matrices are diagonalized and truncated such that we effectively perform a svd for the case mixer.amplitude $=0$.

Parameters

engine [SingleSiteDMRGEnginel TwoSiteDMRGEngine] The DMRG engine calling the mixer.
theta [Array] The optimized wave function, prepared for svd.
$\mathbf{i 0}$ [int] Site index; theta lives on i0, i $0+1$.
update_LP [bool] Whether to calculate the next env.LP [i0+1].
update_RP [bool] Whether to calculate the next env.RP[i0].

Returns

\mathbf{U} [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
\mathbf{S} [1D ndarray 1 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix; see comment above.

VH [Array] Right-canonical part of theta. Labels 'vL', '(p1.vR)'.
err [TruncationError] The truncation error introduced.
mix_rho_L (self, engine, theta, i0, mix_enabled)
Calculated mixed reduced density matrix for left site.
Pictorially:

Parameters

engine [Engine] The DMRG engine calling the mixer.
theta [Array] Ground state of the effective Hamiltonian, prepared for svd.
$\mathbf{i 0}$ [int] Site index; theta lives on i0, i $0+1$.
mix_enabled [bool] Whether we should perturb the density matrix.

Returns

rho_L [Array] A (hermitian) square array with labels '(vL.p0)', '(vL*.p0*)', Mainly the reduced density matrix of the left part, but with some additional mixing.
mix_rho_R (self, engine, theta, i0, mix_enabled)
Calculated mixed reduced density matrix for left site.

Pictorially:

mix_enabled=True

Parameters

engine [Engine] The DMRG engine calling the mixer.
theta [Array] Ground state of the effective Hamiltonian, prepared for svd.
i0 [int] Site index; theta lives on i0, i0+1.
mix_enabled [bool] Whether we should perturb the density matrix.

Returns

rho_R [Array] A (hermitian) square array with labels '(p1.vR)', '(pl*.vR*)'. Mainly the reduced density matrix of the right part, but with some additional mixing.
get_xR (self, $w R$ _leg, $\left.I d _L, I d _R\right)$
Generate the coupling of the MPO legs for the reduced density matrix.

Parameters

wR_leg [LegCharge] LegCharge to be connected to.
IdL [int I None] Index within the leg for which the MPO has only identities to the left.
IdR [int I None] Index within the leg for which the MPO has only identities to the right.

Returns

mixed_xR [Array] Connection of the MPOs on the right for the reduced density matrix rhoL. Labels ('wL', 'wL*').
add_separate_Id [bool] If Id_L is None, we can't include the identity into mixed_xR, so it has to be added directly in mix_rho_L().
get_xL (self, wL_leg, Id_L,Id_R)
Generate the coupling of the MPO legs for the reduced density matrix.

Parameters

wL_leg [LegCharge] LegCharge to be connected to.
Id_L [int I None] Index within the leg for which the MPO has only identities to the left.
Id_R [int I None] Index within the leg for which the MPO has only identities to the right.

Returns

mixed_xL [Array] Connection of the MPOs on the left for the reduced density matrix rhoR. Labels ('wR', 'wR*').
add_separate_Id [bool] If Id_R is None, we can't include the identity into mixed_xL, so it has to be added directly in mix_rho_R().
update_amplitude (self, sweeps)
Update the amplitude, possibly disable the mixer.

Parameters

sweeps [int] The number of performed sweeps, to check if we need to disable the mixer.

Returns

mixer [Mixer I None] Returns self if we should continue mixing, or None, if the mixer should be disabled.

EngineCombine

- full name: tenpy.algorithms.dmrg.EngineCombine
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.EngineCombine (psi, model, DMRG_params)
Bases: tenpy.algorithms.dmrg.TwoSiteDMRGEngine
Engine which combines legs into pipes as far as possible.
This engine combines the virtual and physical leg for the left site and right site into pipes. This reduces the overhead of calculating charge combinations in the contractions, but one matvec () is formally more expensive, $O\left(2 d^{3} \chi^{3} D\right)$.

Methods

diag(self, theta_guess)	Diagonalize the effective Hamiltonian represented by self.
environment_sweeps(self, N_sweeps)	Perform $N _$sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixed_svd(self, theta)	Get (truncated) B from the new theta (as returned by diag).
mixer_activate(self)	Set self.mixer to the class specified by en- gine_params 'mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
plot_sweep_stats(self[, axes, xaxis, yaxis,	Plot sweep_stats to display the convergence with the sweeps.
plot_update_stats(self, axes[, xaxis, $\ldots])$.	Plot update_stats to display the convergence during the sweeps.
post_update_local(self, update_data[, ...])	Perform post-update actions. prepare_svd(self, theta)Transform theta into matrix for svd. prepare_update(self) Prepare self to represent the effective Hamiltonian on sites (i0, i0+1). reset_stats(self) Reset the statistics, useful if you want to start a new sweep run.

Continued on next page

Table 9 - continued from previous page

run(self)	Run the DMRG simulation to find the ground state.
set_B(self, U, S, VH)	Update the MPS with the U, S, VH returned by self.mixed_svd.
Sweep(self[, optimize, meas_E_trunc])	One ‘sweep' of a sweeper algorithm.
update_ $L P($ self, U)	Update left part of the environment.
update_RP(self, VH)	Update right part of the environment.
update_local(self, theta[, optimize,,$\ldots])$	Perform bond-update on the sites (i0, i0+1).

diag (self, theta_guess)
Diagonalize the effective Hamiltonian represented by self.
The method used depends on the DMRG parameter diag_method.

diag_rferthatichn, comment	
'lanc_ zos'	lanczos () Default, the Lanczos implementation of TeNPy
'arpacklanczos_arpack () Based on scipy.linalg. sparse. eigsh (). Slower than 'lanc-	
zos', since it needs to convert the npc arrays to numpy arrays during each matvec, and possibly	
does many more iterations.	

Parameters

theta_guess [Array] Initial guess for the ground state of the effective Hamiltonian.

Returns

E0 [float] Energy of the found ground state.
theta [Array] Ground state of the effective Hamiltonian.
\mathbf{N} [int] Number of Lanczos iterations used. -1 if unknown.
ov_change [float] Change in the wave function
abs(<theta_guess|theta_diag>) . -
environment_sweeps (self, N_{-}sweeps)
Perform N _sweeps sweeps without optimization to update the environment.

Parameters

N_sweeps [int] Number of sweeps to run without optimization
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry is (i0, move_right, (update_LP, update_RP)), where i0 is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update_ $L P$, update_ $R P$ indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.

init_env (self, model=None)

(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats ().

Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
mixed_svd (self, theta)
Get (truncated) B from the new theta (as returned by diag).
The goal is to split theta and truncate it:

Without a mixer, this is done by a simple svd and truncation of Schmidt values.
With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the Mixer class.

Note that the returned S is a general (not diagonal) matrix, with labels 'vL', 'vR'.

Parameters

theta [Array] The optimized wave function, prepared for svd.

Returns

\mathbf{U} [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
S [1D ndarray I 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.
VH [Array] Right-canonical part of theta. Labels 'vL', '(pl.vR)'.
err [TruncationError] The truncation error introduced.
mixer_activate (self)
Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep() with an enabled Mixer leaves the MPS psi with 2D arrays in S. To recover the originial form, this function simply performs one sweep with disabled mixer.

```
plot_sweep_stats (self, axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
```

Plot sweep_stats to display the convergence with the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis, yaxis [key of sweep_stats] Key of sweep_stats to be used for the x-axis and y-axis of the plots.
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact) /y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (...).
plot_update_stats (self, axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis ['N_updates' | 'sweep' | keys of update_stats] Key of update_stats to be used for the x-axis of the plots. 'N_updates' is just enumerating the number of bond updates, and 'sweep' corresponds to the sweep number (including environment sweeps).
yaxis ['E'| keys of update_stats] Key of update_stats to be used for the y-axisof the plots. For ' E ', use the energy (per site for infinite systems).
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact)/y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (....).
post_update_local (self, update_data, meas_E_trunc=False)
Perform post-update actions.
Compute truncation energy, remove $L P / R P$ that are no longer needed and collect statistics.

Parameters

update_data [dict] Data computed during the local update, as described in the following list.
meas_E_trunc [bool, optional] Wheter to measure the energy after truncation.
prepare_svd (self, theta)
Transform theta into matrix for svd.
prepare_update (self)
Prepare self to represent the effective Hamiltonian on sites (i0, i0+1).

Returns

theta [Array] Current best guess for the ground state, which is to be optimized. Labels 'vL', 'p0', 'vR', 'p1'.
reset_stats (self)
Reset the statistics, useful if you want to start a new sweep run.
run (self)
Run the DMRG simulation to find the ground state.

Returns

\mathbf{E} [float] The energy of the resulting ground state MPS.
psi [MPS] The MPS representing the ground state after the simluation, i.e. just a reference to psi.
set_B $(s e l f, U, S, V H)$
Update the MPS with the U, S, VH returned by self.mixed_svd.

Parameters

U, VH [Array] Left and Right-canonical matrices as returned by the SVD.
\mathbf{S} [1D array 12D Array] The middle part returned by the SVD, theta $=\mathrm{U} S \mathrm{VH}$. Without a mixer just the singular values, with enabled mixer a 2D array.
sweep (self, optimize=True, meas_E_trunc=False)
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize $=$ False, don't actually diagonalize the effective hamiltonian, but only update the environment.

Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

Returns

max_trunc_err [float] Maximal truncation error introduced.
max_E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.
update_LP (self, U)
Update left part of the environment.
We always update the environment at site $i 0+1$: this environment then contains the site where we just performed a local update (when sweeping right).

Parameters

\mathbf{U} [Array] The U as returned by the SVD, with combined legs, labels 'vL.p0', 'vR'.
update_RP (self, VH)
Update right part of the environment.
We always update the environment at site i 0 : this environment then contains the site where we just performed a local update (when sweeping left).

Parameters

VH [Array] The VH as returned by SVD, with combined legs, labels 'vL', '(vR. p1)'.

```
update_local (self, theta, optimize=True, meas_E_trunc=False)
```

Perform bond-update on the sites (i0, i0+1).

Parameters

theta [Array] Initial guess for the ground state of the effective Hamiltonian.
optimize [bool] Wheter we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool] Wheter to measure the energy after truncation.

Returns

update_data [dict] Data computed during the local update, as described in the following:
E0 [float] Total energy, obtained before truncation (if optimize=True), or after truncation (if optimize=False) (but never None).
\mathbf{N} [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if optimize=False.
age [int] Current size of the DMRG simulation: number of physical sites involved into the contraction.

U, VH: Array U and $V H$ returned by mixed_svd().
ov_change: float Change in the wave function 1.abs(<theta_guess|theta>) induced by diag(), not including the truncation!

EngineFracture

- full name: tenpy.algorithms.dmrg.EngineFracture
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.EngineFracture (psi, model, DMRG_params)
Bases: tenpy.algorithms.dmrg. TwoSiteDMRGEngine
Engine which keeps the legs separate.
Due to a different contraction order in matvec (), this engine might be faster than EngineCombine, at least for large physical dimensions and if the MPO is sparse. One matvec () is $O\left(2 \chi^{3} d^{2} W+2 \chi^{2} d^{3} W^{2}\right)$.

Methods

diag(self, theta_guess)	Diagonalize the effective Hamiltonian represented by self.
environment_sweeps(self, N_sweeps)	Perform N_{-}sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixed_svd(self, theta)	Get (truncated) B from the new theta (as returned by diag).
mixer_activate(self)	Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
plot_sweep_stats(self[, axes, xaxis, yaxis, ...])	Plot sweep_stats to display the convergence with the sweeps.
plot_update_stats(self, axes[, xaxis, ...])	Plot update_stats to display the convergence during the sweeps.
post_update_local(self, update_data[,...])	Perform post-update actions.
prepare_svd(self, theta)	Transform theta into matrix for svd.
prepare_update(self)	Prepare self to represent the effective Hamiltonian on sites (i0, i0+1).

Table 10 - continued from previous page

reset_stats(self)	Reset the statistics, useful if you want to start a new sweep run.
run(self)	Run the DMRG simulation to find the ground state.
set_B(self, U, S, VH)	Update the MPS with the U, S, VH returned by self.mixed_svd.
sweep(self[, optimize, meas_E_trunc] $)$	One 'sweep' of a sweeper algorithm.
update_LP(self, U)	Update left part of the environment.
update_RP(self, VH)	Update right part of the environment.
update_local(self, theta[, optimize,..$])$	Perform bond-update on the sites $(i 0, i 0+1)$.

diag (self, theta_guess)
Diagonalize the effective Hamiltonian represented by self.
The method used depends on the DMRG parameter diag_method.

diag	rfaethection, comment
$\begin{aligned} & \text { 'lanc } \\ & \text { zos' } \end{aligned}$	lanczos () Default, the Lanczos implementation of TeNPy
'arpa	cklanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than 'lanczos', since it needs to convert the npc arrays to numpy arrays during each matvec, and possibly does many more iterations.
'E	block'I_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize the block in the charge sector of the initial state. Preserves the charge sector of the explicitly conserved charges. However, if you don't preserve a charge explicitly, it can break it. For example if you use a SpinChain(\{'conserve': 'parity'\}), it could change the total "Sz", but not the parity of 'Sz'.
	alfull_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize it completely. Allows to change the charge sector even for explicitly conserved charges. For

Parameters

theta_guess [Array] Initial guess for the ground state of the effective Hamiltonian.

Returns

E0 [float] Energy of the found ground state.
theta [Array] Ground state of the effective Hamiltonian.
\mathbf{N} [int] Number of Lanczos iterations used. -1 if unknown. ov_change [float] Change in the wave function 1. -
abs(<theta_guess|theta_diag>)
environment_sweeps (self, N_{-}sweeps)
Perform N_{-}sweeps sweeps without optimization to update the environment.

Parameters

N_sweeps [int] Number of sweeps to run without optimization
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry is (i0, move_right, (update_LP, update_RP)), where $i 0$ is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update_ $L P$, update_ $R P$ indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.

init_env (self, model=None)

(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats ().

Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
mixed_svd (self, theta)
Get (truncated) B from the new theta (as returned by diag).
The goal is to split theta and truncate it:

```
| -- theta -- ==> -- U -- S -- VH V | |
```

Without a mixer, this is done by a simple svd and truncation of Schmidt values.
With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the Mixer class.

Note that the returned S is a general (not diagonal) matrix, with labels 'vL', 'vR'.

Parameters

theta [Array] The optimized wave function, prepared for svd.

Returns

\mathbf{U} [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
\mathbf{S} [1D ndarray 12D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.
VH [Array] Right-canonical part of theta. Labels 'vL', '(p1.vR)'.
err [TruncationError] The truncation error introduced.
mixer_activate (self)
Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep () with an enabled Mixer leaves the MPS psi with 2D arrays in S. To recover the originial form, this function simply performs one sweep with disabled mixer.
plot_sweep_stats (self, axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis, yaxis [key of sweep_stats] Key of sweep_stats to be used for the x-axis and y -axis of the plots.
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact) /y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (. . .) .
plot_update_stats (self, axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis ['N_updates' | 'sweep' | keys of update_stats] Key of update_stats to be used for the x-axis of the plots. 'N_updates' is just enumerating the number of bond updates, and 'sweep' corresponds to the sweep number (including environment sweeps).
yaxis ['E' | keys of update_stats] Key of update_stats to be used for the y-axisof the plots. For ' E ', use the energy (per site for infinite systems).
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact) /y_exact) on a log-scale yaxis.
***kwargs : Further keyword arguments given to axes.plot (....).
post_update_local (self, update_data, meas_E_trunc=False)
Perform post-update actions.
Compute truncation energy, remove $L P / R P$ that are no longer needed and collect statistics.

Parameters

update_data [dict] Data computed during the local update, as described in the following list.
meas_E_trunc [bool, optional] Wheter to measure the energy after truncation.
prepare_svd (self, theta)
Transform theta into matrix for svd.
prepare_update (self)
Prepare self to represent the effective Hamiltonian on sites (i0, i0+1).

Returns

theta [Array] Current best guess for the ground state, which is to be optimized. Labels 'vL', 'p0', 'vR', 'p1'.
reset_stats (self)
Reset the statistics, useful if you want to start a new sweep run.
run (self)
Run the DMRG simulation to find the ground state.

Returns

E [float] The energy of the resulting ground state MPS.
psi [MPS] The MPS representing the ground state after the simluation, i.e. just a reference to psi.
set_B $($ self $, U, S, V H)$
Update the MPS with the U, S, VH returned by self.mixed_svd.

Parameters

U, VH [Array] Left and Right-canonical matrices as returned by the SVD.
S [1D array I2D Array] The middle part returned by the SVD, theta $=$ U S VH. Without a mixer just the singular values, with enabled mixer a 2D array.
sweep (self, optimize=True, meas_E_trunc=False)
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize=False, don't actually diagonalize the effective hamiltonian, but only update the environment.

Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

Returns

max_trunc_err [float] Maximal truncation error introduced.
max_E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.
update_LP (self, U)
Update left part of the environment.
We always update the environment at site $\mathrm{i} 0+1$: this environment then contains the site where we just performed a local update (when sweeping right).

Parameters

U [Array] The U as returned by the SVD, with combined legs, labels 'vL.p0', 'vR'.
update_RP (self, VH)
Update right part of the environment.
We always update the environment at site i 0 : this environment then contains the site where we just performed a local update (when sweeping left).

Parameters

VH [Array] The VH as returned by SVD, with combined legs, labels 'vL', '(vR. p1)'.
update_local (self, theta, optimize=True, meas_E_trunc=False)
Perform bond-update on the sites (i0, i0+1).

Parameters

theta [Array] Initial guess for the ground state of the effective Hamiltonian.
optimize [bool] Wheter we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool] Wheter to measure the energy after truncation.

Returns

update_data [dict] Data computed during the local update, as described in the following:
E0 [float] Total energy, obtained before truncation (if optimize=True), or after truncation (if optimize=False) (but never None).
\mathbf{N} [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if optimize=False.
age [int] Current size of the DMRG simulation: number of physical sites involved into the contraction.

U, VH: Array U and $V H$ returned by mixed_svd().
ov_change: float Change in the wave function 1. abs(<theta_guess|theta>) induced by diag(), not including the truncation!

Mixer

- full name: tenpy.algorithms.dmrg.Mixer
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.Mixer (mixer_params)
Bases: ob ject
Base class of a general Mixer.
Since DMRG performs only local updates of the state, it can get stuck in "local minima", in particular if the Hamiltonain is long-range - which is the case if one maps a 2D system ("infinite cylinder") to 1 D - or if one wants to do single-site updates (currently not implemented in TeNPy). The idea of the mixer is to perturb the state with the terms of the Hamiltonian which have contributions in both the "left" and "right" side of the system. In that way, it adds fluctuation of the quantum numbers and non-zero contributions of the long-range terms leading to a significantly improved convergence of DMRG.

The strength of the perturbation is given by the amplitude of the mixer. A good strategy is to choose an initially significant amplitude and let it decay until the perturbation becomes completely irrelevant and the mixer gets disabled.

This original idea of the mixer was introduced in [White2005]. [Hubig2015] discusses the mixer and provides an improved version.

Parameters

env [MPOEnvironment] Environment for contraction <psi|H|psi>for later
mixer_params [dict] Optional parameters as described in the following table. Use verbose>0 to print the used parameters during runtime.

key	type	description
ampli- tude	float	Initial strength of the mixer. (Should be $\ll 1$.)
decay	float	To slowly turn off the mixer, we divide amplitude by decay after each sweep. (Should be $>=1)$.
dis- able_after	int	We disable the mixer completely after this number of sweeps.

Attributes

amplitude [float] Current amplitude for mixing.
decay [float] Factor by which amplitude is divided after each sweep.
disable_after [int] The number of sweeps after which the mixer should be disabled.
verbose [int] Level of output vebosity.

Methods

perturb_svd(self, engine, theta, $\mathrm{i} 0, \ldots)$	Perturb the wave function and perform an SVD with truncation.
update_amplitude(self, sweeps)	Update the amplitude, possibly disable the mixer.

update_amplitude (self, sweeps)
Update the amplitude, possibly disable the mixer.

Parameters

sweeps [int] The number of performed sweeps, to check if we need to disable the mixer.

Returns

mixer [Mixer I None] Returns self if we should continue mixing, or None, if the mixer should be disabled.
perturb_svd (self, engine, theta, i0, update_LP, update_RP)
Perturb the wave function and perform an SVD with truncation.

Parameters

engine [Engine] The DMRG engine calling the mixer.
theta [Array] The optimized wave function, prepared for svd.
$\mathbf{i 0}$ [int] Site index; theta lives on i0, i0+1.
update_LP [bool] Whether to calculate the next env.LP [i0+1].
update_RP [bool] Whether to calculate the next env.RP[i0].

Returns

\mathbf{U} [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
\mathbf{S} [1D ndarray 1 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix; see comment above.
VH [Array] Right-canonical part of theta. Labels 'vL', '(vR.p1)'.
err [TruncationError] The truncation error introduced.

SingleSiteDMRGEngine

- full name: tenpy.algorithms.dmrg.SingleSiteDMRGEngine
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.SingleSiteDMRGEngine (psi, model, engine_params)
Bases: tenpy.algorithms.dmrg.DMRGEngine
'Engine’ for the single-site DMRG algorithm.

Parameters

psi [MPS] Initial guess for the ground state, which is to be optimized in-place.
model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state.
engine_params [dict] Further optional parameters. These are usually algorithm-specific, and thus should be described in subclasses.

Attributes

EffectiveH [class type] Class for the effective Hamiltonian (i.e., a subclass of EffectiveH. Has a length class attribute which specifies the number of sites updated at once (e.g., whether we do single-site vs. two-site DMRG).
chi_list [dict I None] A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting from which sweep chi_max is set to the value, e.g. \{0: 50, 20: 100\} uses chi_max=50 for the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params['chi_list']'. By default (None) this feature is disabled.
eff_H [EffectiveH] Effective two-site Hamiltonian.
mixer [Mixer I None] If None, no mixer is used (anymore), otherwise the mixer instance.
shelve [bool] If a simulation runs out of time (time.time() - start_time > max_seconds), the run will terminate with shelve $=$ True .
sweeps [int] The number of sweeps already performed. (Useful for re-start).
time0 [float] Time marker for the start of the run.
update_stats [dict] A dictionary with detailed statistics of the convergence. For each key in the following table, the dictionary contains a list where one value is added each time Engine. update_bond () is called.

key	description
i0	An update was performed on sites i0, i0 +1.
age	The number of physical sites involved in the simulation.
E_total	The total energy before truncation.
N_lanczos	Dimension of the Krylov space used in the lanczos diagonalization.
time	Wallclock time evolved since t ime 0 (in seconds).

sweep_stats [dict] A dictionary with detailed statistics of the convergence. For each key in the following table, the dictionary contains a list where one value is added each time Engine. sweep () is called (with optimize=True).

key	description
sweep	Number of sweeps performed so far.
E	The energy before truncation (as calculated by Lanczos).
S	Maximum entanglement entropy.
time	Wallclock time evolved since time0 (in seconds).
max_trunc_err	The maximum truncation error in the last sweep
max_E_trunc	Maximum change or Energy due to truncation in the last sweep.
max_chi	Maximum bond dimension used.
norm_err	Error of canonical form np.linalg.norm (psi. norm_test ()).

Methods

diag(self, theta_guess)	Diagonalize the effective Hamiltonian represented by self.
environment_sweeps(self, N_sweeps)	Perform N_sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixed_svd(self, theta, next_B)	Get (truncated) B from the new theta (as returned by diag).
mixer_activate(self)	Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
```plot_sweep_stats(self[, axes, xaxis, yaxis, ...])```	Plot sweep_stats to display the convergence with the sweeps.
plot_update_stats(self, axes[, xaxis, ...])	Plot update_stats to display the convergence during the sweeps.
post_update_local(self, update_data[,...])	Perform post-update actions.
prepare_svd(self, theta)	Transform theta into matrix for svd.
prepare_update(self)	Prepare self to represent the effective Hamiltonian on site io.
reset_stats(self)	Reset the statistics, useful if you want to start a new sweep run.
run(self)	Run the DMRG simulation to find the ground state.
set_B(self, U, S, VH)	Update the MPS with the $\mathrm{U}, \mathrm{S}, \mathrm{VH}$ returned by self.mixed_svd.
sweep(self[, optimize, meas_E_trunc])	One 'sweep' of a sweeper algorithm.
update_LP(self, U)	Update left part of the environment.
update_RP(self, VH)	Update right part of the environment.
update_local(self, theta[, optimize, ...])	Perform site-update on the site i0.

prepare_update (self)
Prepare self to represent the effective Hamiltonian on site io.

## Returns

theta [Array] Current best guess for the ground state, which is to be optimized. Labels 'vL', 'p0', 'vR', or combined versions of it (if self.combine).
update_local (self, theta, optimize=True, meas_E_trunc=False)
Perform site-update on the site $i 0$.

## Parameters

theta [Array] Initial guess for the ground state of the effective Hamiltonian.
optimize [bool] Wheter we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool] Wheter to measure the energy after truncation.

## Returns

update_data [dict] Data computed during the local update, as described in the following:
E0 [float] Total energy, obtained before truncation (if optimize=True), or after truncation (if optimize=False) (but never None).
$\mathbf{N}$ [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if optimize=False.
age [int] Current size of the DMRG simulation: number of physical sites involved into the contraction.

U, VH: Array $U$ and $V H$ returned by mixed_svd().
ov_change: float Change in the wave function 1. abs(<theta_guess|theta>) induced by diag(), not including the truncation!
prepare_svd (self, theta)
Transform theta into matrix for svd.
In contrast with the 2 -site engine, the matrix here depends on the direction we move, as we need ' $p$ ' to point away from the direction we are going in.
mixed_svd (self, theta, next_B)
Get (truncated) $B$ from the new theta (as returned by diag).
The goal is to split theta and truncate it. For a move to the right:


For a move to the left:


The $V H$ for right-move or $U$ for left-move is absorebed into the next_B.
Without a mixer, this is done by a simple svd and truncation of Schmidt values of theta followed by the absorption of $\mathrm{VH} / \mathrm{U}$.
With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the Mixer class.

## Parameters

theta [Array] The optimized wave function, prepared for svd with prepare_svd (), i.e. with combined legs.
nextB [Array] MPS tensor at the site that will be visited next.

## Returns

$\mathbf{U}$ [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
$\mathbf{S}$ [1D ndarray 1 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.
VH [Array] Right-canonical part of theta. Labels 'vL', '(p0.vR)'.
err [TruncationError] The truncation error introduced.
set_B (self, $U, S, V H$ )
Update the MPS with the U, S, VH returned by self.mixed_svd.

## Parameters

U, VH [Array] Left and Right-canonical matrices as returned by the SVD.
$\mathbf{S}$ [1D array 12 D Array] The middle part returned by the SVD, theta $=\mathrm{U} \mathrm{S}$ VH. Without a mixer just the singular values, with enabled mixer a 2D array.

## mixer_activate (self)

Set self.mixer to the class specified by engine_params['mixer'].
update_LP (self, $U$ )
Update left part of the environment.
The site at which to update the environment depends on the direction of the sweep. If we are sweeping right, update the invironment at $i 0+1$. If we are sweeping left, update the environment at $i 0$

## Parameters

$\mathbf{U}$ [Array] The U as returned by SVD, with combined legs, labels ' (vL.p0)', 'vR' if self.move_right, else 'vL', '(p0.vR)'.
update_RP (self, VH)
Update right part of the environment.
The site at which to update the environment depends on the direction of the sweep. If we are sweeping right, update the invironment at $i 0$. If we are sweeping left, update the environment at $i 0-1$

## Parameters

VH [Array] The VH as returned by SVD, with combined legs, labels '(vL.p0)', 'vR' if self.move_right, else 'vL', '(p0.vR)'.
diag (self, theta_guess)
Diagonalize the effective Hamiltonian represented by self.
The method used depends on the DMRG parameter diag_method.

diag	rfferthection, comment
$\begin{aligned} & \text { 'lanc } \\ & \text { zos' } \end{aligned}$	lanczos () Default, the Lanczos implementation of TeNPy
'arpa	cklanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than 'lanczos', since it needs to convert the npc arrays to numpy arrays during each matvec, and possibly does many more iterations.
	block'I_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize the block in the charge sector of the initial state. Preserves the charge sector of the explicitly conserved charges. However, if you don't preserve a charge explicitly, it can break it. For example if you use a SpinChain(\{'conserve': 'parity'\}), it could change the total "Sz", but not the parity of ' Sz '.
	alfull_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize it completely. Allows to change the charge sector even for explicitly conserved charges. For example if you use a SpinChain ( $\left\{\right.$ 'conserve': ' $\left.S z^{\prime}\right\}$ ), it can change the total "Sz".

## Parameters

theta_guess [Array] Initial guess for the ground state of the effective Hamiltonian.

## Returns

E0 [float] Energy of the found ground state.
theta [Array] Ground state of the effective Hamiltonian.
$\mathbf{N}$ [int] Number of Lanczos iterations used. -1 if unknown.
ov_change [float] Change in the wave function 1. - abs (<theta_guess|theta_diag>)
environment_sweeps (self, N_sweeps)
Perform $N_{\text {_ }}$ sweeps sweeps without optimization to update the environment.

## Parameters

N_sweeps [int] Number of sweeps to run without optimization
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

## Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry
is (i0, move_right, (update_LP, update_RP)), where $i 0$ is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update $_L P$, update_ $R P$ indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.

## init_env (self, model=None)

(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats ().

## Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

## Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep () with an enabled Mixer leaves the MPS psi with 2D arrays in $S$. To recover the originial form, this function simply performs one sweep with disabled mixer.
plot_sweep_stats (self, axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

## Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis, yaxis [key of sweep_stats] Key of sweep_stats to be used for the x -axis and y-axis of the plots.
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ( (y-y_exact) /y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (. . . ) .
plot_update_stats (self, axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

## Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis ['N_updates' | 'sweep' | keys of update_stats] Key of update_stats to be used for the x-axis of the plots. 'N_updates' is just enumerating the number of bond updates, and 'sweep' corresponds to the sweep number (including environment sweeps).
yaxis ['E'|keys of update_stats] Key of update_stats to be used for the y-axisof the plots. For ' E ', use the energy (per site for infinite systems).
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ( (y-y_exact) /y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (. . . ) .
post_update_local (self, update_data, meas_E_trunc=False)
Perform post-update actions.
Compute truncation energy, remove $L P / R P$ that are no longer needed and collect statistics.

## Parameters

update_data [dict] Data computed during the local update, as described in the following list.
meas_E_trunc [bool, optional] Wheter to measure the energy after truncation.
reset_stats (self)
Reset the statistics, useful if you want to start a new sweep run.
run (self)
Run the DMRG simulation to find the ground state.

## Returns

$\mathbf{E}$ [float] The energy of the resulting ground state MPS.
psi [MPS] The MPS representing the ground state after the simluation, i.e. just a reference to psi.
sweep (self, optimize=True, meas_E_trunc=False)
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize=False, don't actually diagonalize the effective hamiltonian, but only update the environment.

## Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

## Returns

max_trunc_err [float] Maximal truncation error introduced.
$\boldsymbol{m a x}$ _E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.

## SingleSiteMixer

- full name: tenpy.algorithms.dmrg.SingleSiteMixer
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.SingleSiteMixer (mixer_params)
Bases: tenpy.algorithms.dmrg.Mixer
Mixer for single-site DMRG.
Performs a subspace expansion following [Hubig2015].


## Methods

perturb_svd(self, engine, theta, $\mathrm{i} 0, \ldots)$	Mix extra terms to theta and perform an SVD.
subspace_expand(self, engine, theta, i0, ...)	Expand the MPS subspace, to allow the bond dimen-   sion to increase.
update_amplitude(self, sweeps)	Update the amplitude, possibly disable the mixer.

perturb_svd (self, engine, theta, i0, move_right, next_B)
Mix extra terms to theta and perform an SVD.
We calculate the left and right reduced density matrix using the mixer (which might include applications of $H$ ). These density matrices are diagonalized and truncated such that we effectively perform a svd for the case mixer. amplitude $=0$.

## Parameters

engine [Engine] The DMRG engine calling the mixer.
theta [Array] The optimized wave function, prepared for svd.
$\mathbf{i 0}$ [int] The site index where theta lives.
move_right [bool] Whether we move to the right (True) or left (False).
next_B [Array] The subspace expansion requires to change the tensor on the next site as well. If move_right, it should correspond to engine.psi.get_B(i0+1, form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1, form='A').

## Returns

$\mathbf{U}$ [Array] Left-canonical part of tensordot(theta, next_B). Labels '(vL.p0)', 'vR'.
$\mathbf{S}$ [1D ndarray] (Perturbed) singular values on the new bond (between theta and next_B).
VH [Array] Right-canonical part of tensordot(theta, next_B). Labels 'vL', '(p1. vR)'.
err [TruncationError] The truncation error introduced.
subspace_expand (self, engine, theta, iO, move_right, next_B)
Expand the MPS subspace, to allow the bond dimension to increase.
This is the subspace expansion following [Hubig2015].

## Parameters

engine [SingleSiteDMRGEnginel TwoSiteDMRGEngine] 'Engine' for the DMRG algorithm
theta [Array] Optimized guess for the ground state of the effective local Hamiltonian.
$\mathbf{i 0}$ [int] Site index at which the local update has taken place.
move_right [bool] Whether the next $i 0$ of the sweep will be right or left of the current one.
next_B [Array] The subspace expansion requires to change the tensor on the next site as well. If move_right, it should correspond to engine.psi.get_B(i0+1, form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1, form='A').

## Returns

theta : Local MPS tensor at site i0 after subspace expansion.
next_B : MPS tensor at site $i 0+1$ or $i 0-1$ (depending on sweep direction) after subspace expansion.
update_amplitude (self, sweeps)
Update the amplitude, possibly disable the mixer.

## Parameters

sweeps [int] The number of performed sweeps, to check if we need to disable the mixer.

## Returns

mixer [Mixer I None] Returns self if we should continue mixing, or None, if the mixer should be disabled.

## TwoSiteDMRGEngine

- full name: tenpy.algorithms.dmrg.TwoSiteDMRGEngine
- parent module: tenpy.algorithms.dmrg
- type: class

```
class tenpy.algorithms.dmrg.TwoSiteDMRGEngine(psi, model, engine_params)
```

Bases: tenpy.algorithms.dmrg.DMRGEngine
'Engine' for the two-site DMRG algorithm.

## Parameters

psi [MPS] Initial guess for the ground state, which is to be optimized in-place.
model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state.
engine_params [dict] Further optional parameters. These are usually algorithm-specific, and thus should be described in subclasses.

## Attributes

EffectiveH [class type] Class for the effective Hamiltonian (i.e., a subclass of EffectiveH. Has a length class attribute which specifies the number of sites updated at once (e.g., whether we do single-site vs. two-site DMRG).
chi_list [dict I None] A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting from which sweep chi_max is set to the value, e.g. $\{0: 50,20: 100\}$ uses chi_max=50 for the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params['chi_list']'. By default (None) this feature is disabled.
eff_H [EffectiveH] Effective two-site Hamiltonian.
mixer [Mixerl None] If None, no mixer is used (anymore), otherwise the mixer instance.
shelve [bool] If a simulation runs out of time (time.time() - start_time > max_seconds), the run will terminate with shelve $=$ True.
sweeps [int] The number of sweeps already performed. (Useful for re-start).
time 0 [float] Time marker for the start of the run.
update_stats [dict] A dictionary with detailed statistics of the convergence. For each key in the following table, the dictionary contains a list where one value is added each time Engine. update_bond () is called.

key	description
i0	An update was performed on sites i0, i0+1.
age	The number of physical sites involved in the simulation.
E_total	The total energy before truncation.
N_lanczos	Dimension of the Krylov space used in the lanczos diagonalization.
time	Wallclock time evolved since time0 (in seconds).

sweep_stats [dict] A dictionary with detailed statistics of the convergence. For each key in the following table, the dictionary contains a list where one value is added each time Engine. sweep () is called (with optimize=True).

key	description
sweep	Number of sweeps performed so far.
E	The energy before truncation (as calculated by Lanczos).
S	Maximum entanglement entropy.
time	Wallclock time evolved since time0 (in seconds).
max_trunc_err	The maximum truncation error in the last sweep
max_E_trunc	Maximum change or Energy due to truncation in the last sweep.
max_chi	Maximum bond dimension used.
norm_err	Error of canonical form np.linalg.norm (psi.   norm_test ()).

## Methods

diag(self, theta_guess)	Diagonalize the effective Hamiltonian represented by self.
environment_sweeps(self, N_sweeps)	Perform $N_{-}$sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixed_svd(self, theta)	Get (truncated) $B$ from the new theta (as returned by diag).
mixer_activate(self)	Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
plot_sweep_stats(self[, axes, xaxis, yaxis, ...])	Plot sweep_stats to display the convergence with the sweeps.
plot_update_stats(self, axes[, xaxis, ...])	Plot update_stats to display the convergence during the sweeps.
post_update_local(self, update_data[, ...])	Perform post-update actions.
prepare_svd(self, theta)	Transform theta into matrix for svd.
prepare_update(self)	Prepare self to represent the effective Hamiltonian on sites (i0, i0+1).
reset_stats(self)	Reset the statistics, useful if you want to start a new sweep run.
run(self)	Run the DMRG simulation to find the ground state.
set_B(self, U, S, VH)	Update the MPS with the U, S, VH returned by self.mixed_svd.
sweep(self[, optimize, meas_E_trunc])	One 'sweep' of a sweeper algorithm.
update_LP(self, U)	Update left part of the environment.
update_RP(self, VH)	Update right part of the environment.
update_local(self, theta[, optimize, ...])	Perform bond-update on the sites (i0, i0+1).

prepare_update (self)
Prepare self to represent the effective Hamiltonian on sites (i0, i0+1).

## Returns

theta [Array] Current best guess for the ground state, which is to be optimized. Labels 'vL', 'p0', 'vR', 'p1'.
update_local (self, theta, optimize=True, meas_E_trunc=False)
Perform bond-update on the sites (i0, i0+1).

## Parameters

theta [Array] Initial guess for the ground state of the effective Hamiltonian.
optimize [bool] Wheter we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool] Wheter to measure the energy after truncation.

## Returns

update_data [dict] Data computed during the local update, as described in the following:
E0 [float] Total energy, obtained before truncation (if optimize=True), or after truncation (if optimize=False) (but never None).
$\mathbf{N}$ [int] Dimension of the Krylov space used for optimization in the lanczos algorithm. 0 if optimize=False.
age [int] Current size of the DMRG simulation: number of physical sites involved into the contraction.
U, VH: Array $U$ and $V H$ returned by mixed_svd().
ov_change: float Change in the wave function 1. abs(<theta_guess|theta>) induced by diag(), not including the truncation!
prepare_svd (self, theta)
Transform theta into matrix for svd.
mixed_svd (self, theta)
Get (truncated) $B$ from the new theta (as returned by diag).
The goal is to split theta and truncate it:

```
| -- theta -- ==> -- U -- S -- VH -
```

Without a mixer, this is done by a simple svd and truncation of Schmidt values.
With a mixer, the state is perturbed before the SVD. The details of the perturbation are defined by the Mixer class.

Note that the returned $S$ is a general (not diagonal) matrix, with labels 'vL', 'vR'.

## Parameters

theta [Array] The optimized wave function, prepared for svd.

## Returns

$\mathbf{U}$ [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
$\mathbf{S}$ [1D ndarray 1 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix with labels 'vL', 'vR'; see comment above.
VH [Array] Right-canonical part of theta. Labels 'vL', '(p1.vR)'.
err [TruncationError] The truncation error introduced.

```
set_B(self, U,S,VH)
```

Update the MPS with the U, S, VH returned by self.mixed_svd.

## Parameters

U, VH [Array] Left and Right-canonical matrices as returned by the SVD.
S [1D array 12D Array] The middle part returned by the SVD, theta $=\mathrm{U} \mathrm{S}$ VH. Without a mixer just the singular values, with enabled mixer a 2D array.
mixer_activate (self)
Set self.mixer to the class specified by engine_params['mixer'].
update_LP (self, $U$ )
Update left part of the environment.
We always update the environment at site $i 0+1$ : this environment then contains the site where we just performed a local update (when sweeping right).

## Parameters

$\mathbf{U}$ [Array] The U as returned by the SVD , with combined legs, labels 'vL.p0', 'vR'.
update_RP (self, VH)
Update right part of the environment.
We always update the environment at site i 0 : this environment then contains the site where we just performed a local update (when sweeping left).

## Parameters

VH [Array] The VH as returned by SVD, with combined legs, labels 'vL', '(vR. p1)'.
diag (self, theta_guess)
Diagonalize the effective Hamiltonian represented by self.
The method used depends on the DMRG parameter diag_method.

diag	rfferthecticon, comment
$\begin{aligned} & \text { 'lanc- } \\ & \text { zos' } \end{aligned}$	lanczos () Default, the Lanczos implementation of TeNPy
'arpa	cklanczos_arpack() Based on scipy.linalg.sparse.eigsh(). Slower than 'lanczos', since it needs to convert the npc arrays to numpy arrays during each matvec, and possibly does many more iterations.
	block'I_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize the block in the charge sector of the initial state. Preserves the charge sector of the explicitly conserved charges. However, if you don't preserve a charge explicitly, it can break it. For example if you use a SpinChain(\{'conserve': 'parity'\}), it could change the total "Sz", but not the parity of 'Sz'.
	alfull_diag_effH () Contract the effective Hamiltonian to a (large!) matrix and diagonalize it completely. Allows to change the charge sector even for explicitly conserved charges. For example if you use a SpinChain ( \{'conserve': 'Sz'\}), it can change the total "Sz".

## Parameters

theta_guess [Array] Initial guess for the ground state of the effective Hamiltonian.

## Returns

E0 [float] Energy of the found ground state.
theta [Array] Ground state of the effective Hamiltonian.
$\mathbf{N}$ [int] Number of Lanczos iterations used. -1 if unknown.
ov_change [float] Change in the wave function
abs (<theta guess|theta_diag>) abs(<theta_guess|theta_diag>)
environment_sweeps (self, N_sweeps)
Perform $N$ _sweeps sweeps without optimization to update the environment.

## Parameters

N_sweeps [int] Number of sweeps to run without optimization
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

## Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry is (i0, move_right, (update_LP, update_RP)), where i0 is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update_LP, update_RP indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.

## init_env (self, model=None)

(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters. Note that we assume that we still have the same psi. Calls reset_stats ().

## Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

## Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep () with an enabled Mixer leaves the MPS psi with 2D arrays in $S$. To recover the originial form, this function simply performs one sweep with disabled mixer.
plot_sweep_stats (self, axes=None, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot sweep_stats to display the convergence with the sweeps.

## Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis, yaxis [key of sweep_stats] Key of sweep_stats to be used for the $x$-axis and y -axis of the plots.
y_exact [float] Exact value for the quantity on the y-axis for comparison. If given, plot abs ((y-y_exact)/y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (...).
plot_update_stats (self, axes, xaxis='time', yaxis='E', y_exact=None, **kwargs)
Plot update_stats to display the convergence during the sweeps.

## Parameters

axes [matplotlib.axes.Axes] The axes to plot into. Defaults to matplotlib. pyplot.gca()
xaxis ['N_updates' | 'sweep' | keys of update_stats] Key of update_stats to be used for the $x$-axis of the plots. 'N_updates' is just enumerating the number of bond updates, and 'sweep' corresponds to the sweep number (including environment sweeps).
yaxis ['E'| keys of update_stats] Key of update_stats to be used for the y-axisof the plots. For ' $E$ ', use the energy (per site for infinite systems).
y_exact [float] Exact value for the quantity on the $y$-axis for comparison. If given, plot abs ((y-y_exact)/y_exact) on a log-scale yaxis.
**kwargs : Further keyword arguments given to axes.plot (. . . ) .
post_update_local (self, update_data, meas_E_trunc=False)
Perform post-update actions.
Compute truncation energy, remove $L P / R P$ that are no longer needed and collect statistics.

## Parameters

update_data [dict] Data computed during the local update, as described in the following list.
meas_E_trunc [bool, optional] Wheter to measure the energy after truncation.
reset_stats (self)
Reset the statistics, useful if you want to start a new sweep run.
run (self)
Run the DMRG simulation to find the ground state.

## Returns

$\mathbf{E}$ [float] The energy of the resulting ground state MPS.
psi [MPS] The MPS representing the ground state after the simluation, i.e. just a reference to psi.
sweep $($ self, optimize $=$ True, meas_E_trunc=False)
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize $=$ False, don't actually diagonalize the effective hamiltonian, but only update the environment.

## Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

## Returns

max_trunc_err [float] Maximal truncation error introduced.
max_E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.

## TwoSiteMixer

- full name: tenpy.algorithms.dmrg.TwoSiteMixer
- parent module: tenpy.algorithms.dmrg
- type: class
class tenpy.algorithms.dmrg.TwoSiteMixer (mixer_params)
Bases: tenpy.algorithms.dmrg.SingleSiteMixer
Mixer for two-site DMRG.
This is the two-site version of the mixer described in [Hubig2015]. Equivalent to the DensityMatrixMixer, but never construct the full density matrix.


## Methods

perturb_svd(self, engine, theta, i0, move_right)	Mix extra terms to theta and perform an SVD.
subspace_expand(self, engine, theta, i0,...)	Expand the MPS subspace, to allow the bond dimen-   sion to increase.
update_amplitude(self, sweeps)	Update the amplitude, possibly disable the mixer.

perturb_svd (self, engine, theta, i0, move_right)
Mix extra terms to theta and perform an SVD.

## Parameters

engine [Engine] The DMRG engine calling the mixer.
theta [Array] The optimized wave function, prepared for svd.
i0 [int] Site index; theta lives on i0, i $0+1$.
update_LP [bool] Whether to calculate the next env.LP [i0+1].
update_RP [bool] Whether to calculate the next env.RP[i0].

## Returns

$\mathbf{U}$ [Array] Left-canonical part of theta. Labels '(vL.p0)', 'vR'.
$\mathbf{S}$ [1D ndarray I 2D Array] Without mixer just the singluar values of the array; with mixer it might be a general matrix; see comment above.

VH [Array] Right-canonical part of theta. Labels 'vL', '(vR.p1)'.
err [TruncationError] The truncation error introduced.
subspace_expand (self, engine, theta, i0, move_right, next_B)
Expand the MPS subspace, to allow the bond dimension to increase.
This is the subspace expansion following [Hubig2015].

## Parameters

engine [SingleSiteDMRGEnginel TwoSiteDMRGEngine] 'Engine' for the DMRG algorithm
theta [Array] Optimized guess for the ground state of the effective local Hamiltonian.
i0 [int] Site index at which the local update has taken place.
move_right [bool] Whether the next $i 0$ of the sweep will be right or left of the current one.
next_B [Array] The subspace expansion requires to change the tensor on the next site as well. If move_right, it should correspond to engine.psi.get_B(i0+1, form='B'). If not move_right, it should correspond to engine.psi.get_B(i0-1, form='A').

## Returns

theta : Local MPS tensor at site $i 0$ after subspace expansion.
next_B : MPS tensor at site $i 0+1$ or $i 0-1$ (depending on sweep direction) after subspace expansion.
update_amplitude (self, sweeps)
Update the amplitude, possibly disable the mixer.

## Parameters

sweeps [int] The number of performed sweeps, to check if we need to disable the mixer.

## Returns

mixer [Mixer 1 None] Returns self if we should continue mixing, or None, if the mixer should be disabled.

## Functions

chi_list(chi_max[, dchi, nsweeps])	Compute a 'ramping-up' chi_list.
full_diag_effH(effH, theta_guess[, keep_sector])	Perform an exact diagonalization of effH.
run(psi, model, DMRG_params)	Run the DMRG algorithm to find the ground state of the   given model.

chi_list

- full name: tenpy.algorithms.dmrg.chi_list
- parent module: tenpy.algorithms.dmrg
- type: function
tenpy.algorithms.dmrg.chi_list (chi_max, dchi=20, nsweeps=20)
Compute a 'ramping-up' chi_list.
The resulting chi_list allows to increases chi by dchi every nsweeps sweeps up to a given maximal chi_max.


## Parameters

chi_max [int] Final value for the bond dimension.
dchi :int Step size how to increase chi
nsweeps [int] Step size for sweeps

## Returns

chi_list [dict] To be used as chi_list parameter for DMRG, see run (). Keys increase by nsweeps, values by dchi, until a maximum of chi_max is reached.
full_diag_effH

- full name: tenpy.algorithms.dmrg.full_diag_effH
- parent module: tenpy.algorithms.dmrg
- type: function
tenpy.algorithms.dmrg.full_diag_effH (effH, theta_guess, keep_sector=True)
Perform an exact diagonalization of effH.
This function offers an alternative to $\operatorname{lanczos}()$.


## Parameters

effH [EffectiveH] The effective Hamiltonian.
theta_guess [Array] Current guess to select the charge sector. Labels as specified by efff. acts_on.
run

- full name: tenpy.algorithms.dmrg.run
- parent module: tenpy.algorithms.dmrg
- type: function
tenpy.algorithms.dmrg.run (psi, model, $\left.D M R G _p a r a m s\right)$
Run the DMRG algorithm to find the ground state of the given model.


## Parameters

psi [MPS] Initial guess for the ground state, which is to be optimized in-place.
model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state.
DMRG_params [dict] Further optional parameters as described in the following table. Use verbose>0 to print the used parameters during runtime.

key	type	description	
LP	npc.Array	Initial left-most $L P$ and right-most $R P$ ('left/right part')	
RP		of the environment. By default (None) generate trivial, see MPOEnvironment for details.	
LP_age	int	The 'age' (i.e. number of physical sites invovled into the	
RP_age		contraction) of the left-most $L P$ and right-most $R P$ of the environment.	
mixer	str \| class	bool	Chooses the Mixer to be used. A string stands for one of the mixers defined in this module, a
mixer_params	dict	Non-default initialization arguments of the mixer. Options may be custom to the specified mixe	
orthogonal_to	list of MPS	List of other matrix produc states to orthogonalize against. Works only for finite systems. This	
combine	bool	Whether to combine legs into pipes. This combines the virtual and physical leg for the left site	
trunc_params	dict	Truncation parameters as described in truncate ()	
chi_list	dict I None	A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines sta	
lanczos_params	dict	Lanczos parameters as described in lanczos ()	
diag_method	str	Method to be used for diagonalzation, default ' lanczos'. For possible arguments see DMRG	
N_sweeps_check	int	Number of sweeps to perform between checking convergence criteria and giving a status updat	
sweep_0	int	The number of sweeps already performed. (Useful for re-start).	
start_env	int	Number of initial sweeps performed without bond optimizaiton to initialize the environment.	
update_env	int	Number of sweeps without bond optimizaiton to update the environment for infinite boundary	
norm_tol	float	After the DMRG run, update the environment with at most norm_tol_iter sweeps until np. li	
norm_tol_iter	float	Perform at most norm_tol_iter`*`update_env sweeps to converge the norm error below norm_t	
max_sweeps	int	Maximum number of sweeps to be performed.	
min_sweeps	int	Minimum number of sweeps to be performed. Defaults to 1.5*N_sweeps_check.	
max_E_err	float	Convergence if the change of the energy in each step satisfies - Delta E $/ \max (\|E\|$, 1)	
max_S_err	float	Convergence if the relative change of the entropy in each step satisfies \| Delta S	/S < ma
max_hours	float	If the DMRG took longer (measured in wall-clock time), 'shelve' the simulation, i.e. stop and i	
P_tol_to_trunc	float	It's reasonable to choose the Lanczos convergence criteria	
P_tol_max		'P_tol' not many magnitudes lower than the current	
P_tol_min		truncation error. Therefore, if $P_{-}$tol_to_trunc is not None, we update $P_{-}$tol of lanczos_params	
E_tol_to_trunc	float	It's reasonable to choose the Lanczos convergence criteria	
E_tol_max		'E_tol' not many magnitudes lower than the current	
E_tol_min		truncation error. Therefore, if E_tol_to_trunc is not None, we update E_tol of lanczos_params	
active_sites	int	The number of active sites to be used by DMRG. If set to 1, SingleSiteDMRGEngine is u	

## Returns

info [dict] A dictionary with keys 'E', 'shelve', 'bond_statistics',

```
'sweep_statistics'
```


## Module description

## Density Matrix Renormalization Group (DMRG).

Although it was originally not formulated with tensor networks, the DMRG algorithm (invented by Steven White in 1992 [White1992]) opened the whole field with its enormous success in finding ground states in 1D.

We implement DMRG in the modern formulation of matrix product states [Schollwoeck2011], both for finite systems ('finite' or 'segment' boundary conditions) and in the thermodynamic limit ('infinite' b.c.).

The function run () - well - runs one DMRG simulation. Internally, it generates an instance of an Sweep. This class implements the common functionality like defining a sweep, but leaves the details of the contractions to be performed to the derived classes.

Currently, there are two derived classes implementing the contractions: SingleSiteDMRGEngine and TwoSiteDMRGEngine. They differ (as their name implies) in the number of sites which are optimized simultaneously. They should both give the same results (up to rounding errors). However, if started from a product state, SingleSiteDMRGEngine depends critically on the use of a Mixer, while TwoSiteDMRGEngine is in principle more computationally expensive to run and has occasionally displayed some convergence issues.. Which one is preffered in the end is not obvious a priori and might depend on the used model. Just try both of them.

A Mixer should be used initially to avoid that the algorithm gets stuck in local energy minima, and then slowly turned off in the end. For SingleSiteDMRGEngine, using a mixer is crucial, as the one-site algorithm cannot increase the MPS bond dimension by itself.

Todo: Write UserGuide!!!
mps_sweeps

- full name: tenpy.algorithms.mps_sweeps
- parent module: tenpy.algorithms
- type: module


## Classes

EffectiveH(env, i0[, combine, move_right, ...])	Prototype class for local effective Hamiltonians used in   sweep algorithms.
OneSiteH(env, i0[, combine, move_right, ...])	Class defining the one-site effective Hamiltonian for   Lanczos.
Sweep(psi, model, engine_params)	Prototype class for a 'sweeping' algorithm.
TwoSiteH(env, i0[, combine, move_right, ...])	Class defining the two-site effective Hamiltonian for   Lanczos.

## EffectiveH

- full name: tenpy.algorithms.mps_sweeps.EffectiveH
- parent module: tenpy.algorithms.mps_sweeps
- type: class
class tenpy.algorithms.mps_sweeps.EffectiveH (env, iO, combine=False, move_right=True, ortho_to_envs=[])
Bases: tenpy.linalg.sparse.NpcLinearOperator
Prototype class for local effective Hamiltonians used in sweep algorithms.
As an example, the local effective Hamiltonian for a two-site (DMRG) algorithm looks like:
$\square$
where HO and H 1 are MPO tensors.


## Parameters

env [MPOEnvironment] Environment for contraction <psi|H|psi>.
i0 [int] Index of the active site if length $=1$, or of the left-most active site if length $>1$.
combine [bool, optional] Whether to combine legs into pipes as far as possible. This reduces the overhead of calculating charge combinations in the contractions.
move_right [bool, optional] Whether the sweeping algorithm that calls for an EffectiveH is moving to the right.
ortho_to_envs [list of MPSEnvironment] List of environments <psi|psi_ortho>, where psi_ortho is an MPS to orthogonalize against. See matvec_theta_ortho() for more details. We implement this by effectively sending H -> (1 - sum_o $\left.\left|t h e t a _0\right\rangle\left\langle t h e t a _o\right|\right)$ H (1 - sum_o |theta_o><theta_o|), where $\mid$ theta_o> is $\mid$ psi_o> projected into the appropriate basis (in which self is given).

## Attributes

length [int] Number of (MPS) sites the effective hamiltonian covers. NB: Class attribute.
dtype [np.dtype] The data type of the involved arrays.
$\mathbf{N}$ [int] Contracting self with as_matrix () will result in an $N^{\prime} x^{\prime} N$ matrix .
acts_on [list of str] Labels of the state on which self acts. NB: class attribute. Overwritten by normal attribute, if combine.
theta_ortho [list of Array] Projections of ortho_to_envs into the basis of self.
_matvec_without_theta_ortho [function] Backup copy of matvec(). Allows to monkey-patch matvec() with matvec_theta_ortho(), which is done in _set_theta_ortho().

Methods

matvec(self, theta)	Apply the effective Hamiltonian to theta.
matvec_theta_ortho(self, theta)	Apply self to theta, and orthogonalize against   self.theta_ortho.
to_matrix(self)	Contract self to a matrix.

matvec (self, theta)
Apply the effective Hamiltonian to theta.
This function turns EffectiveH to a linear operator, which can be used for Ianczos ().

## Parameters

theta [Array] Wave function to apply the effective Hamiltonian to.

## Returns

H_theta [Array] Result of applying the effective Hamiltonian to theta, $H \mid \theta>$.
to_matrix (self)
Contract self to a matrix.
matvec_theta_ortho (self, theta)
Apply self to theta, and orthogonalize against self.theta_ortho. _ We implement this by effectively replacing H $->\mathrm{P}$ H P with the projector $\mathrm{P}=1$ - sum_o | 0$\rangle\langle 0|$ projecting out the states from theta_ortho.

Parameter and return value as for matvec () (which this function replaces, if the class was initialized with non-empty ortho_to_envs.)

## OneSiteH

- full name: tenpy.algorithms.mps_sweeps.OneSiteH
- parent module: tenpy.algorithms.mps_sweeps
- type: class

```
class tenpy.algorithms.mps_sweeps.OneSiteH(env,i0, combine=False, move_right=True,or-
 tho_to_envs=[])
Bases: tenpy.algorithms.mps_sweeps.EffectiveH
```

Class defining the one-site effective Hamiltonian for Lanczos.
The effective one-site Hamiltonian looks like this:


If combine is True, we define either LHeff as contraction of $L P$ with $W$ (in the case move_right is True) or RHeff as contraction of $R P$ and $W$.

## Parameters

env [MPOEnvironment] Environment for contraction <psi|H|psi>.
i0 [int] Index of the active site if length $=1$, or of the left-most active site if length $>1$.
combine [bool] Whether to combine legs into pipes. This combines the virtual and physical leg for the left site (when moving right) or right side (when moving left) into pipes. This reduces the overhead of calculating charge combinations in the contractions, but one matvec () is formally more expensive, $O\left(2 d^{3} \chi^{3} D\right)$. Is originally from the wo-site method; unclear if it works well for 1 site.
move_right [bool] Whether the the sweep is moving right or left for the next update.

## Attributes

length [int] Number of (MPS) sites the effective hamiltonian covers.
combine, move_right [bool] See above.
LHeff, RHeff [Array] Only set combine, and only one of them depending on move_right. If move_right was True, LHeff is set with labels ' (vR*.p0)', 'wR', ' (vR.p0*)' for bra, MPO, ket; otherwise RHeff is set with labels ' (p0*.vL)', 'wL', '(p0, vL*)'

LP, W0, RP [Array] Tensors making up the network of self.

## Methods

combine_Heff(self)	Combine LP and RP with W to form LHeff and   RHeff, depending on the direction.
combine_theta(self, theta)	Combine the legs of theta, such that fit to how we   combined the legs of self.
matvec(self, theta)	Apply the effective Hamiltonian to theta.
matvec_theta_ortho(self, theta)	Apply self to theta, and orthogonalize against   self.theta_ortho.
to_matrix(self)	Contract self to a matrix.

matvec (self, theta)
Apply the effective Hamiltonian to theta.

## Parameters

theta [Array] Labels: vL, p0, vR if combine=False, (vL.p0), vR or vL, (p0. vR ) if True (depending on the direction of movement)

## Returns

theta Array Product of theta and the effective Hamiltonian.
combine_Heff (self)
Combine LP and RP with W to form LHeff and RHeff, depending on the direction.
In a move to the right, we need LHeff. In a move to the left, we need RHeff. Both contain the same W.

```
combine_theta (self, theta)
```

Combine the legs of theta, such that fit to how we combined the legs of self.

## Parameters

theta [Array] Wave function with labels 'vL', 'po', 'p1', 'vR'

## Returns

theta [Array] Wave function with labels 'vL', 'p0', 'p1', 'vR'
to_matrix (self)
Contract self to a matrix.
matvec_theta_ortho (self, theta)
Apply self to theta, and orthogonalize against self.theta_ortho. _ We implement this by effectively replacing H $->P$ H $P$ with the projector $P=1$ - sum_o |O> <o| projecting out the states from theta_ortho.

Parameter and return value as for matvec () (which this function replaces, if the class was initialized with non-empty ortho_to_envs.)

## Sweep

- full name: tenpy.algorithms.mps_sweeps.Sweep
- parent module: tenpy.algorithms.mps_sweeps
- type: class
class tenpy.algorithms.mps_sweeps.Sweep (psi, model, engine_params)
Bases: ob ject
Prototype class for a 'sweeping' algorithm.
This is a superclass, intended to cover common procedures in all algorithms that 'sweep'. This includes DMRG, TDVP, TEBD, etc. Only DMRG is currently implemented in this way.


## Parameters

psi [MPS] Initial guess for the ground state, which is to be optimized in-place.
model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state.
engine_params [dict] Further optional parameters. These are usually algorithm-specific, and thus should be described in subclasses.

## Attributes

chi_list [dict I None] A dictionary to gradually increase the chi_max parameter of trunc_params. The key defines starting from which sweep chi_max is set to the value, e.g. $\{0: 50,20: 100\}$ uses chi_max=50 for the first 20 sweeps and chi_max=100 afterwards. Overwrites trunc_params['chi_list']'. By default (None) this feature is disabled.
combine [bool] Whether to combine legs into pipes as far as possible. This reduces the overhead of calculating charge combinations in the contractions. Makes the two-site DMRG engine equivalent to the old EngineCombine.

E_trunc_list [list] List of truncation energies throughout a sweep.
env [MPOEnvironment] Environment for contraction <psi|H|psi>.
finite [bool] Whether the MPS boundary conditions are finite (True) or infinite (False)
$\mathbf{i 0}$ [int] Only set during sweep. Left-most of the EffectiveH.length sites to be updated in update_local().
lanczos_params [dict] Parameters for the Lanczos algorithm.
mixer [Mixer I None] If None, no mixer is used (anymore), otherwise the mixer instance.
move_right [bool] Only set during sweep. Whether the next $i 0$ of the sweep will be right or left of the current one.
ortho_to_envs [list of MPSEnvironment] List of environments <psi|psi_ortho>, where psi_ortho is an MPS to orthogonalize against.
shelve [bool] If a simulation runs out of time (time.time() - start_time > max_seconds), the run will terminate with shelve $=$ True .
sweeps [int] The number of sweeps already performed. (Useful for re-start).
time0 [float] Time marker for the start of the run.
trunc_err_list [list] List of truncation errors.
trunc_params [dict] Parameters for truncations.
update_LP_RP [(bool, bool)] Only set during a sweep. Whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory (inside env).
verbose [bool | int] Level of verbosity (i.e. how much status information to print); higher=more output.

## Methods

environment_sweeps(self, N_sweeps)	Perform N_sweeps sweeps without optimization to update the environment.
get_sweep_schedule(self)	Define the schedule of the sweep.
init_env(self[, model])	(Re-)initialize the environment.
mixer_activate(self)	Set self.mixer to the class specified by engine_params['mixer'].
mixer_cleanup(self)	Cleanup the effects of a mixer.
post_update_local(self, ***kwargs)	Algorithm-specific actions to be taken after local update.
prepare_update(self)	Prepare everything algorithm-specific to perform a local update.
reset_stats(self)	Reset the statistics.
sweep(self[, optimize, meas_E_trunc])	One 'sweep' of a sweeper algorithm.
update_local(self, theta, *\|*kwargs)	Perform algorithm-specific local update.

init_env (self, model=None)
(Re-)initialize the environment.
This function is useful to (re-)start a Sweep with a slightly different model or different (engine) parameters.
Note that we assume that we still have the same psi. Calls reset_stats ().

## Parameters

model [MPOModel] The model representing the Hamiltonian for which we want to find the ground state. If None, keep the model used before.

## Raises

ValueError If the engine is re-initialized with a new model, which legs are incompatible with those of hte old model.
reset_stats (self)
Reset the statistics. Useful if you want to start a new Sweep run.

This method is expected to be overwritten by subclass, and should then define self.update_stats and self.sweep_stats dicts consistent with the statistics generated by the algorithm particular to that subclass.
environment_sweeps (self, $N_{-}$sweeps)
Perform $N _$sweeps sweeps without optimization to update the environment.

## Parameters

N_sweeps [int] Number of sweeps to run without optimization
sweep $($ self, optimize=True, meas_E_trunc=False)
One 'sweep' of a sweeper algorithm.
Iteratate over the bond which is optimized, to the right and then back to the left to the starting point. If optimize $=$ False, don't actually diagonalize the effective hamiltonian, but only update the environment.

## Parameters

optimize [bool, optional] Whether we actually optimize to find the ground state of the effective Hamiltonian. (If False, just update the environments).
meas_E_trunc [bool, optional] Whether to measure truncation energies.

## Returns

max_trunc_err [float] Maximal truncation error introduced.
max_E_trunc [None I float] None if meas_E_trunc is False, else the maximal change of the energy due to the truncation.
get_sweep_schedule (self)
Define the schedule of the sweep.
One 'sweep' is a full sequence from the leftmost site to the right and back. Only those $L P$ and $R P$ that can be used later should be updated.

## Returns

schedule [iterable of (int, bool, (bool, bool))] Schedule for the sweep. Each entry is (i0, move_right, (update_LP, update_RP)), where $i 0$ is the leftmost of the self.EffectiveH.length sites to be updated in update_local(), move_right indicates whether the next $i 0$ in the schedule is rigth (True) of the current one, and update_LP, update_RP indicate whether it is necessary to update the $L P$ and $R P$. The latter are chosen such that the environment is growing for infinite systems, but we only keep the minimal number of environment tensors in memory.
mixer_cleanup (self)
Cleanup the effects of a mixer.
A sweep () with an enabled Mixer leaves the MPS psi with 2D arrays in $S$. To recover the originial form, this function simply performs one sweep with disabled mixer.
mixer_activate (self)
Set self.mixer to the class specified by engine_params['mixer'].
It is expected that different algorithms have differen ways of implementing mixers (with different defaults). Thus, this is algorithm-specific.
prepare_update (self)
Prepare everything algorithm-specific to perform a local update.
update_local (self, theta, **kwargs)
Perform algorithm-specific local update.
post_update_local (self, **kwargs)
Algorithm-specific actions to be taken after local update.
An example would be to collect statistics.

## TwoSiteH

- full name: tenpy.algorithms.mps_sweeps.TwoSiteH
- parent module: tenpy.algorithms.mps_sweeps
- type: class
class tenpy.algorithms.mps_sweeps. TwoSiteH (env, iO, combine=False, move_right=True, ortho_to_envs=[])
Bases: tenpy.algorithms.mps_sweeps.EffectiveH
Class defining the two-site effective Hamiltonian for Lanczos.
The effective two-site Hamiltonian looks like this:


If combine is True, we define LHeff and RHeff, which are the contractions of $L P$ with $W 0$, and $R P$ with $W 1$, respectively.

## Parameters

env [MPOEnvironment] Environment for contraction <psi| $\mathrm{H}|\mathrm{psi}\rangle$.
i0 [int] Index of the active site if length $=1$, or of the left-most active site if length $>1$.
combine [bool] Whether to combine legs into pipes. This combines the virtual and physical leg for the left site (when moving right) or right side (when moving left) into pipes. This reduces the overhead of calculating charge combinations in the contractions, but one matvec () is formally more expensive, $O\left(2 d^{3} \chi^{3} D\right)$.
move_right [bool] Whether the the sweep is moving right or left for the next update.

## Attributes

combine [bool] Whether to combine legs into pipes. This combines the virtual and physical leg for the left site and right site into pipes. This reduces the overhead of calculating charge combinations in the contractions, but one matvec () is formally more expensive, $O\left(2 d^{3} \chi^{3} D\right)$.
length [int] Number of (MPS) sites the effective hamiltonian covers.
LHeff [Array] Left part of the effective Hamiltonian. Labels '(vR*.p0)', 'wR', ' (vR.p0*) ' for bra, MPO, ket.
RHeff [Array] Right part of the effective Hamiltonian. Labels '(p1*.vL)', 'wL', ' (p1.vL*) ' for ket, MPO, bra.
$\mathbf{L P}, \mathbf{W 0}, \mathbf{W 1}, \mathbf{R P}$ [Array] Tensors making up the network of self.

## Methods

combine_Heff(self)	Combine LP and RP with W to form LHeff and   RHeff.
combine_theta(self, theta)	Combine the legs of theta, such that fit to how we   combined the legs of self.
matvec(self, theta)	Apply the effective Hamiltonian to theta.
matvec_theta_ortho(self, theta)	Apply self to theta, and orthogonalize against   self.theta_ortho.
to_matrix(self)	Contract self to a matrix.

matvec (self, theta)
Apply the effective Hamiltonian to theta.

## Parameters

theta [Array] Labels: vL, p0, p1, vR if combine=False, (vL.p0), (p1.vR) if True

## Returns

theta Array Product of theta and the effective Hamiltonian.
combine_Heff (self)
Combine LP and RP with W to form LHeff and RHeff.
Combine LP with W0 and RP with W1 to get the effective parts of the Hamiltonian with piped legs.
combine_theta (self, theta)
Combine the legs of theta, such that fit to how we combined the legs of self.

## Parameters

theta [Array] Wave function with labels 'vL', 'p0', 'p1', 'vR'

## Returns

theta [Array] Wave function with labels 'vL', 'p0', 'p1', 'vR'

```
to_matrix(self)
```

Contract self to a matrix.

## matvec_theta_ortho (self, theta)

Apply self to theta, and orthogonalize against self.theta_ortho. _ We implement this by effectively replacing H $->\mathrm{P}$ H P with the projector $\mathrm{P}=1$ - sum_o | 0$\rangle\langle 0|$ projecting out the states from theta_ortho.

Parameter and return value as for matvec () (which this function replaces, if the class was initialized with non-empty ortho_to_envs.)

## Module description

'Sweep' algorithm and effective Hamiltonians.
Many MPS-based algorithms use a 'sweep' structure, wherein local updates are performed on the MPS tensors sequentially, first from left to right, then from right to left. This procedure is common to DMRG, TDVP, sequential time evolution, etc.

Another common feature of these algorithms is the use of an effective local Hamiltonian to perform the local updates. The most prominent example of this is probably DMRG, where the local MPS object is optimized with respect to the rest of the MPS-MPO-MPS network, the latter forming the effective Hamiltonian.

The Sweep class attempts to generalize as many aspects of 'sweeping' algorithms as possible. EffectiveH and its subclasses implement the effective Hamiltonians mentioned above. Currently, effective Hamiltonians for 1-site and 2-site optimization are implemented.

Todo: Rebuild TDVP engine as subclasses of sweep Do testing

## tebd

- full name: tenpy.algorithms.tebd
- parent module: tenpy.algorithms
- type: module


## Classes

Engine(psi, model, TEBD_params)	Time Evolving Block Decimation (TEBD) 'engine'.
RandomUnitaryEvolution(psi, TEBD_params)	Evolution of an MPS with random two-site unitaries in     

## Engine

- full name: tenpy.algorithms.tebd.Engine
- parent module: tenpy.algorithms.tebd
- type: class
class tenpy.algorithms.tebd.Engine ( $p s i$, model, TEBD_params)
Bases: ob ject
Time Evolving Block Decimation (TEBD) 'engine'.


## Parameters

psi [MP S] Initial state to be time evolved. Modified in place.
model [NearestNeighborModel] The model representing the Hamiltonian for which we want to find the ground state.
TEBD_params [dict] Further optional parameters as described in the tables in run () and run_GS () for more details. Use verbose=1 to print the used parameters during runtime.

## Attributes

verbose [int] Level of verbosity (i.e. how much status information to print); higher=more output.
evolved_time [float I complex] Indicating how long psi has been evolved, psi=exp (-i * evolved_time * H) psi(t=0).
trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during the sequence of update steps.
psi [MPS] The MPS, time evolved in-place.
model [NearestNeighborModel] The model defining the Hamiltonian.
TEBD_params: dict Optional parameters, see run () and run_GS () for more details.
_U [list of list of Array] Exponentiated $H_{-}$bond (bond Hamiltonians), i.e. roughly exp (-i H_bond dt_i). First list for different $d t _i$ as necessary for the chosen order, second list for the $L$ different bonds.
_U_param [dict] A dictionary containing the information of the latest created _ $U$. We don't recalculate $\quad U$ if those parameters didn't change.
_trunc_err_bonds [list of TruncationError] The local truncation error introduced at each bond, ignoring the errors at other bonds. The $i$-th entry is left of site $i$.
_update_index [None | (int, int)] The indices i_dt,i_bond of U_bond = self. _U [i_dt] [i_bond] during update_step.

## Methods

calc_U(self, order, delta_t[, type_evo,...])	Calculate self.U_bond from self.   bond_eig_\{vals, vecs \}.
run(self)	(Real-)time evolution with TEBD (time evolving   block decimation).
run_GS(self)	TEBD algorithm in imaginary time to find the   ground state.
suzuki_trotter_decomposition(order,	Returns list of necessary steps for the suzuki trotter   decomposition.
N_steps)	Return time steps of U for the Suzuki Trotter decom-   position of desired order.
suzuki_trotter_time_steps(order)	Evolve by N_steps * U_param ['dt' ].
update(self, N_steps)	Updates the B matrices on a given bond.
update_bond(self, i, U_bond)	Update a bond with a (possibly non-unitary)   update_bond_imag(self, i, U_bond)   U_bond.
update_imag(self, N_steps)	Perform an update suitable for imaginary time evo-   lution.
update_step(self, U_idx_dt, odd)	Updates either even or odd bonds in unit cell.

## property trunc_err_bonds

truncation error introduced on each non-trivial bond.
run (self)
(Real-)time evolution with TEBD (time evolving block decimation).
The following (optional) parameters are read out from the TEBD_params.

key	type	description
dt	float	Time step.
order	int	Order of the algorithm. The   total error scales as O(t,   dt^ order).
N_steps	int	Number of time steps $d t$ to   evolve. (The Trotter decompo-   sitions of order > 1 are slightly   more efficient if more than one   step is performed at once.)
trunc_params	dict	Truncation parameters as de-   scribed in truncate ().

run_GS (self)
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonetheless be used quite well as a benchmark and for comparison.

The following (optional) parameters are read out from the TEBD_params. Use verbose=1 to print the used parameters during runtime.

key	type	description
delta_thist listA list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces		
large (Trotter) errors, but a too small time step requires a lot of steps to reach exp (-tau		
H) --> Ipsi0><psi0 I. Therefore, we start with fairly large time steps for a quick		
time evolution until convergence, and the gradually decrease the time step.		

static suzuki_trotter_time_steps (order)
Return time steps of $U$ for the Suzuki Trotter decomposition of desired order.
See suzuki_trotter_decomposition () for details.

## Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

## Returns

time_steps [list of float] We need $U=\exp \left(-i H _\{e v e n / o d d\}\right.$ delta_t * dt) for the $d t$ returned in this list.
static suzuki_trotter_decomposition (order, N_steps)
Returns list of necessary steps for the suzuki trotter decomposition.
We split the Hamiltonian as $H=H_{\text {even }}+H_{o d d}=H[0]+H[1]$. The Suzuki-Trotter decomposition is an approximation $\exp (t H) \approx \operatorname{prod}_{(j, k) \in S T} \exp (d[j] t H[k])+O\left(t^{\text {order }+1}\right)$.

## Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

## Returns

ST_decomposition [list of (int, int)] Indices $j, k$ of the time-steps $d=$ suzuki_trotter_time_step (order) and the decomposition of $H$. They are chosen such that a subsequent application of $\exp (d[j] t H[k])$ to a given state |psi> yields (exp (N_steps $\left.t H[k])+O\left(N _s t e p s t^{\wedge}\{o r d e r+1\}\right)\right) \mid p s i>$.
calc_U (self, order, delta_t, type_evo='real', E_offset=None)
Calculate self.U_bond from self.bond_eig_\{vals,vecs\}.
This function calculates

- U_bond = exp(-i dt (H_bond-E_offset_bond)) for type_evo='real', or
- U_bond $=\exp (-d t$ H_bond) for type_evo='imag'.

For first order (in delta_t), we need just one $d t=d e l t a _t$. Higher order requires smaller $d t$ steps, as given by suzuki_trotter_time_steps().

## Parameters

order [int] Trotter order calculated U_bond. See update for more information.
delta_t [float] Size of the time-step used in calculating U_bond
type_evo ['imag' | 'real'] Determines whether we perform real or imaginary timeevolution.

E_offset [None I list of float] Possible offset added to H_bond for real-time evolution.
update (self, N_steps)
Evolve by N_steps * U_param['dt'].

## Parameters

$\mathbf{N}$ _steps [int] The number of steps for which the whole lattice should be updated.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.

```
update_step(self, U_idx_dt,odd)
```

Updates either even or odd bonds in unit cell.
Depending on the choice of $p$, this function updates all even ( E , odd=False, 0 ) or odd ( 0 ) ( odd=True, 1) bonds:


Note that finite boundary conditions are taken care of by having Us [0] = None.

## Parameters

U_idx_dt [int] Time step index in self._U, evolve with Us[i] = self. U[U_idx_dt][i] at bond (i-1,i).
odd [bool/int] Indication of whether to update even (odd=False,0) or even (odd=True, 1) sites

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_bond (self, $i, U _$bond)
Updates the B matrices on a given bond.
Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i .
The correponding tensor networks look like this:


## Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_imag (self, N_steps)
Perform an update suitable for imaginary time evolution.
Instead of the even/odd brick structure used for ordinary TEBD, we 'sweep' from left to right and right to left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

## Parameters

$\mathbf{N} _$steps [int] The number of steps for which the whole lattice should be updated.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_bond_imag (self, $\left.i, U _b o n d\right)$
Update a bond with a (possibly non-unitary) $U _b o n d$.
Similar as update_bond (); but after the SVD just keep the $A, S, B$ canonical form. In that way, one can sweep left or right without using old singular values, thus preserving the canonical form during imaginary time evolution.

## Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.

## RandomUnitaryEvolution

- full name: tenpy.algorithms.tebd.RandomUnitaryEvolution
- parent module: tenpy.algorithms.tebd
- type: class

```
class tenpy.algorithms.tebd.RandomUnitaryEvolution(psi,TEBD_params)
```

Bases: tenpy.algorithms.tebd.Engine
Evolution of an MPS with random two-site unitaries in a TEBD-like fashion.
Instead of using a model Hamiltonian, this TEBD engine evolves with random two-site unitaries. These unitaries are drawn according to the Haar measure on unitaries obeying the conservation laws dictated by the conserved charges. If no charge is preserved, this distribution is called circular unitary ensemble (CUE), see CUE ().
On one hand, such an evolution is of interest in recent research (see eg. arXiv:1710.09827). On the other hand, it also comes in handy to "randomize" an initial state, e.g. for DMRG. Note that the entanglement grows very quickly, choose the truncation paramters accordingly!

## Parameters

psi [MPS] Initial state to be time evolved. Modified in place.
TEBD_params [dict] Use verbose=1 to print the used parameters during runtime. See run () and run_GS () for more details.

## Examples

One can initialize a "random" state with total $\mathrm{Sz}=\mathrm{L} / / 2$ as follows:

```
>>> L = 8
>>> spin_half= SpinHalfSite(conserve='Sz')
>> psi = MPS.from_product_state([spin_half]*L, [0, 1]*(L//2), bc='finite') #_
Meel state
>>> print(psi.chi)
[1, 1, 1, 1, 1, 1, 1]
>>> TEBD_params = dict(N_steps=2, trunc_params={'chi_max':10})
>>> eng = RandomUnitaryEvolution(psi, TEBD_params)
>>> eng.run()
>>> print(psi.chi)
[2, 4, 8, 10, 8, 4, 2]
>>> psi.canonical_form() # necessary if you need to truncate (strongly) during
\rightarrow t h e ~ e v o l u t i o n
```

The "random" unitaries preserve the specified charges, e.g. here we have Sz-conservation. If you start in a sector of all up spins, the random unitaries can only apply a phase:

```
>>> psi2 = MPS.from_product_state([spin_half]*L, [0]*L, bc='finite') # all spins_
->up
>>> print(psi2.chi)
[1, 1, 1, 1, 1, 1, 1]
>>> eng2 = RandomUnitaryEvolution(psi2, TEBD_params)
>>> eng2.run() # random unitaries respect Sz conservation -> we stay in all-ups
->sector
>>> print(psi2.chi) # still a product state, not really random!!!
[1, 1, 1, 1, 1, 1, 1]
```


## Attributes

trunc_err_bonds truncation error introduced on each non-trivial bond.

## Methods

calc_U(self)	Draw new random two-site unitaries replacing the   usual $U$ of TEBD.
run(self)	Time evolution with TEBD (time evolving block   decimation) and random two-site unitaries.
run_GS(self)	TEBD algorithm in imaginary time to find the   ground state.
suzuki_trotter_decomposition(order,	Returns list of necessary steps for the suzuki trotter   decomposition.
N_steps)	Return time steps of U for the Suzuki Trotter decom-   position of desired order.
suzuki_trotter_time_steps(order)	Apply N_steps random two-site unitaries to each   bond (in even-odd pattern).
update(self, N_steps)	Updates the B matrices on a given bond.   update_bond(self, i, U_bond)   Update_bond_imag(self, i, U_bond)   Update bond with a (possibly non-unitary)   Upond..
update_step(self, U_idx_dt, odd)	Perform an update suitable for imaginary time evo-   lution.

run (self)
Time evolution with TEBD (time evolving block decimation) and random two-site unitaries.
The following (optional) parameters are read out from the TEBD_params.

key	type	description
N_steps	int	Number of two-site unitaries to be applied on each bond.
trunc_params	dict	Truncation parameters as described in truncate ()

calc_U (self)
Draw new random two-site unitaries replacing the usual $U$ of TEBD.
update (self, $N_{-}$steps)
Apply N_steps random two-site unitaries to each bond (in even-odd pattern).

## Parameters

N_steps [int] The number of steps for which the whole lattice should be updated.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
run_GS (self)
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonetheless be used quite well as a benchmark and for comparison.

The following (optional) parameters are read out from the TEBD_params. Use verbose=1 to print the used parameters during runtime.

key	type	description	
delta	thist list A list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces large (Trotter) errors, but a too small time step requires a lot of steps to reach exp (-tau H) --> \|psi0><psi0	. Therefore, we start with fairly large time steps for a quick time evolution until convergence, and the gradually decrease the time step.	
$\begin{aligned} & \text { or- } \\ & \text { der } \end{aligned}$	int	Order of the Suzuki-Trotter decomposition.	
N_ste	pint	Number of steps before measurement can be performed	
trunc	_pricam	Truncation parameters as described in truncate ()	

static suzuki_trotter_decomposition (order, $N$ _steps)
Returns list of necessary steps for the suzuki trotter decomposition.
We split the Hamiltonian as $H=H_{\text {even }}+H_{o d d}=H[0]+H[1]$. The Suzuki-Trotter decomposition is an approximation $\exp (t H) \approx \operatorname{prod}_{(j, k) \in S T} \exp (d[j] t H[k])+O\left(t^{\text {order }+1}\right)$.

## Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

## Returns

ST_decomposition [list of (int, int)] Indices $j, k$ of the time-steps $d=$ suzuki_trotter_time_step (order) and the decomposition of $H$. They are chosen such that a subsequent application of $\exp (d[j] t H[k])$ to a given state |psi> yields (exp (N_steps t H[k]) + O(N_steps t^\{order+1\})) |psi>.
static suzuki_trotter_time_steps (order)
Return time steps of U for the Suzuki Trotter decomposition of desired order.
See suzuki_trotter_decomposition () for details.

## Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

## Returns

time_steps [list of float] We need $U=\exp \left(-i \quad H _\{e v e n / o d d\}\right.$ delta_t * dt) for the $d t$ returned in this list.
property trunc_err_bonds
truncation error introduced on each non-trivial bond.
update_bond (self, $i, U _$bond)
Updates the B matrices on a given bond.
Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i. The correponding tensor networks look like this:


## Parameters

i [int] Bond index; we update the matrices at sites i-1, i.

U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_bond_imag (self, $i, U _$bond)
Update a bond with a (possibly non-unitary) $U _$bond.
Similar as update_bond (); but after the SVD just keep the $A, S, B$ canonical form. In that way, one can sweep left or right without using old singular values, thus preserving the canonical form during imaginary time evolution.

## Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_imag (self, N_steps)
Perform an update suitable for imaginary time evolution.
Instead of the even/odd brick structure used for ordinary TEBD, we 'sweep' from left to right and right to left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

## Parameters

N_steps [int] The number of steps for which the whole lattice should be updated.

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_step (self, $U _i d x _d t$, odd)
Updates either even or odd bonds in unit cell.
Depending on the choice of $p$, this function updates all even ( E , odd=False, 0 ) or odd ( O ) ( $\mathrm{odd}=$ True, 1 ) bonds:


Note that finite boundary conditions are taken care of by having Us [0] = None.

## Parameters

U_idx_dt [int] Time step index in self._U, evolve with Us[i] = self. U[U_idx_dt][i] at bond (i-1,i).
odd [bool/int] Indication of whether to update even (odd=False, 0) or even (odd=True, 1) sites

## Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.

## Module description

Time evolving block decimation (TEBD).
The TEBD algorithm (proposed in [Vidal2004]) uses a trotter decomposition of the Hamiltonian to perform a time evoltion of an MPS. It works only for nearest-neighbor hamiltonians (in tenpy given by a NearestNeighborModel), which can be written as $H=H^{\text {even }}+H^{\text {odd }}$, such that $H^{\text {even }}$ contains the the terms on even bonds (and similar $H^{\text {odd }}$ the terms on odd bonds). In the simplest case, we apply first $U=\exp \left(-i * d t * H^{\text {even }}\right)$, then $U=\exp \left(-i * d t * H^{\text {odd }}\right)$ for each time step $d t$. This is correct up to errors of $O\left(d t^{2}\right)$, but to evolve until a time $T$, we need $T / d t$ steps, so in total it is only correct up to error of $O(T * d t)$. Similarly, there are higher order schemata (in dt) (for more details see Engine. update ()).

Remember, that bond $i$ is between sites ( $i-1, i$, so for a finite MPS it looks like:


After each application of a $U i$, the MPS needs to be truncated - otherwise the bond dimension chi would grow indefinitely. A bound for the error introduced by the truncation is returned.

If one chooses imaginary $d t$, the exponential projects (for sufficiently long 'time' evolution) onto the ground state of the Hamiltonian.

Note: The application of DMRG is typically much more efficient than imaginary TEBD! Yet, imaginary TEBD might be usefull for cross-checks and testing.

## tdvp

- full name: tenpy.algorithms.tdvp
- parent module: tenpy.algorithms
- type: module


## Classes

Engine(psi, model, TDVP_params[, environment])	Time dependant variational principle 'Engine'.
H0_mixed(Lp, Rp)	Class defining the zero site Hamiltonian for Lanczos.
H1_mixed(Lp, Rp, W)	Class defining the one site Hamiltonian for Lanczos.
H2_mixed(Lp, Rp, W0, W1)	Class defining the two sites Hamiltonian for Lanczos.

## Engine

- full name: tenpy.algorithms.tdvp.Engine
- parent module: tenpy.algorithms.tdvp
- type: class
class tenpy.algorithms.tdvp.Engine (psi, model, TDVP_params, environment=None)
Bases: ob ject
Time dependant variational principle 'Engine'.
You can call run_one_site () for single-site TDVP, or run_two_sites () for two-site TDVP.


## Parameters

psi [MPS] Initial state to be time evolved. Modified in place.
model [MPOMOdel] The model representing the Hamiltonian for which we want to find the ground state.

TDVP_params [dict] Further optional parameters as described in the following table. Use verbose>0 to print the used parameters during runtime.

key	type	description
start_time	float	Initial value for evolved_time
dt	float	Time step of the Trotter error
trunc_params	dict	Truncation parameters as described in truncate ()

environment [:class:'~tenpy.networks.mpo.MPOEnvironment` I None] Initial environment. If None (default), it will be calculated at the beginning.

## Attributes

verbose [int] Level of verbosity (i.e. how much status information to print); higher=more output.
evolved_time [float | complex] Indicating how long psi has been evolved, psi $=\exp (-i$ * evolved_time * H) psi(t=0).
psi [MPS] The MPS, time evolved in-place.
TDVP_params: dict Optional parameters, see run () and run_GS () for more details.
environment [MPOEnvironment] The environment, storing the $L P$ and $R P$ to avoid recalculations.

## Methods

run_one_site(self[, N_steps])	Run the TDVP algorithm with the one site algorithm.
run_two_sites(self[, N_steps])	Run the TDVP algorithm with two sites update.
set_anonymous_svd(self, U, new_label)	Relabel the svd.
sweep_left_right(self)	Performs the sweep left->right of the second order   TDVP scheme with one site update.
sweep_left_right_two(self)	Performs the sweep left->right of the second order   TDVP scheme with two sites update.
sweep_right_left(self)	Performs the sweep right->left of the second order         TDVP scheme with one site update.
sweep_right_left_two(self)	Performs the sweep left->right of the second order      theta_svd_left_right(self, theta)
theta_svd_right_left(self, theta)	Performs the SVD from left to right.
update_s_hO(self, s, H, dt)	Performs the SVD from right to left.
update_theta_hl(self, Lp, Rp, theta, W, dt)	Update with the zero site Hamiltonian (update of the   singular value)
update_theta_h2(self, Lp, Rp, theta, W0, W1,,	Update with the one site Hamiltonian.
dt)	

run_one_site (self, N_steps=None)
Run the TDVP algorithm with the one site algorithm.

Warning: Be aware that the bond dimension will not increase!

## Parameters

N_steps [integer. Number of steps]
run_two_sites (self, $N_{-}$steps=None)
Run the TDVP algorithm with two sites update.
The bond dimension will increase. Truncation happens at every step of the sweep, according to the parameters set in trunc_params.

## Parameters

N_steps [integer. Number of steps]
sweep_left_right (self)
Performs the sweep left->right of the second order TDVP scheme with one site update.
Evolve from $0.5^{*} \mathrm{dt}$.
sweep_left_right_two (self)
Performs the sweep left->right of the second order TDVP scheme with two sites update.
Evolve from $0.5 * \mathrm{dt}$
sweep_right_left (self)
Performs the sweep right->left of the second order TDVP scheme with one site update.
Evolve from $0.5^{*} \mathrm{dt}$
sweep_right_left_two (self)
Performs the sweep left->right of the second order TDVP scheme with two sites update.
Evolve from $0.5 * \mathrm{dt}$
update_theta_h1 (self, Lp, Rp, theta, $W, d t$ )
Update with the one site Hamiltonian.

## Parameters

$\mathbf{L p}$ [Array] tensor representing the left environment
$\mathbf{R p}$ [Array] tensor representing the right environment
theta [Array] the theta tensor which needs to be updated
W [Array] MPO which is applied to the ' $p$ ' leg of theta
update_theta_h2 (self, Lp, Rp, theta, W0, W1, dt)
Update with the two sites Hamiltonian.

## Parameters

$\mathbf{L p}$ [tenpy.linalg.np_conserved.Array] tensor representing the left environment

Rp [tenpy.linalg.np_conserved.Array] tensor representing the right environment
theta [tenpy.linalg.np_conserved.Array] the theta tensor which needs to be updated
$\mathbf{W}$ [tenpy.Iinalg.np_conserved.Array] MPO which is applied to the 'p0' leg of theta

W1 [tenpy.Iinalg.np_conserved.Array] MPO which is applied to the ' p 1 ' leg of theta

```
theta_svd_left_right (self, theta)
```

Performs the SVD from left to right.

## Parameters

theta: :class:'tenpy.linalg.np_conserved.Array` the theta tensor on which the SVD is applied

```
set_anonymous_svd(self, U, new_label)
```

Relabel the svd.

## Parameters

$\mathbf{U}$ [tenpy.linalg.np_conserved.Array] the tensor which lacks a leg_label
theta_svd_right_left (self, theta)
Performs the SVD from right to left.

## Parameters

theta [tenpy.linalg.np_conserved.Array,] The theta tensor on which the SVD is applied
update_s_h0 (self, $s, H, d t$ )
Update with the zero site Hamiltonian (update of the singular value)
Parameters
s [tenpy.linalg.np_conserved.Array] representing the singular value matrix which is updated
H [H0_mixed] zero site Hamiltonian that we need to apply on the singular value matrix dt [complex number] time step of the evolution

## H0_mixed

- full name: tenpy.algorithms.tdvp.H0_mixed
- parent module: tenpy.algorithms.tdvp
- type: class
class tenpy.algorithms.tdvp. H0_mixed ( $L p, R p$ )
Bases: object
Class defining the zero site Hamiltonian for Lanczos.


## Parameters

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
Rp [tenpy.linalg.np_conserved. Array] right part of the environment

## Attributes

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
Rp [tenpy.linalg.np_conserved. Array] right part of the environment

## Methods

## matvec

H1_mixed

- full name: tenpy.algorithms.tdvp.H1_mixed
- parent module: tenpy.algorithms.tdvp
- type: class
class tenpy.algorithms.tdvp. H1_mixed ( $L p, R p, W$ )
Bases: ob ject
Class defining the one site Hamiltonian for Lanczos.


## Parameters

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
$\mathbf{R p}$ [tenpy.linalg.np_conserved.Array] right part of the environment
M [tenpy.linalg.np_conserved.Array] MPO which is applied to the 'p' leg of theta

## Attributes

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
Rp [tenpy.linalg.np_conserved.Array] right part of the environment

W [tenpy.linalg.np_conserved.Array] MPO which is applied to the 'p0' leg of theta

## Methods

## matvec

H2_mixed

- full name: tenpy.algorithms.tdvp.H2_mixed
- parent module: tenpy.algorithms.tdvp
- type: class
class tenpy.algorithms.tdvp. H2_mixed ( $L p, R p, W 0, W 1$ )
Bases: ob ject
Class defining the two sites Hamiltonian for Lanczos.


## Parameters

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
$\mathbf{R p}$ [tenpy.linalg.np_conserved.Array] right part of the environment
W [tenpy.linalg.np_conserved.Array] MPO which is applied to the 'p0' leg of theta

## Attributes

Lp [tenpy.linalg.np_conserved.Array] left part of the environment
Rp [tenpy.linalg.np_conserved.Array] right part of the environment
W0 [tenpy.Iinalg.np_conserved.Array] MPO which is applied to the 'p0' leg of theta
W1 [tenpy.Iinalg.np_conserved.Array] MPO which is applied to the 'p1' leg of theta

## Methods

## matvec

## Module description

Time Dependant Variational Principle (TDVP) with MPS (finite version only).
The TDVP MPS algorithm was first proposed by [Haegeman2011]. However the stability of the algorithm was later improved in [Haegeman2016], that we are following in this implementation. The general idea of the algorithm is to project the quantum time evolution in the manyfold of MPS with a given bond dimension. Compared to e.g. TEBD, the algorithm has several advantages: e.g. it conserves the unitarity of the time evolution and the energy (for the singlesite version), and it is suitable for time evolution of Hamiltonian with arbitrary long range in the form of MPOs. We have implemented the one-site formulation which does not allow for growth of the bond dimension, and the two-site algorithm which does allow the bond dimension to grow - but requires truncation as in the TEBD case.

Todo: This is still a beta version, use with care. The interface might still change.

Todo: long-term: Much of the code is similar as in DMRG. To avoid too much duplicated code, we should have a general way to sweep through an MPS and updated one or two sites, used in both cases.

## purification_tebd

- full name: tenpy.algorithms.purification_tebd
- parent module: tenpy.algorithms
- type: module


## Classes

BackwardDisentangler(parent)	Disentangle with backward time evolution.
CompositeDisentangler(disentanglers)	Concatenate multiple disentanglers.
DiagonalizeDisentangler(parent)	Disentangle by diagonalizing the two-site density ma-   trix in the auxiliar space.
Disentangler(parent)	Prototype for a disentangler.
GradientDescentDisentangler(parent)	Gradient-descent optimization, similar to   RenyiDisentangler.
LastDisentangler(parent)	Use the last total 'U' used in disentangle () for the   same_update_index as guess.
MinDisentangler(disentanglers, parent)	Chose the disentangler giving the smallest entropy.
NoiseDisentangler(parent)	Apply a little bit of random noise.
NormDisentangler(parent)	Find optimal $U$ for which the truncation of Ultheta> has   maximal overlap with Ultheta>.
PurificationTEBD(psi, model, TEBD_params)	Time evolving block decimation (TEBD) for purifica-   tion MPS.
PurificationTEBD2(psi, model, TEBD_params)	Similar as PurificationTEBD, but perform sweeps in-   stead of brickwall.
RenyiDisentangler(parent)	Iterative find $U$ which minimized the second Renyi en-   tropy.

## BackwardDisentangler

- full name: tenpy.algorithms.purification_tebd.BackwardDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.BackwardDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Disentangle with backward time evolution.
See [Karrasch2013] for details; only useful during real-time evolution.

For the infinite temperature state, theta $=\operatorname{delta_ \{ p0,q0\} *delta_ \{ p1,~q1\} .~Thus,~an~application~}$ of $U _$bond to $\mathrm{p} 0, \mathrm{p} 1$ can be reverted completely by applying $\mathrm{U} _$bond^ $\{$dagger $\}$to $q 0$, $q 1$, resulting in the same state. This works also for finite temperatures, since $\exp (-b e t a H)$ and $\exp (-i H t)$ commute. Once we apply an operator to measure correlation function, the disentangling breaks down, yet for a local operator only in it's light-cone.

Arguments and return values are the same as for Disentangler.

## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## CompositeDisentangler

- full name: tenpy.algorithms.purification_tebd.CompositeDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.CompositeDisentangler (disentanglers)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Concatenate multiple disentanglers.
Applies multiple disentanglers, one after another (in iteration order).


## Parameters

disentanglers [list of Disentangler] The disentanglers to be used.

## Attributes

disentanglers [list of Disentangler] The disentanglers to be used.

## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## DiagonalizeDisentangler

- full name: tenpy.algorithms.purification_tebd.DiagonalizeDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.DiagonalizeDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Disentangle by diagonalizing the two-site density matrix in the auxiliar space.
See arXiv:1704.01974. Problem: Sorting by eigenvalues breaks the charge conservation! Instead we just sort within the charge blocks. For non-trivial charges, this might increase the entropy!
Arguments and return values are the same as for Disentangler.


## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## Disentangler

- full name: tenpy.algorithms.purification_tebd.Disentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.Disentangler (parent)
Bases: ob ject
Prototype for a disentangler. Trivial, does nothing.
In purification, we write $\rho_{P}=\operatorname{Tr}_{Q}\left|\psi_{P, Q}><\psi_{P, Q}\right|$. Thus, we can actually apply any unitary to the auxiliar $Q$ space of $|\psi\rangle$ without changing the physical expectation values.

Note: We have to apply the same unitary to the 'bra' and 'ket' used for expectation values / correlation functions!

However, the unitary can strongly influence the entanglement structure of $\mid \psi>$. Therefore, the PurificationTEBD includes a hook in PurificationTEBD.update_bond() (and similar methods) to find and apply a disentangling unitary to the auxiliar indices of a two-site wave function by calling
$\qquad$ call $\qquad$ method) a Disentangler.

This class is a 'trivial' disentangler which does nothing to the two-site wave function; derived classes use different strategies to find various disentanglers.

## Parameters

parent [Engine] The parent class calling the disentangler.

## Attributes

parent [Engine] The parent class calling the disentangler.

## Methods

__call_(self, theta)

Find and apply a unitary to disentangle theta.

## GradientDescentDisentangler

- full name: tenpy.algorithms.purification_tebd.GradientDescentDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class

```
class tenpy.algorithms.purification_tebd.GradientDescentDisentangler(parent)
 Bases: tenpy.algorithms.purification_tebd.Disentangler
```

Gradient-descent optimization, similar to RenyiDisentangler.

Reads of the following TEBD_params:

key	type	description
disent_eps	float	Break, if the change in the Renyi entropy S ( $\mathrm{n}=2$ ) per iteration is smaller than this   value.
dis-   ent_max_iter	float	Maximum number of iterations to perform.
disent_n	float	Renyi index of the entropy to be used. $\mathrm{n}=1$ for von-Neumann entropy.

Arguments and return values are the same as for Disentangler.

## Methods

$\ldots$ call__(self, theta)	Find and apply a unitary to disentangle theta.
iter $($ self, theta $)$	Given theta, find a unitary $U$ towards minimizing the      n-th Renyi entropy..

iter (self, theta)
Given theta, find a unitary $U$ towards minimizing the n-th Renyi entropy.
This function calulates the gradiant $d S=\partial S($ Utheta, $n) / \partial U$. and then $U(t)=\exp (-t * \mathrm{dS})$, where we choose the $t$ from stepsizes which minimizes the entropy of $U(t)$ theta.

When R [ i ] is the derivative $\partial S(Y, n) \partial Y_{i}$ of the (n-th Renyi) entropy, dS is given by:


## Parameters

theta [Array] Two-site wave function to be disentangled

## Returns

S [float] n-th Renyi entopy of new_theta
theta [Array] The disentangled wave function new_U theta.
new_U [Array] Unitary with legs 'q0', 'q1', 'q0*', 'q1*', which was used to disentangle theta.

## LastDisentangler

- full name: tenpy.algorithms.purification_tebd.LastDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.LastDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Use the last total 'U' used in disentangle () for the same _update_index as guess.
Useful as a starting point in a CompositeDisentangler to reduce the number of iterations for a following disentangler.


## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## MinDisentangler

- full name: tenpy.algorithms.purification_tebd.MinDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.MinDisentangler (disentanglers, parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Chose the disentangler giving the smallest entropy.
Apply each of the disentanglers to the given theta, use the result with smallest entropy. Reads the TEBD_param 'disent_min_n' which selects the entropy () to be used for comparison.


## Parameters

disentanglers [list of Disentangler] The disentanglers to be used.
parent [Engine] The parent class calling the disentangler.

## Attributes

n [float] Selects the entropy to be used for comparison.
disentanglers [list of Disentangler] The disentanglers to be used.

## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## NoiseDisentangler

- full name: tenpy.algorithms.purification_tebd.NoiseDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd. NoiseDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Apply a little bit of random noise. Useful as pre-step to RenyiDisentangler.
Arguments and return values are the same as for Disentangler.


## Methods

__call__(self, theta) Find and apply a unitary to disentangle theta.

## NormDisentangler

- full name: tenpy.algorithms.purification_tebd.NormDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd. NormDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Find optimal $U$ for which the truncation of Ultheta> has maximal overlap with Ultheta>.
Reads of the following TEBD_params as break criteria for the iteration:

key	type	description
disent_e	float	Break, if the change in the Renyi entropy $\mathrm{S}(\mathrm{n}=2)$ per iteration is smaller than this value.
disent_m	$\begin{array}{\|c\|} \hline \text { float } \\ \text { ax_iter } \end{array}$	Maximum number of iterations to perform.
disent_t	dict   nc_par	Truncation parameters; defaults to trunc_params.
disent_n	it- rrirch able	To find the optimal U it can help to increase chi_max of disent_trunc_par slowly, the default is range (1, disent_trunc_par['chi_max']+1). However, that's very slow for large chi_max, so we allow to change it. (In fact, it makes the disentangler scale worse than the rest of TEBD.)

Arguments and return values are the same as for disentangle().

## Methods

$\ldots$ call__(self, theta)	Find and apply a unitary to disentangle theta.	
iter(self, theta, U, trunc_params)	Given theta and $U, \quad$ find $U 2$ maximizing      <thetalU2 truncate $(U \quad \mid$ theta>).	

iter (self, theta, $U$, trunc_params)
Given theta and $U$, find $U 2$ maximizing <thetalU2 truncate ( $U$ |theta>).
Finds unitary $U 2$ which maximizes $\operatorname{Tr}(\mathrm{U}$

## Parameters

theta [Array] Two-site wave function to be disentangled.
$\mathbf{U}$ [Array] The previous guess for $U$; with legs 'q0', 'q1', 'q0*', 'q1*'.
trunc_params [dict] The truncation parameters (similar as self.trunc_params) used to truncate Ultheta>.

## Returns

trunc_err [TruncationError] Norm error discarded during the truncation of U| theta>.
new_U [Array] Unitary with legs 'q0', 'q1', 'q0*', 'q1*'. Chosen such that new_U|theta> has maximal overlap with the truncated U|theta>.

## PurificationTEBD

- full name: tenpy.algorithms.purification_tebd.PurificationTEBD
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.PurificationTEBD (psi, model, TEBD_params)
Bases: tenpy.algorithms.tebd.Engine
Time evolving block decimation (TEBD) for purification MPS.


## Parameters

psi [PurificationMPS] Initial state to be time evolved. Modified in place.
model [NearestNeighborModel] The model representing the Hamiltonian for which we want to find the ground state.

TEBD_params [dict] Further optional parameters as described in the following table. Use verbose=1 to print the used parameters during runtime. See run () and run_GS () for more details.

## Attributes

disent_iterations For each bond the total number of iterations performed in any Disentangler.
used_disentangler [Disentangler] The disentangler to be used on the auxiliar indices. Chosen by get_disentangler(), called with the TEBD parameter 'disentangle'. Defaults to the trivial disentangler for TEBD_params['disentangle']=None.
_disent_iterations [1D ndarray] Number of iterations performed on all bonds, including trivial bonds; lenght $L$.
_guess_U_disent [list of list of npc.Array] Same index strucuture as self._U: for each two-site $U$ of the physical time evolution the disentangler from the last application. Initialized to identities.

## Methods

calc_U(self, order, delta_t[, type_evo, ...])	see calc_U ()
disentangle(self, theta)	Disentangle theta before splitting with svd.
disentangle_global(self[, pair])	Try global disentangling by determining the maximally entangled pairs of sites.
disentangle_global_nsite(self[, n])	Perform a sweep through the system and disentangle with disentangle_n_site().
disentangle_n_site(self, i, n, theta)	Generalization of disentangle () to $n$ sites.
run(self)	(Real-)time evolution with TEBD (time evolving block decimation).
run_GS(self)	TEBD algorithm in imaginary time to find the ground state.
run_imaginary(self, beta)	Run imaginary time evolution to cool down to the given beta.
```suzuki_trotter_decomposition(order, N_steps)```	Returns list of necessary steps for the suzuki trotter decomposition.
suzuki_trotter_time_steps(order)	Return time steps of U for the Suzuki Trotter decomposition of desired order.
update(self, N_steps)	Evolve by N_steps * U_param['dt'].
update_bond(self, i, U_bond)	Updates the B matrices on a given bond.
update_bond_imag(self, i, U_bond)	Update a bond with a (possibly non-unitary) U_bond.
update_imag(self, N_steps)	Perform an update suitable for imaginary time evolution.
update_step(self, U_idx_dt, odd)	Updates either even or odd bonds in unit cell.

run_imaginary (self, beta)
Run imaginary time evolution to cool down to the given beta.
Note that we don't change the norm attribute of the MPS, i.e. normalization is preserved.

Parameters

beta [float] The inverse temperature beta $=1 / \mathrm{T}$, by which we should cool down. We evolve to the closest multiple of TEBD_params ['dt'], see also evolved_time.
property disent_iterations
For each bond the total number of iterations performed in any Disentangler.
calc_U (self, order, delta_t, type_evo='real', E_offset=None)
see calc_U()
update_bond (self, $i, U _$bond)
Updates the B matrices on a given bond.
Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i . This would look something like:
\square

Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'for U_bond.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_bond_imag (self, $i, U _$bond)
Update a bond with a (possibly non-unitary) $U _$bond.
Similar as update_bond (); but after the SVD just keep the A, S, B canonical form. In that way, one can sweep left or right without using old singular values, thus preserving the canonical form during imaginary time evolution.

Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*'.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
disentangle (self, theta)
Disentangle theta before splitting with svd.
For the purification we write $\rho_{P}=\operatorname{Tr}_{Q}\left|\psi_{P, Q}><\psi_{P, Q}\right|$. Thus, we can actually apply any unitary to the auxiliar Q space of $\mid \psi>$ without changing the result.

Note: We have to apply the same unitary to the 'bra' and 'ket' used for expectation values / correlation functions!

The behaviour of this function is set by used_disentangler, which in turn is obtained from get_disentangler(TEBD_params['disentangle']), see get_disentangler() for details on the syntax.

Parameters

theta [Array] Wave function to disentangle, with legs 'vL', 'vR', 'po', 'pl', 'q0', 'q1'.

Returns

theta_disentangled [Array] Disentangled theta; npc.tensordot(U, theta, axes=[['q0*', 'q1*'], ['q0', 'q1']]).
\mathbf{U} [Array] The unitary used to disentangle theta, with labels 'q0', 'q1', 'q0*', ' $q 1 *$ '. If no unitary was found/applied, it might also be None.
disentangle_global (self, pair=None)
Try global disentangling by determining the maximally entangled pairs of sites.
Caclulate the mutual information (in the auxiliar space) between two sites and determine where it is maximal. Disentangle these two sites with disentangle ()
disentangle_global_nsite (self, $n=2$)
Perform a sweep through the system and disentangle with disentangle_n_site().

Parameters

\mathbf{n} : int maximal number of sites to disentangle at once.
disentangle_n_site (self, i, n, theta)
Generalization of disentangle() to n sites.
Simply group left and right $n / 2$ physical legs, adjust labels, and apply disentangle () to disentangle the central bond. Recursively proceed to disentangle left and right parts afterwards. Scales (for even n) as $O\left(\chi^{3} d^{n} d^{n / 2}\right)$.
run (self)
(Real-)time evolution with TEBD (time evolving block decimation).
The following (optional) parameters are read out from the TEBD_params.

key	type	description
dt	float	Time step.
order	int	Order of the algorithm. The total error scales as O(t, dt^order).
N_steps	int	Number of time steps $d t$ to evolve. (The Trotter decompo- sitions of order >1 are slightly more efficient if more than one step is performed at once.)
trunc_params	dict	Truncation parameters as de- scribed in truncate ().

run_GS (self)
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonetheless be used quite well as a benchmark and for comparison.

The following (optional) parameters are read out from the TEBD_params. Use verbose=1 to print the used parameters during runtime.

key	type	description	
delta	thist list A list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces large (Trotter) errors, but a too small time step requires a lot of steps to reach exp (-tau H) --> \|psi0><psi0	. Therefore, we start with fairly large time steps for a quick time evolution until convergence, and the gradually decrease the time step.	
$\begin{aligned} & \text { or- } \\ & \text { der } \end{aligned}$	int	Order of the Suzuki-Trotter decomposition.	
N_ste		Number of steps before measurement can be performed	
trunc	_plicamsTruncation parameters as described in truncate ()		

static suzuki_trotter_decomposition (order, N _steps)
Returns list of necessary steps for the suzuki trotter decomposition.
We split the Hamiltonian as $H=H_{\text {even }}+H_{o d d}=H[0]+H[1]$. The Suzuki-Trotter decomposition is an approximation $\exp (t H) \approx \operatorname{prod}_{(j, k) \in S T} \exp (d[j] t H[k])+O\left(t^{\text {order }+1}\right)$.

Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

Returns

ST_decomposition [list of (int, int)] Indices j, k of the time-steps $d=$ suzuki_trotter_time_step (order) and the decomposition of H. They are chosen such that a subsequent application of $\exp (d[j] t H[k])$ to a given state |psi> yields (exp (N_steps t H[k]) + O(N_steps $\left.\left.t^{\wedge}\{o r d e r+1\}\right)\right) \mid p s i>$.

static suzuki_trotter_time_steps (order)

Return time steps of U for the Suzuki Trotter decomposition of desired order.
See suzuki_trotter_decomposition() for details.

Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

Returns

time_steps [list of float] We need $U=\exp \left(-i H_{-}\{e v e n / o d d\}\right.$ delta_t * dt) for the $d t$ returned in this list.
property trunc_err_bonds
truncation error introduced on each non-trivial bond.
update (self, N_steps)
Evolve by N_steps * U_param['dt'].

Parameters

\mathbf{N} _steps [int] The number of steps for which the whole lattice should be updated.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_imag (self, N_steps)
Perform an update suitable for imaginary time evolution.
Instead of the even/odd brick structure used for ordinary TEBD, we 'sweep' from left to right and right to left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

Parameters

N_steps [int] The number of steps for which the whole lattice should be updated.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_step (self, U_idx_dt,odd)
Updates either even or odd bonds in unit cell.
Depending on the choice of p, this function updates all even (E , odd=False, 0) or odd (O) ($\mathrm{odd}=$ True, 1) bonds:

Note that finite boundary conditions are taken care of by having Us [0] $=$ None.

Parameters

U_idx_dt [int] Time step index in self._U, evolve with Us[i] = self. U[U_idx_dt][i] at bond (i-1,i).
odd [bool/int] Indication of whether to update even (odd=False, 0) or even (odd=True, 1) sites

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.

PurificationTEBD2

- full name: tenpy.algorithms.purification_tebd.PurificationTEBD2
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd.PurificationTEBD2 (psi, model, TEBD_params)
Bases: tenpy.algorithms.purification_tebd.PurificationTEBD
Similar as PurificationTEBD, but perform sweeps instead of brickwall.
Instead of the A-B pattern of even/odd bonds used in TEBD, perform sweeps similar as in DMRG for real-time evolution (similar as update_imag() does for imaginary time evolution).

Attributes

disent_iterations For each bond the total number of iterations performed in any Disentangler.
trunc_err_bonds truncation error introduced on each non-trivial bond.

Methods

calc_U(self, order, delta_t[, type_evo,...])	see calc_U ()
disentangle(self, theta)	Disentangle theta before splitting with svd.
disentangle_global(self[, pair])	Try global disentangling by determining the maxi- mally entangled pairs of sites.
disentangle_global_nsite(self[, n])	Perform a sweep through the system and disentangle with disentangle_n_site ().
disentangle_n_site(self, i, n, theta)	Generalization of disentangle () to n sites.
run(self)	(Real-)time evolution with TEBD (time evolving block decimation).
run_GS(self)	TEBD algorithm in imaginary time to find the ground state.
run_imaginary(self, beta)	Run imaginary time evolution to cool down to the given beta.
suzuki_trotter_decomposition(order,	Returns list of necessary steps for the suzuki trotter decomposition.
N_steps)	Return time steps of U for the Suzuki Trotter decom- position of desired order.
suzuki_trotter_time_steps(order)	Evolve by N_steps * U_param ['dt '].
update(self, N_steps)	Updates the B matrices on a given bond.
update_bond(self, i, U_bond)	Update a bond with a (possibly non-unitary) U_bond.
update_bond_imag(self, i, U_bond)	Perform an update suitable for imaginary time evo- lution.
update_imag(self, N_steps)	Updates bonds in unit cell.
update_step(self, U_idx_dt, odd)	

update (self, N_{-}steps)
Evolve by N_steps * U_param['dt'].

Parameters

\mathbf{N} _steps [int] The number of steps for which the whole lattice should be updated.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
update_step (self, $U _i d x _d t$, odd)
Updates bonds in unit cell.
Depending on the choice of $o d d$, perform a sweep to the left or right, updating once per site with a time step given by U_idx_dt.

Parameters

U_idx_dt [int] Time step index in self._U, evolve with Us[i] = self. U[U_idx_dt][i] at bond (i-1,i).
odd [bool/int] Indication of whether to update even (odd=False,0) or even (odd=True, 1) sites

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.
calc_U (self, order, delta_t, type_evo='real', E_offset=None)
see calc_U()
property disent_iterations
For each bond the total number of iterations performed in any Disentangler.
disentangle (self, theta)
Disentangle theta before splitting with svd.
For the purification we write $\rho_{P}=\operatorname{Tr}_{Q}\left|\psi_{P, Q}><\psi_{P, Q}\right|$. Thus, we can actually apply any unitary to the auxiliar Q space of $\mid \psi>$ without changing the result.

Note: We have to apply the same unitary to the 'bra' and 'ket' used for expectation values / correlation functions!

The behaviour of this function is set by used_disentangler, which in turn is obtained from get_disentangler(TEBD_params['disentangle']), see get_disentangler() for details on the syntax.

Parameters

theta [Array] Wave function to disentangle, with legs 'vL', 'vR', 'p0', 'p1', 'q0', 'q1'.

Returns

theta_disentangled [Array] Disentangled theta; npc.tensordot(U, theta, axes=[['q0*', 'q1*'], ['q0', 'q1']]).
\mathbf{U} [Array] The unitary used to disentangle theta, with labels 'q0', 'q1', 'q0*', ' q1*'. If no unitary was found/applied, it might also be None.
disentangle_global (self, pair=None)
Try global disentangling by determining the maximally entangled pairs of sites.
Caclulate the mutual information (in the auxiliar space) between two sites and determine where it is maximal. Disentangle these two sites with disentangle ()
disentangle_global_nsite (self, $n=2$)
Perform a sweep through the system and disentangle with disentangle_n_site().

Parameters

\mathbf{n} : int maximal number of sites to disentangle at once.

disentangle_n_site (self, i, n, theta)

Generalization of disentangle() to n sites.
Simply group left and right $n / 2$ physical legs, adjust labels, and apply disentangle () to disentangle the central bond. Recursively proceed to disentangle left and right parts afterwards. Scales (for even n) as $O\left(\chi^{3} d^{n} d^{n / 2}\right)$.
run (self)
(Real-)time evolution with TEBD (time evolving block decimation).
The following (optional) parameters are read out from the TEBD_params.

key	type	description
dt	float	Time step.
order	int	Order of the algorithm. The total error scales as O(t, dt^^rder).
N_steps	int	Number of time steps $d t$ to evolve. (The Trotter decompo- sitions of order >1 are slightly more efficient if more than one step is performed at once.)
trunc_params	dict	Truncation parameters as de- scribed in truncate ().

run_GS (self)
TEBD algorithm in imaginary time to find the ground state.

Note: It is almost always more efficient (and hence advisable) to use DMRG. This algorithms can nonetheless be used quite well as a benchmark and for comparison.

The following (optional) parameters are read out from the TEBD_params. Use verbose=1 to print the used parameters during runtime.

key	type	description
delta_thist list A list of floats: the timesteps to be used. Choosing a large timestep delta_tau introduces		
large (Trotter) errors, but a too small time step requires a lot of steps to reach exp (-tau		
H) --> Ipsi0><psi0 I. Therefore, we start with fairly large time steps for a quick		
time evolution until convergence, and the gradually decrease the time step.		

run_imaginary (self, beta)
Run imaginary time evolution to cool down to the given beta.
Note that we don't change the norm attribute of the MPS, i.e. normalization is preserved.

Parameters

beta [float] The inverse temperature beta $=1 / \mathrm{T}$, by which we should cool down. We evolve to the closest multiple of TEBD_params ['dt'], see also evolved_time.
static suzuki_trotter_decomposition (order, N_steps)
Returns list of necessary steps for the suzuki trotter decomposition.
We split the Hamiltonian as $H=H_{\text {even }}+H_{o d d}=H[0]+H[1]$. The Suzuki-Trotter decomposition is an approximation $\exp (t H) \approx \operatorname{prod}_{(j, k) \in S T} \exp (d[j] t H[k])+O\left(t^{o r d e r+1}\right)$.

Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

Returns

ST_decomposition [list of (int, int)] Indices j, k of the time-steps $d=$ suzuki_trotter_time_step (order) and the decomposition of H. They are chosen such that a subsequent application of $\exp (d[j] t H[k])$ to a given state |psi> yields (exp (N_steps $\left.t H[k])+O\left(N _s t e p s t^{\wedge}\{o r d e r+1\}\right)\right) \mid p s i>$.
static suzuki_trotter_time_steps (order)
Return time steps of U for the Suzuki Trotter decomposition of desired order.
See suzuki_trotter_decomposition () for details.

Parameters

order [int] The desired order of the Suzuki-Trotter decomposition.

Returns

time_steps [list of float] We need $U=\exp \left(-i \quad H _\{e v e n / o d d\}\right.$ delta_t * dt) for the $d t$ returned in this list.
property trunc_err_bonds
truncation error introduced on each non-trivial bond.
update_bond (self, i, U _bond)
Updates the B matrices on a given bond.
Function that updates the B matrices, the bond matrix s between and the bond dimension chi for bond i .
This would look something like:

Parameters

i [int] Bond index; we update the matrices at sites i-1, i.
U_bond [Array] The bond operator which we apply to the wave function. We expect labels 'p0', 'p1', 'p0*', 'p1*' for $U _$bond.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_bond_imag (self, $i, U _$bond)
Update a bond with a (possibly non-unitary) $U _$bond.
Similar as update_bond (); but after the SVD just keep the A, S, B canonical form. In that way, one can sweep left or right without using old singular values, thus preserving the canonical form during imaginary time evolution.

Parameters

i [int] Bond index; we update the matrices at sites $i-1, i$.
U_bond [Array] The bond operator which we apply to the wave function. We expect
labels 'p0', 'p1', 'p0*', 'p1*'.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced by the truncation during this update step.
update_imag (self, N_steps)
Perform an update suitable for imaginary time evolution.
Instead of the even/odd brick structure used for ordinary TEBD, we 'sweep' from left to right and right to left, similar as DMRG. Thanks to that, we are actually able to preserve the canonical form.

Parameters

N_steps [int] The number of steps for which the whole lattice should be updated.

Returns

trunc_err [TruncationError] The error of the represented state which is introduced due to the truncation during this sequence of update steps.

RenyiDisentangler

- full name: tenpy.algorithms.purification_tebd.RenyiDisentangler
- parent module: tenpy.algorithms.purification_tebd
- type: class
class tenpy.algorithms.purification_tebd. RenyiDisentangler (parent)
Bases: tenpy.algorithms.purification_tebd.Disentangler
Iterative find U which minimized the second Renyi entropy.
See [Hauschild2018]
Reads of the following TEBD_params as break criteria for the iteration:

key	type	description
disent_eps	float	Break, if the change in the Renyi entropy S ($\mathrm{n}=2$) per iteration is smaller than this value.
dis- ent_max_iter	float	Maximum number of iterations to perform.

Arguments and return values are the same as for disentangle().

Methods

\ldots call__(self, theta)	Find optimal U which minimizes the second Renyi entropy.
iter(self, theta, U)	Given theta and U, find another U which reduces the 2nd Renyi entropy.

iter (self, theta, U)
Given theta and U, find another U which reduces the 2nd Renyi entropy.
Temporarily view the different U as independt and mimizied one of them - this corresponds to a linearization of the cost function. Defining Utheta as the application of U to theata, and combining the p legs of theta with 'vL', 'vR', this function contracts:

The trace yields the second Renyi entropy $S 2$. Further, we calculate the unitary U with maximum overlap with this network.

Parameters

theta [Array] Two-site wave function to be disentangled.
\mathbf{U} [Array] The previous guess for U; with legs 'q0', 'q1', 'q0*', 'q1*'.

Returns

$\mathbf{S 2}$ [float] Renyi entopy (n=2), $S 2=\frac{1}{1-2} \log \operatorname{tr}\left(\rho_{L}^{2}\right)$ of U theta.
new_U [Array] Unitary with legs 'q0', 'q1', 'q0*', 'q1*', which should disentangle theta.

Functions

get_disentangler(method, parent)	Parse the parameter method and construct a Disentanglerinstance.

get_disentangler

- full name: tenpy.algorithms.purification_tebd.get_disentangler
- parent module: tenpy.algorithms.purification_tebd
- type: function
tenpy.algorithms.purification_tebd.get_disentangler(method, parent)
Parse the parameter method and construct a Disentangler instance.

Parameters

method [str | None] The method to be used, of the form 'method1-method2$\min (m e t h o d 3$, method4-method5)'. The usage should be clear from the examples, the precise rule follows: We parse the full method string as a composite, and define composite := min_atom ['-' min_atom ...], min_atom := \{ 'min(' composite [',' composite ...] ')' \} | atom, and atom := \{any key of `disentanglers_atom_parse_dict`\}.
parent [Engine] The parent class calling the disentangler.

Returns

disentangler [Disentangler] Disentangler instance, which can be called to disentangle a
2-site theta with the specified method.

Examples

```
>>> get_disentangler(None, p)
Disentangler(p)
>>> get_disentangler('last-renyi', p)
Disentangler([LastDisentangler(p), RenyiDisentangler(p)], p)
>>> get_disentangler('min(None, noise-renyi,min(backwards,last)-graddesc)')
MinDisentangler([Disentangler,
        CompositeDisentangler([NoiseDisentangler(p),
\hookrightarrowRenyiDisentangler(p)], p),
        CompositeDisentangler([MinDisentangler([BackwardDisentangler(p),
                                    LastDisentangler(p)]),
                            GradientDescentDisentangler(p)], p), p)
```


Module description

Time evolving block decimation (TEBD) for MPS of purification.
See introduction in purification_mps. Time evolution for finite-temperature ensembles. This can be used to obtain correlation functions in time.

network_contractor

- full name: tenpy.algorithms.network_contractor
- parent module: tenpy.algorithms
- type: module

Functions

contract(tensor_list[, tensor_names, ...])	Contract a network of tensors.
ncon(tensor_list, leg_links, sequence)	Implementation of ncon.m for TeNPy Arrays.

contract

- full name: tenpy.algorithms.network_contractor.contract
- parent module: tenpy.algorithms.network_contractor
- type: function

```
tenpy.algorithms.network_contractor.contract(tensor_list, tensor_names=None,
                                    leg_contractions=None, open_legs=None,
                    sequence=None)
```

Contract a network of tensors.
Based on the MatLab function ncon.m as described in arXiv:1402.0939.

Parameters

tensor_list [list of Array] The tensors to be contracted.
leg_contractions [list of [$\mathrm{n} 1,11, \mathrm{n} 2,12]$] A list of contraction instructions. An entry of leg_contractions has the form [n1, l1, n2, l2], where n1, n2 are entries of tensor_names and each identify an Array in tensor_list. 11, 12 are leg labels of the corresponding Array. The instruction implies to contract leg 11 of tensor n1 with leg 12 of tensor n 2 .
open_legs [list of [$\mathrm{n} 1,11,1]$] A list of instructions for "open" (uncontracted) legs. [n1, l1, l] implies that leg 11 of tensor $n 1$ is not contracted and is labelled 1 in the result.
tensor_names [list of str] A list of names for each tensor, to be used in leg_contractions and open_legs. The default value is list(range(len(tensor_list))), so that the tensor "names" are $0,1,2, \ldots$
sequence [list of int] The order in which the leg_contractions are to be performed. An entry of network_contractor.outer_product indicates performing an outer product. This corresponds to the zero-in-sequence convention of arXiv:1304.6112

Returns

result [Array I complex] The number or tensor resulting from the contraction.
ncon

- full name: tenpy.algorithms.network_contractor.ncon
- parent module: tenpy.algorithms.network_contractor
- type: function
tenpy.algorithms.network_contractor.ncon(tensor_list, leg_links, sequence) Implementation of ncon.m for TeNPy Arrays.

This function is a python implementation of ncon.m (arXiv:1304.6112) for tenpy Array. contract () is a wrapper that translates from a more python/tenpy input style

Parameters

tensor_list [list of :class:'Array'] Tensors to be contracted.
leg_links [list of list of int] Each entry of leg_links describes the connectivity of the corresponding tensor in tensor_list. Each entry is a list that has an entry for each leg of the corresponding tensor. Values $0,1,2, \ldots$ are labels of contracted legs and should appear exactly twice in leg_links. Values $-1,-2,-3, \ldots$ are labels of uncontracted legs and indicate the final ordering (-1 is first axis).
sequence [list of int] The order in which the contractions are to be performed. An entry of network_contractor.outer_product indicates performing an outer product. This corresponds to the zero-in-sequence convention of arXiv:1304.6112

Returns

result [Array I complex] The number or tensor resulting from the contraction.

Module description

Network Contractor.

A tool to contract a network of multiple tensors.
This is an implementation of 'NCON: A tensor network contractor for MATLAB' by Robert N. C. Pfeifer, Glen Evenbly, Sukhwinder Singh, Guifre Vidal, see arXiv:1402.0939

Todo:

- implement or wrap netcon.m, a function to find optimal contractionn sequences (arXiv:1304.6112)
- improve helpfulness of Warnings
- _do_trace: trace over all pairs of legs at once. need the corresponding npc function first.

exact_diag

- full name: tenpy.algorithms.exact_diag
- parent module: tenpy.algorithms
- type: module

Classes

ExactDiag(model[, charge_sector, sparse, ...]) (Full) exact diagonalization of the Hamiltonian.

ExactDiag

- full name: tenpy.algorithms.exact_diag.ExactDiag
- parent module: tenpy.algorithms.exact_diag
- type: class
class tenpy.algorithms.exact_diag.ExactDiag (model, charge_sector=None, sparse=False, max_size=2000000.0)
Bases: object
(Full) exact diagonalization of the Hamiltonian.

Parameters

model [MPOmodel I CouplingModel] The model which is to be diagonalized.
charge_sector [None I charges] If not None, project onto the given charge sector.
sparse [bool] If True, don't sort/bunch the LegPipe used to combine the physical legs. This results in array blocks with just one entry, requires much more charge data, and is not what $n p _c o n s e r v e d$ was designed for, so it's not recommended.
max_size [int] The build_H_* functions will do nothing (but emit a warning) if the total size of the Hamiltonian would be larger than this.

Attributes

model [MPOmodel I CouplingModel] The model which is to be diagonalized.
chinfo [ChargeInfo] The nature of the charge (which is the same for all sites).
charge_sector [None I charges] If not None, we project onto the given charge sector.
max_size [int] The build_H_* functions will do nothing (but emit a warning) if the total size of the Hamiltonian would be larger than this.
full_H [Array I None] The full Hamiltonian to be diagonalized with legs ' (p0.p1....) ', '(p0*, pl*...)' (in that order). None if the build_H_* functions haven't been called yet, or if max_size would have been exceeded.

E [ndarray I None] 1D array of eigenvalues.
V [Array I None] Eigenvectors. First leg 'ps' are physical legs, the second leg 'ps*' corresponds to the eigenvalues.
_sites [list of Site] The sites in the given order.
_labels_p [list or str] The labels use for the physical legs; just ['p0', 'p1',, 'p $\{\mathrm{L}-1\}$ '].
_labels_pconj [list or str] Just each of _labels_p with an *.
_pipe [LegPipe] The pipe from the single physical legs to the full combined leg.
_pipe_conj [LegPipe] Just_pipe.conj().
_mask [1D bool ndarray I None] Bool mask, which of the indices of the pipe are in the desired charge_sector.

Methods

build_full_H_from_bonds(self)	Calculate self.full_H from self.mpo.
build_full_H_from_mpo(self)	Calculate self.full_H from self.mpo.
exp_H(self, dt)	Return U (dt) : $=\exp (-i \quad H \mathrm{dt})$.
from_H_mpo(H_MPO, *args, * ${ }^{\text {/*kwargs })}$	Wrapper taking directly an MPO instead of a Model.
full_diagonalization(self, ।*(*wargs)	Full diagonalization to obtain all eigenvalues and eigenvectors.
full_to_mps(self, psi[, canonical_form])	Convert a full state (with a single leg) to an MPS.
groundstate(self[, charge_sector])	Pick the ground state energy and ground state from self.V.
matvec(self, psi)	Allow to use self as LinearOperator for lanczos.
mps_to_full (self, mps)	Contract an MPS along the virtual bonds and combine its legs.
sparse_diag(self, k, *args, *1*kwargs)	Call speigs().

classmethod from_H_mpo (H_MPO, *args, **kwargs)
Wrapper taking directly an MPO instead of a Model.

Parameters

H_MPO [MPO] The MPO representing the Hamiltonian.
*args, **kwargs : Other arguments as for the __init__ of the class.
build_full_H_from_mpo (self)
Calculate self.full_H from self.mpo.
build_full_H_from_bonds (self)
Calculate self.full_H from self.mpo.
full_diagonalization (self, *args, **kwargs)
Full diagonalization to obtain all eigenvalues and eigenvectors.
Arguments are given to eigh.
groundstate (self, charge_sector=None)
Pick the ground state energy and ground state from self.V.

Parameters

charge_sector [None I 1D ndarray] By default (None), consider all charge sectors. Alternatively, give the qtotal which the returned state should have.

Returns

E0 [float] Ground state energy (possibly in the given sector).
psi0 [Array] Ground state (possibly in the given sector).
exp_H (self, $d t$)
Return $U(d t) \quad:=\exp (-i \quad H d t)$.
mps_to_full (self, mps)
Contract an MPS along the virtual bonds and combine its legs.

Parameters

mps [MPS] The MPS to be contracted.

Returns

psi [Array] The MPO contracted along the virtual bonds.
full_to_mps (self, psi, canonical_form='B')
Convert a full state (with a single leg) to an MPS.

Parameters

psi [Array] The state (with a single leg) which should be splitted into an MPS.
canonical_from [Array] The form in which the MPS will be afterwards.

Returns

mps [MPS] An normalized MPS representation in canonical form.
matvec (self, psi)
Allow to use self as LinearOperator for lanczos.
Just applies full_H to (the first axis of) the given p si.
sparse_diag (self, k, *args, **kwargs)
Call speigs().

Module description

Full diagonalization (ED) of the Hamiltonian.
The full diagonalization of a small system is a simple approach to test other algorithms. In case you need the full spectrum, a full diagonalization is often the only way. This module provides functionality to quickly diagonalize the Hamiltonian of a given model. This might be used to obtain the spectrum, the ground state or highly excited states.

Note: Good use of symmetries is crucial to increase the treatable system size. While we can simply use the defined LegCharge of a model, we don't make use of any other symmetries like translation symmetry, $\mathrm{SU}(2)$ symmetry or inversion symmetries. In other words, this code does not aim to provide state-of-the-art exact diagonalization, but just the ability to diagonalize the defined models for small system sizes without addional extra work.

7.2.2 linalg

- full name: tenpy.linalg
- parent module: tenpy
- type: module

Module description

Linear-algebra tools for tensor networks.
Most notably is the module np_conserved, which contains everything needed to make use of charge conservervation in the context of tensor networks.

Relevant contents of charges are imported to np_conserved, so you propably won't need to import charges directly.

Submodules

np_conserved	A module to handle charge conservation in tensor net- works.
charges	Basic definitions of a charge.
svd_robust	(More) robust version of singular value decomposition.
random_matrix	Provide some random matrix ensembles for numpy.
sparse	Providing support for sparse algorithms (using matrix- vector products only).
lanczos	Lanczos algorithm for np_conserved arrays.

np_conserved

- full name: tenpy.linalg.np_conserved
- parent module: tenpy. Iinalg
- type: module

Classes

Array(legcharges[, dtype, qtotal])	A multidimensional array (=tensor) for using charge conservation.

Array

- full name: tenpy.linalg.np_conserved.Array
- parent module: tenpy.Iinalg.np_conserved
- type: class
class tenpy.linalg.np_conserved.Array(legcharges, dtype=<class 'numpy.float64'>, qtotal=None)
Bases: ob ject
A multidimensional array (=tensor) for using charge conservation.
An Array represents a multi-dimensional tensor, together with the charge structure of its legs (for abelian charges). Further information can be found in Introduction to np_conserved.
The default __init__() (i.e. Array (...)) does not insert any data, and thus yields an Array 'full' of zeros, equivalent to zeros (). Further, new arrays can be created with one of from_ndarray_trivial(), from_ndarray (), or from_func (), and of course by copying/tensordot/svd etc.

In-place methods are indicated by a name starting with i. (But is_completely_blocked is not inplace...)

Parameters

legcharges [list of LegCharge] The leg charges for each of the legs. The ChargeInfo is read out from it.
dtype [type or string] The data type of the array entries. Defaults to np.float64.
qtotal [1D array of QTYPE] The total charge of the array. Defaults to 0 .

Attributes

size The number of dtype-objects stored.
stored_blocks The number of (non-zero) blocks stored in _data.
rank [int] The rank or "number of dimensions", equivalent to len (shape).
shape [tuple(int)] The number of indices for each of the legs.
dtype [np.dtype] The data type of the entries.
chinfo [ChargeInfo] The nature of the charge.
qtotal [1D array] The total charge of the tensor.
legs [list of LegCharge] The leg charges for each of the legs.
labels [dict (string -> int)] Labels for the different legs.
_data [list of arrays] The actual entries of the tensor.
_qdata [2D array (len(_data), rank), dtype np.intp] For each of the _data entries the qindices of the different legs.
_qdata_sorted [Bool] Whether self._qdata is lexsorted. Defaults to True, but must be set to False by algorithms changing _qdata.

Methods

add_charge(self, add_legs[, chinfo, qtotal])	Add charges.
add_leg(self, leg, i[, axis, label])	Add a leg to self, setting the current array as slice for a given index.
add_trivial_leg(self[, axis, label, qconj])	Add a trivial leg (with just one entry) to self.
as_completely_blocked(self)	Gives a version of self which is completely blocked by charges.
astype(self, dtype[, copy])	Return copy with new dtype, upcasting all blocks in _data.
binary_blockwise(self, func, other, *args, ...)	Roughly return func (self, other), block-wise.
change_charge(self, charge, new_qmod[, ...])	Change the qmod of one charge in chinfo.
combine_legs(self, combine_legs[, new_axes, ...])	Reshape: combine multiple legs into multiple pipes.
complex_conj(self)	Return copy which is complex conjugated without conjugating the charge data.
con j(self[, complex_conj, inplace])	Conjugate: complex conjugate data, conjugate charge data.
copy(self[, deep])	Return a (deep or shallow) copy of self.
drop_charge(self[, charge, chinfo])	Drop (one of) the charges.
extend(self, axis, extra)	Increase the dimension of a given axis, filling the values with zeros.
from_func(func, legcharges[, dtype, qtotal, ...])	Create an Array from a numpy func.
from_func_square(func, leg[, dtype, ...])	Create an Array from a (numpy) function.
from_ndarray(data_flat, legcharges[, dtype, ...])	convert a flat (numpy) ndarray to an Array.
from_ndarray_trivial(data_flat[, dtype])	convert a flat numpy ndarray to an Array with trivial charge conservation.
gauge_total_charge(self, axis[, newqtotal, ...])	Changes the total charge by adjusting the charge on a certain leg.
get_block(self, qindices[, insert])	Return the ndarray in _data representing the block corresponding to qindices.
get_leg(self, label)	```Return self.legs[self. get_leg_index(label)].```
get_leg_index(self, label)	translate a leg-index or leg-label to a leg-index.
get_leg_indices(self, labels)	Translate a list of leg-indices or leg-labels to leg indices.
get_leg_labels(self)	Return list of the leg labels, with None for anonymous legs.
has_label(self, label)	Check whether a given label exists.

Table 47 - continued from previous page

iadd_prefactor_other(self, prefactor, other)	self += prefactor * otherfor scalar prefactor and Array other.
ibinary_blockwise(self, func, other, *args, ...)	Roughly self = func(self, other), block-wise; in place.
icon j(self[, complex_conj])	Wraper around self.conj() with inplace=True.
idrop_labels(self[, old_labels])	Remove leg labels from self; in place.
iproject(self, mask, axes)	Applying masks to one or multiple axes; in place.
ipurge_zeros(self[, cutoff, norm_order])	Removes self._data blocks with norm less than cutoff; in place.
ireplace_label(self, old_label, new_label)	Replace the leg label old_label with new_label; in place.
ireplace_labels(self, old_labels, new_labels)	Replace leg label old_labels[i] with new_labels[i]; in place.
is_completely_blocked(self)	Return bool whether all legs are blocked by charge.
iscale_axis(self, s[, axis])	Scale with varying values along an axis; in place.
iscale_prefactor(self, prefactor)	self *= prefactor for scalar prefactor.
iset_leg_labels(self, labels)	Set labels for the different axes/legs; in place.
isort_qdata(self)	(Lexiographically) sort self._qdata; in place.
iswapaxes(self, axis1, axis2)	Similar as np.swapaxes; in place.
itranspose(self[, axes])	Transpose axes like np.transpose; in place.
iunary_blockwise(self, func, l*args, $l^{*}{ }^{*}$ kwargs $)$	Roughly self $=\mathrm{f}(\mathrm{self})$, block-wise; in place.
make_pipe(self, axes, ${ }^{*}$ **kwargs)	Generates a LegPipe for specified axes.
matvec(self, other)	This function is used by the Lanczos algorithm needed for DMRG.
norm(self[, ord, convert_to_float])	Norm of flattened data.
permute(self, perm, axis)	Apply a permutation in the indices of an axis.
replace_label(self, old_label, new_label)	Return a shallow copy with the leg label old_label replaced by new_label.
replace_labels(self, old_labels, new_labels)	Return a shallow copy with old_labels[i] replaced by new_labels[i].
scale_axis(self, s[, axis])	Same as iscale_axis(), but return a (deep) copy.
sort_legcharge(self[, sort, bunch])	Return a copy with one or all legs sorted by charges.
sparse_stats(self)	Returns a string detailing the sparse statistics.
split_legs(self[, axes, cutoff])	Reshape: opposite of combine_legs: split (some) legs which are LegPipes.
squeeze(self[, axes])	Like np.squeeze.
take_slice(self, indices, axes)	Return a copy of self fixing indices along one or multiple axes.
test_sanity(self)	Sanity check.
to_ndarray(self)	Convert self to a dense numpy ndarray.
transpose(self[, axes])	Like itranspose (), but on a deep copy.
unary_blockwise(self, func, l*args, ***kwargs)	Roughly return func (self), block-wise.
zeros_like(self)	Return a copy of self with only zeros as entries, containing no _data.

copy (self, deep=True)
Return a (deep or shallow) copy of self.

Both deep and shallow copies will share chinfo and the LegCharges in legs.
In contrast to a deep copy, the shallow copy will also share the tensor entries, namely the same instances of _qdata and _data and labels (and other 'immutable' properties like the shape or dtype).

Note: Shallow copies are not recommended unless you know the consequences! See the following examples illustrating some of the pitfalls.

Examples

Be (very!) careful when making non-deep copies: In the following example, the original a is changed if and only if the corresponding block existed in a before. $\ggg \mathrm{b}=$ a.copy(deep=False) \# shallow copy >>> $\mathrm{b}[1,2]=4$.

Other inplace operations might have no effect at all (although we don't guarantee that):

```
>>> a *= 2 # has no effect on `b`
>>> b.iconj() # nor does this change `a
```

classmethod from_ndarray_trivial (data_flat,dtype=None)
convert a flat numpy ndarray to an Array with trivial charge conservation.

Parameters

data_flat [array_like] The data to be converted to a Array.
dtype [np.dtype] The data type of the array entries. Defaults to dtype of data_flat.

Returns

res [Array] An Array with data of data_flat.
classmethod from_ndarray (data_flat, legcharges, dtype $=$ None, qtotal $=$ None, cutoff $=$ None) convert a flat (numpy) ndarray to an Array.

Parameters

data_flat [array_like] The flat ndarray which should be converted to a npc Array. The shape has to be compatible with legcharges.
legcharges [list of LegCharge] The leg charges for each of the legs. The ChargeInfo is read out from it.
dtype [np.dtype] The data type of the array entries. Defaults to dtype of data_flat.
qtotal [None I charges] The total charge of the new array.
cutoff [float] Blocks with np.max(np.abs(block)) > cutoff are considered as zero. Defaults to QCUTOFF.

Returns

res [Array] An Array with data of data_flat.

See also:

detect_qtotal used to detect qtotal if not given.
classmethod from_func (func, legcharges, dtype=None, qtotal=None, func_args=(), func_kwargs $=\{ \}$, shape_kw=None)
Create an Array from a numpy func.
This function creates an array and fills the blocks compatible with the charges using func, where func is a function returning a array_like when given a shape, e.g. one of np.ones or np.random. standard_normal.

Parameters

func [callable] A function-like object which is called to generate the data blocks. We expect that func returns a flat array of the given shape convertible to dtype. If no shape_kw is given, it is called like func (shape, *fargs, $* * \mathrm{fkwargs}$), otherwise as func (*fargs, `shape_kw`=shape, **fkwargs). shape is a tuple of int.
legcharges [list of LegCharge] The leg charges for each of the legs. The ChargeInfo is read out from it.
dtype [None I type I string] The data type of the output entries. Defaults to np.float64. Defaults to None: obtain it from the return value of the function. Note that this argument is not given to func, but rather a type conversion is performed afterwards. You might want to set a dtype in func_kwargs as well.
qtotal [None I charges] The total charge of the new array. Defaults to charge 0 .
func_args [iterable] Additional arguments given to func.
func_kwargs [dict] Additional keyword arguments given to func.
shape_kw [None l str] If given, the keyword with which shape is given to func.

Returns

res [Array] An Array with blocks filled using func.
classmethod from_func_square (func, leg, dtype=None, func_args=(), func_kwargs=\{\}, shape_kw=None)
Create an Array from a (numpy) function.
This function creates an array and fills the blocks compatible with the charges using func, where func is a function returning a array_like when given a shape, e.g. one of np.ones or np.random. standard_normal or the functions defined in random_matrix.

Parameters

func [callable] A function-like object which is called to generate the data blocks. We expect that func returns a flat array of the given shape convertible to dtype. If no shape_kw is given, it is called like func(shape, $*$ fargs, $* * \mathrm{fkwargs)}, \mathrm{other-}$ wise as func (*fargs, `shape_kw`=shape, **fkwargs). shape is a tuple of int.
leg [LegCharge] The leg charges for the first leg; the second leg is set to leg.conj(). The ChargeInfo is read out from it.
dtype [None I type I string] The data type of the output entries. Defaults to None: obtain it from the return value of the function. Note that this argument is not given to func, but rather a type conversion is performed afterwards. You might want to set a dtype in func_kwargs as well.
func_args [iterable] Additional arguments given to func.
func_kwargs [dict] Additional keyword arguments given to func.
shape_kw [None I str] If given, the keyword with which shape is given to func.

Returns

res [Array] An Array with blocks filled using func.
zeros_like (self)
Return a copy of self with only zeros as entries, containing no _data.
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

property size

The number of dtype-objects stored.
property stored_blocks
The number of (non-zero) blocks stored in _data.
get_leg_index (self, label)
translate a leg-index or leg-label to a leg-index.

Parameters

label [int I string] The leg-index directly or a label (string) set before.

Returns

leg_index [int] The index of the label.

See also:

get_leg_indices calls get_leg_index for a list of labels.
iset_leg_labels set the labels of different legs.
get_leg_indices (self, labels)
Translate a list of leg-indices or leg-labels to leg indices.

Parameters

labels [iterable of string/int] The leg-labels (or directly indices) to be translated in legindices.

Returns

leg_indices [list of int] The translated labels.

See also:

get_leg_index used to translate each of the single entries.
iset_leg_labels set the labels of different legs.
iset_leg_labels (self, labels)
Set labels for the different axes/legs; in place.
Introduction to leg labeling can be found in Introduction to np_conserved.

Parameters

labels [iterable (strings | None), len=self.rank] One label for each of the legs. An entry can be None for an anonymous leg.

See also:

get_leg translate the labels to indices.
get_leg_labels (self)
Return list of the leg labels, with None for anonymous legs.
has_label (self, label)
Check whether a given label exists.
get_leg (self, label)
Return self.legs[self.get_leg_index(label)].
Convenient function returning the leg corresponding to a leg label/index.
ireplace_label (self, old_label, new_label)
Replace the leg label old_label with new_label; in place.
replace_label (self, old_label, new_label)
Return a shallow copy with the leg label old_label replaced by new_label.
ireplace_labels (self, old_labels, new_labels)
Replace leg labelold_labels[i] with new_labels[i]; in place.
replace_labels (self, old_labels, new_labels)
Return a shallow copy with old_labels[i] replaced by new_labels[i].
idrop_labels (self, old_labels=None)
Remove leg labels from self; in place.

Parameters

old_labels [list of strlint] The leg labels/indices for which the label should be removed. By default (None), remove all labels.
sparse_stats (self)
Returns a string detailing the sparse statistics.
to_ndarray (self)
Convert self to a dense numpy ndarray.
get_block (self, qindices, insert=False)
Return the ndarray in _dat a representing the block corresponding to qindices.

Parameters

qindices [1D array of np.intp] The qindices, for which we need to look in _qdata.
insert [bool] If True, insert a new (zero) block, if qindices is not existent in self._data. Otherwise just return None.

Returns

block: ndarray I None The block in _dat a corresponding to qindices. If insert $=$ False and there is not block with qindices, return "None`.

Raises

IndexError If qindices are incompatible with charge and raise_incomp_q.
take_slice (self, indices, axes)
Return a copy of self fixing indices along one or multiple axes.
For a rank-4 Array A.take_slice ([i, j], [1, 2]) is equivalent to $A[:, i, j,:]$.

Parameters

indices [(iterable of) int] The (flat) index for each of the legs specified by axes.
axes [(iterable of) str/int] Leg labels or indices to specify the legs for which the indices are given.

Returns

sliced_self [Array] A copy of self, equivalent to taking slices with indices inserted in axes.

See also:

add_leg opposite action of inserting a new leg.
add_trivial_leg (self, axis=0, label=None, qconj=1)
Add a trivial leg (with just one entry) to self.

Parameters

axis [int] The new leg is inserted before index axis.
label [str I None] If not None, use it as label for the new leg.
qconj $[+1 \mid-1]$ The direction of the new leg.

Returns

extended [Array] A (possibly) shallow copy of self with an additional leg of ind_len 1 and charge 0 .
add_leg (self, leg, i, axis=0, label=None)
Add a leg to self, setting the current array as slice for a given index.

Parameters

leg [LegCharge] The charge data of the leg to be added.
i [int] Index within the leg for which the data of self should be set.
axis [axis] The new leg is inserted before this current axis.
label [str I None] If not None, use it as label for the new leg.

Returns

extended [Array] A copy of self with the new leg at axis axis, such that extended. take_slice(i, axis) returns a copy of self.

See also:

take_slice opposite action reducing the number of legs.
extend (self, axis, extra)
Increase the dimension of a given axis, filling the values with zeros.

Parameters

axis [int I str] The axis (or axis-label) to be extended.
extra [LegCharge I int] By what to extend, i.e. the charges to be appended to the leg of axis. An int stands for extending the length of the array by a single new block of that size with zero charges.

Returns

extended [Array] A copy of self with the specified axis increased.
gauge_total_charge (self, axis, newqtotal=None, new_qconj=None)
Changes the total charge by adjusting the charge on a certain leg.
The total charge is given by finding a nonzero entry [i1, i2, \ldots] and calculating:

```
qtotal = self.chinfo.make_valid(
    np.sum([l.get_charge(l.get_qindex(qi) [0])
        for i, l in zip([i1,i2,...], self.legs)], axis=0))
```

Thus, the total charge can be changed by redefining (= shifting) the LegCharge of a single given leg. This is exaclty what this function does.

Parameters

axis [int or string] The new leg (index or label), for which the charge is changed.
newqtotal [charge values, defaults to 0] The new total charge.
new_qconj: $\{\mathbf{+ 1}, \mathbf{- 1}$, None $\}$ Whether the new LegCharge points inward (+1) or outward (-1) afterwards. By default (None) use the previous self.legs [leg]. qconj.

Returns

copy [Array] A shallow copy of self with copy. qtotal $==$ newqtotal and new copy. legs [leg]. The new leg will be a :class`LegCharge`, even if the old leg was a LegPipe.
add_charge (self, add_legs, chinfo=None, qtotal=None)
Add charges.

Parameters

add_legs [iterable of LegCharge] One LegCharge for each axis of self, to be added to the one in legs.
chargeinfo [ChargeInfo] The ChargeInfo for all charges; create new if None.
qtotal [None I charges] The total charge with respect to add_legs. If None, derive it from non-zero entries of self.

Returns

charges_added [Array] A copy of self, where the LegCharges add_legs where added to self.legs. Note that the LegCharges are neither bunched or sorted; you might want to use sort_legcharge ().
drop_charge $($ self, charge $=$ None, chinfo $=$ None $)$
Drop (one of) the charges.

Parameters

charge [int I str] Number or name of the charge (within chinfo) which is to be dropped. None means dropping all charges.
chinfo [ChargeInfo] The ChargeInfo with charge dropped; create a new one if None.

Returns

dropped [Array] A copy of self, where the specified charge has been removed. Note that the LegCharges are neither bunched or sorted; you might want to use sort_legcharge().
change_charge (self, charge, new_qmod, new_name=", chinfo=None)
Change the qmod of one charge in chinfo.

Parameters

charge [int I str] Number or name of the charge (within chinfo) which is to be changed. None means dropping all charges.
new_qmod [int] The new qmod to be set.
new_name [str] The new name of the charge.
chinfo [ChargeInfo] The ChargeInfo with qmod of charge changed; create a new one if None.

Returns

changed [Array] A copy of self, where the qmod of the specified charge has been changed. Note that the LegCharges are neither bunched or sorted; you might want to use sort_legcharge().
is_completely_blocked (self)
Return bool whether all legs are blocked by charge.
sort_legcharge (self, sort=True, bunch=True)
Return a copy with one or all legs sorted by charges.
Sort/bunch one or multiple of the LegCharges. Legs which are sorted and bunched are guaranteed to be blocked by charge.

Parameters

sort [True I False I list of \{True, False, perm\}] A single bool holds for all legs, default=True. Else, sort should contain one entry for each leg, with a bool for sort/don't sort, or a 1D array perm for a given permuation to apply to a leg.
bunch [True I False I list of \{True, False\}] A single bool holds for all legs, default=True. Whether or not to bunch at each leg, i.e. combine contiguous blocks with equal charges.

Returns

perm [tuple of 1D arrays] The permutation applied to each of the legs, such that cp . to_ndarray() = self.to_ndarray()[np.ix_(*perm)].
result [Array] A shallow copy of self, with legs sorted/bunched.

```
isort_qdata(self)
```

(Lexiographically) sort self._qdata; in place.
Lexsort self._qdata and self._data and set self._qdata_sorted = True.
make_pipe (self, axes, **kwargs)
Generates a LegPipe for specified axes.

Parameters

axes [iterable of strlint] The leg labels for the axes which should be combined. Order matters!
**kwargs : Additional keyword arguments given to LegPipe.

Returns

pipe [LegPipe] A pipe of the legs specified by axes.
combine_legs (self, combine_legs, new_axes=None, pipes=None, qconj=None)
Reshape: combine multiple legs into multiple pipes. If necessary, transpose before.

Parameters

combine_legs [(iterable of) iterable of \{strlint $\}$] Bundles of leg indices or labels, which should be combined into a new output pipes. If multiple pipes should be created, use a list fore each new pipe.
new_axes [None I (iterable of) int] The leg-indices, at which the combined legs should appear in the resulting array. Default: for each pipe the position of its first pipe in the original array, (taking into account that some axes are 'removed' by combining). Thus no transposition is perfomed if combine_legs contains only contiguous ranges.
pipes [None I (iterable of) \{LegPipes I None\}] Optional: provide one or multiple of the resulting LegPipes to avoid overhead of computing new leg pipes for the same legs multiple times. The LegPipes are conjugated, if that is necessary for compatibility with the legs.
qconj [(iterable of) $\{+1,-1\}$] Specify whether new created pipes point inward or outward. Defaults to +1 . Ignored for given pipes, which are not newly calculated.

Returns

reshaped [Array] A copy of self, whith some legs combined into pipes as specified by the arguments.

See also:

split_legs inverse reshaping splitting LegPipes.

Notes

Labels are inherited from self. New pipe labels are generated as ' (' + '.'.join(*leglabels) + ') '. For these new labels, previously unlabeled legs are replaced by '? \#', where \# is the leg-index in the original tensor self.

Examples

```
>>> oldarray.iset_leg_labels(['a', 'b', 'c', 'd', 'e'])
>>> cl = oldarray.combine_legs([1, 2], qconj=-1) # only single output pipe
>>> c1.get_leg_labels()
['a', '(b.c)', 'd', 'e']
```

Indices of combine_legs refer to the original array. If transposing is necessary, it is performed automatically:

```
>>> c2 = oldarray.combine_legs([[0, 3], [4, 1]], qconj=[+1, -1]) # two output_
->pipes
>>> c2.get_leg_labels()
['(a.d)', 'c', '(e.b)']
>>> c3 = oldarray.combine_legs([['a', 'd'], ['e', 'b']], new_axes=[2, 1],
>>> pipes=[c2.legs[0], c2.legs[2]])
>>> c3.get_leg_labels()
['c', '(e.b)', '(a.d)']
```

split_legs (self, axes=None, cutoff=0.0)
Reshape: opposite of combine_legs: split (some) legs which are LegPipes.
Reverts combine_legs () (except a possibly performed transpose). The splited legs are replacing the LegPipes at their position, see the examples below. Labels are split reverting what was done in combine_legs (). '?\#' labels are replaced with None.

Parameters

axes [(iterable of) intlstr] Leg labels or indices determining the axes to split. The corresponding entries in self.legs must be LegPipe instances. Defaults to all legs, which are LegPipe instances.
cutoff [float] Splitted data blocks with np.max(np.abs(block)) > cutoff are considered as zero. Defaults to 0 .

Returns

reshaped [Array] A copy of self where the specified legs are splitted.

See also:

combine_legs this is reversed by split_legs.

Examples

Given a rank-5 Array old_array, you can combine it and split it again:

```
>>> old_array.iset_leg_labels(['a', 'b', 'c', 'd', 'e'])
>>> comb_array = old_array.combine_legs([[0, 3], [2, 4]] )
>>> comb_array.get_leg_labels()
['(a.d)', 'b', '(c.e)']
>>> split_array = comb_array.split_legs([0, 2])
>>> split_array.get_leg_labels()
['a', 'd', 'b', 'c', 'e']
```


as_completely_blocked (self)

Gives a version of self which is completely blocked by charges.
Functions like svd() or eigh () require a complete blocking by charges. This can be achieved by encapsulating each leg which is not completely blocked into a LegPipe (containing only that single leg). The LegPipe will then contain all necessary information to revert the blocking.

Returns

encapsulated_axes [list of int] The leg indices which have been encapsulated into Pipes.
blocked_self [Array] Self (if len (encapsulated_axes) = 0) or a copy of self, which is completely blocked.
squeeze (self, axes=None)
Like np. squeeze.
If a squeezed leg has non-zero charge, this charge is added to qtotal.

Parameters

axes [None I (iterable of) \{int|str\}] Labels or indices of the legs which should be 'squeezed', i.e. the legs removed. The corresponding legs must be trivial, i.e., have ind_len 1.

Returns

squeezed [:class:Array I scalar] A scalar of self.dtype, if all axes were squeezed. Else a copy of self with reduced rank as specified by axes.
astype (self, dtype, copy=True)
Return copy with new dtype, upcasting all blocks in _data.

Parameters

dtype [convertible to a np.dtype] The new data type. If None, deduce the new dtype as common type of self._data.
copy [bool] Whether to make a copy of the blocks even if the type didn't change.

Returns

copy [Array] Deep copy of self with new dtype.
ipurge_zeros (self, cutoff $=2.220446049250313 e-15$, norm_order $=$ None) Removes self._data blocks with norm less than cutoff; in place.

Parameters

cutoff [float] Blocks with norm <= cutoff are removed. defaults to QCUTOFF.
norm_order : A valid ord argument for np.linalg.norm. Default None gives the Frobenius norm/2-norm for matrices/everything else. Note that this differs from other methods, e.g. from_ndarray (), which use the maximum norm.
iproject (self, mask, axes)
Applying masks to one or multiple axes; in place.
This function is similar as np.compress with boolean arrays For each specified axis, a boolean 1D array mask can be given, which chooses the indices to keep.

Warning: Although it is possible to use an 1D int array as a mask, the order is ignored! If you need to permute an axis, use permute () or sort_legcharge ().

Parameters

mask [(list of) 1D array(boollint)] For each axis specified by axes a mask, which indices of the axes should be kept. If mask is a bool array, keep the indices where mask is True. If mask is an int array, keep the indices listed in the mask, ignoring the order or multiplicity.
axes [(list of) int I string] The i 'th entry in this list specifies the axis for the ${ }^{\imath}$ th entry of `mask, either as an int, or with a leg label. If axes is just a single int/string, specify just a single mask.

Returns

map_qind [list of 1D arrays] The mapping of qindices for each of the specified axes.
block_masks: list of lists of 1D bool arrays block_masks [a] [qind] is a boolen mask which indices to keep in block qindex of axes [a].
permute (self, perm, axis)
Apply a permutation in the indices of an axis.
Similar as np.take with a 1D array. Roughly equivalent to res [:, ...] = self[perm, ...] for the corresponding axis. Note: This function is quite slow, and usually not needed!

Parameters

perm [array_like 1D int] The permutation which should be applied to the leg given by axis.
axis [str I int] A leg label or index specifying on which leg to take the permutation.

Returns

res [Array] A copy of self with leg axis permuted, such that res[i, ...] = self[perm[i], ...] for i along axis.

See also:

sort_legcharge can also be used to perform a general permutation. Preferable, since it is faster for permutations which don't mix charge blocks.
itranspose (self, axes=None)
Transpose axes like np.transpose; in place.

Parameters

axes: iterable (intlstring), len "rank" I None The new order of the axes. By default (None), reverse axes.
transpose (self, axes=None)
Like itranspose (), but on a deep copy.
iswapaxes (self, axis1, axis2)
Similar as np. swapaxes; in place.
iscale_axis (self, s, axis=-1)
Scale with varying values along an axis; in place.
Rescale to new_self[i1, ..., i_axis, ...] = s[i_axis] * self[i1, ..., i_axis, ...].

Parameters

\mathbf{s} [1D array, len=self.shape[axis]] The vector with which the axis should be scaled.
axis [strlint] The leg label or index for the axis which should be scaled.

See also:

iproject can be used to discard indices for which s is zero.

```
scale_axis(self, s, axis=-1)
```

Same as iscale_axis (), but return a (deep) copy.
iunary_blockwise (self, func, *args, **kwargs)
Roughly self $=\mathrm{f}(\mathrm{self})$, block-wise; in place.
Applies an unary function func to the non-zero blocks in self._data.

Note: Assumes implicitly that func (np.zeros (...), *args, **kwargs) gives 0, since we don't let func act on zero blocks!

Parameters

func [function] A function acting on flat arrays, returning flat arrays. It is called like new_block = func (block, *args, **kwargs).
*args : Additional arguments given to function after the block.
**kwargs : Keyword arguments given to the function.

Examples

```
>>> a.iunaray_blockwise(np.real) # get real part
>>> a.iunaray_blockwise(np.conj) # same data as a.iconj(), but doesn't,
->charge conjugate.
```

unary_blockwise (self, func, *args, **kwargs)
Roughly return func (self), block-wise. Copies.
Same as iunary_blockwise (), but makes a shallow copy first.
iconj (self, complex_conj=True)
Wraper around self.conj() with inplace=True.
conj (self, complex_conj=True, inplace=False)
Conjugate: complex conjugate data, conjugate charge data.
Conjugate all legs, set negative qtotal.
Labeling: takes 'a' -> 'a*', 'a*'-> 'a' and ' $\left(a,\left(b^{*}, c\right)\right)^{\prime}->^{\prime}\left(a^{*},\left(b, c^{*}\right)\right)^{\prime}$

Parameters

complex_conj [bool] Whether the data should be complex conjugated.
inplace [bool] Whether to apply changes to self, or to return a deep copy.

```
complex_conj(self)
```

Return copy which is complex conjugated without conjugating the charge data.
norm (self, ord=None, convert_to_float=True)
Norm of flattened data.
See norm () for details.
ibinary_blockwise (self, func, other, *args, **kwargs)
Roughly self $=$ func (self, other), block-wise; in place.
Applies a binary function 'block-wise' to the non-zero blocks of self._data and other._data, storing result in place. Assumes that other is an Array as well, with the same shape and compatible legs. If leg labels of other and self are same up to permutations, other gets transposed accordingly before the action.

Note: Assumes implicitly that func(np.zeros(...), np.zeros(...), *args, **kwargs) gives 0 , since we don't let func act on zero blocks!

Parameters

func [function] Binary function, called as new_block = func(block_self, block_other, *args, **kwargs) for blocks (=Numpy arrays) of equal shape.
other [Array] Other Array from which to the blocks.
*args, **kwargs: Extra (keyword) arguments given to func.

Examples

```
>>> a.ibinary_blockwise(np.add, b) # equivalent to ``a += b``, if ``b`` is,
->an `Array`.
>>> a.ibinary_blockwise(np.max, b) # overwrites ``a`` to ``a = max(a, b)`
```

binary_blockwise (self, func, other, *args, **kwargs)
Roughly return func (self, other), block-wise. Copies.
Same as ibinary_blockwise (), but makes a shallow copy first.
matvec (self, other)
This function is used by the Lanczos algorithm needed for DMRG.
It is supposed to calculate the matrix - vector - product for a rank-2 matrix self and a rank-1 vector other.
iadd_prefactor_other (self, prefactor, other)
self += prefactor * other for scalar prefactor and Array other.
Note that we allow the type of self to change if necessary. Moreover, if self and other have the same labels in different order, other gets transposed before the action.
iscale_prefactor (self, prefactor)
self $*=$ prefactor for scalar prefactor.
Note that we allow the type of self to change if necessary.

Functions

concatenate(arrays[, axis, copy])	Stack arrays along a given axis, similar as np.concatenate.
detect_grid_outer_legcharge(grid, grid_legs)	Derive a LegCharge for a grid used for grid_outer ().
detect_legcharge(flat_array, chargeinfo, ...)	Calculate a missing LegCharge by looking for nonzero entries of a flat array.
detect_qtotal(flat_array, legcharges[, cutoff])	Returns the total charge (w.r.t legs) of first non-zero sec- tor found in flat_array.
diag(s, leg[, dtype])	Returns a square, diagonal matrix of entries s.
eig(a[, sort])	Calculate eigenvalues and eigenvectors for a non- hermitian matrix.
eigh(a[, UPLO, sort])	Calculate eigenvalues and eigenvectors for a hermitian matrix.
eigvals(a[, sort])	Calculate eigenvalues for a hermitian matrix.
eigvalsh(a[, UPLO, sort])	Calculate eigenvalues for a hermitian matrix.
expm(a)	Use scipy.linalg.expm to calculate the matrix exponen- tial of a square matrix.
eye_like(a[, axis])	Return an identity matrix contractible with the leg axis of the Array a.
grid_concat(grid, axes[, copy])	Given an np.array of npc.Arrays, performs a multi- dimensional concatentation along 'axes'.
grid_outer(grid, grid_legs[, qtotal])	Given an np.array of npc.Arrays, return the correspond- ing higher-dimensional Array.
inner(a, b[, axes, do_conj])	Contract all legs in a and b, return scalar.
norm(a[, ord, convert_to_float]	Norm of flattened data.

Table 48 - continued from previous page

outer (a, b)	Forms the outer tensor product, equivalent to tensordot (a, b, axes=0).
pinv(a[, cutoff])	Compute the (Moore-Penrose) pseudo-inverse of a matrix.
qr(a[, mode, inner_labels, cutoff])	Q-R decomposition of a matrix.
	Sparse eigenvalue decomposition w, v of square a in a given charge sector.
Svd(a[, full_matrices, compute_uv, cutoff, ...])	Singualar value decomposition of an Array a.
tensordot(a, b[, axes])	Similar as np.tensordot but for Array.
to_iterable_arrays(array_list)	Similar as to_iterable (), but also enclose npc Arrays in a list.
trace(a[, leg1, leg2])	Trace of a, summing over leg1 and leg2.
zeros(legcharges[, dtype, qtotal])	Create a npc array full of zeros (with no _data).

concatenate

- full name: tenpy.linalg.np_conserved.concatenate
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.concatenate (arrays, axis=0, copy=True)
Stack arrays along a given axis, similar as np.concatenate.
Stacks the qind of the array, without sorting/blocking. Labels are inherited from the first array only.

Parameters

arrays [iterable of Array] The arrays to be stacked. They must have the same shape and charge data except on the specified axis.
axis [int I str] Leg index or label of the first array. Defines the axis along which the arrays are stacked.
copy [bool] Whether to copy the data blocks.

Returns

stacked [Array] Concatenation of the given arrays along the specified axis.
See also:
Array.sort_legcharge can be used to block by charges along the axis.

```
detect_grid_outer_legcharge
```

- full name: tenpy.linalg.np_conserved.detect_grid_outer_legcharge
- parent module: tenpy.Iinalg.np_conserved
- type: function

```
tenpy.linalg.np_conserved.detect_grid_outer_legcharge(grid, grid_legs, qtotal=None,
    qconj=1, bunch=False)
```

Derive a LegCharge for a grid used for grid_outer ().
Note: The resulting LegCharge is not bunched.

Parameters

grid [array_like of \{Array INone\}] The grid as it will be given to grid_outer ().
grid_legs [list of \{LegCharge I None\}] One LegCharge for each dimension of the grid, except for one entry which is None. This missing entry is to be calculated.
qtotal [charge] The desired total charge of the array. Defaults to 0 .

Returns

new_grid_legs [list of LegCharge] A copy of the given grid_legs with the None replaced by a compatible LegCharge. The new LegCharge is neither bunched nor sorted!

See also:

detect_legcharge similar functionality for a flat numpy array instead of a grid.

detect_legcharge

- full name: tenpy.linalg.np_conserved.detect_legcharge
- parent module: tenpy. Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.detect_legcharge (flat_array, chargeinfo, legcharges, qtotal=None, qconj=1, cutoff=None)
Calculate a missing LegCharge by looking for nonzero entries of a flat array.

Parameters

flat_array [ndarray] A flat array, in which we look for non-zero entries.
chargeinfo [ChargeInfo] The nature of the charge.
legcharges [list of LegCharge] One LegCharge for each dimension of flat_array, except for one entry which is None. This missing entry is to be calculated.
qconj $[\{+1,-1\}]$ qconj for the new calculated LegCharge.
qtotal [charges] Desired total charge of the array. Defaults to zeros.
cutoff [float] Blocks with np.max (np.abs (block)) > cutoff are considered as zero. Defaults to QCUTOFF.

Returns

new_legcharges [list of LegCharge] A copy of the given legcharges with the None replaced by a compatible LegCharge. The new legcharge is 'bunched', but not sorted!

See also:

detect_grid_outer_legcharge similar functionality if the flat array is given by a 'grid'.
detect_qtotal detects the total charge, if all legs are known.

detect_qtotal

- full name: tenpy.linalg.np_conserved.detect_qtotal
- parent module: tenpy. Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.detect_qtotal (flat_array, legcharges, cutoff=None)
Returns the total charge (w.r.t legs) of first non-zero sector found in flat_array.

Parameters

flat_array [array] The flat numpy array from which you want to detect the charges.
legcharges [list of LegCharge] For each leg the LegCharge.
cutoff [float] Blocks with np.max (np.abs (block)) > cutoff are considered as zero. Defaults to QCUTOFF.

Returns

qtotal [charge] The total charge fo the first non-zero (i.e. > cutoff) charge block.

See also:

detect_legcharge detects the charges of one missing LegCharge if qtotal is known.
detect_grid_outer_legcharge similar functionality if the flat array is given by a 'grid'.
diag

- full name: tenpy.linalg.np_conserved.diag
- parent module: tenpy. Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.diag (s, leg, dtype=None)
Returns a square, diagonal matrix of entries s.
The resulting matrix has legs (leg, leg.conj()) and charge 0 .

Parameters

s [scalar I 1D array] The entries to put on the diagonal. If scalar, all diagonal entries are the same.
leg [LegCharge] The first leg of the resulting matrix.
dtype [None I type] The data type to be used for the result. By default, use dtype of s.

Returns

diagonal [Array] A square matrix with diagonal entries s.

See also:

Array.scale_axis similar as tensordot (diag (s), ...), but faster.
eig

- full name: tenpy.linalg.np_conserved.eig
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.eig (a, sort=None)
Calculate eigenvalues and eigenvectors for a non-hermitian matrix.

$$
\mathrm{W}, \mathrm{~V}=\operatorname{eig}(\mathrm{a}) \text { yields } a V=V \operatorname{diag}(w) .
$$

Parameters

a [Array] The hermitian square matrix to be diagonalized.
sort [$\{\mathrm{m}>$ ', ' $m<$ ', '>’, '<', None\}] How the eigenvalues should are sorted within each charge block. Defaults to None, which is same as ' $<$ '. See argsort () for details.

Returns

W [1D ndarray] The eigenvalues, sorted within the same charge blocks according to sort.
\mathbf{V} [Array] Unitary matrix; $\mathrm{V}[:, \quad i]$ is normalized eigenvector with eigenvalue $\mathrm{W}[\mathrm{i}]$. The first label is inherited from A, the second label is 'eig'.

Notes

Requires the legs to be contractible. If a is not blocked by charge, a blocked copy is made via a permutation P , :math:` a \(=\mathrm{Pa} \mathrm{P}=\mathrm{V}^{\prime} \mathrm{W}^{\prime}\left(\mathrm{V}^{\prime}\right)^{\wedge}\{\text { dagger }\}^{`}\). The eigenvectors V are then obtained by the reverse permutation, $V=P^{-1} V^{\prime}$ such that $A=V W V^{\wedge}\{$ dageer $\}$.
eigh

- full name: tenpy.linalg.np_conserved.eigh
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.eigh ($a, U P L O=$ 'L', sort=None)
Calculate eigenvalues and eigenvectors for a hermitian matrix.
$\mathrm{W}, \mathrm{V}=\operatorname{eigh}(\mathrm{a})$ yields $a=V \operatorname{diag}(w) V^{\dagger}$. Assumes that a is hermitian, $\mathrm{a} \cdot \operatorname{conj}() \cdot$ transpose() $==$ a.

Parameters

a [Array] The hermitian square matrix to be diagonalized.
UPLO [\{ 'L', 'U'\}] Whether to take the lower ('L', default) or upper ('U') triangular part of a.
sort [\{'m>', 'm<', ‘>’, ‘<', None\}] How the eigenvalues should are sorted within each charge block. Defaults to None, which is same as ' $<$ '. See argsort () for details.

Returns

W [1D ndarray] The eigenvalues, sorted within the same charge blocks according to sort.
\mathbf{V} [Array] Unitary matrix; $\mathrm{V}[:, \quad \mathrm{i}]$ is normalized eigenvector with eigenvalue $\mathrm{w}[\mathrm{i}]$. The first label is inherited from A, the second label is 'eig'.

Notes

Requires the legs to be contractible. If a is not blocked by charge, a blocked copy is made via a permutation P , :math: $\mathrm{a}^{\prime}=\mathrm{PaP}=\mathrm{V}^{\prime} \mathrm{W}^{\prime}\left(\mathrm{V}^{\prime}\right)^{\wedge}\{\text { dagger }\}^{`}$. The eigenvectors V are then obtained by the reverse permutation, $V=P^{-1} V^{\prime}$ such that $A=V W V^{\wedge}\{$ dagerer $\}$.
eigvals

- full name: tenpy.linalg.np_conserved.eigvals
- parent module: tenpy. linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.eigvals (a, sort=None)
Calculate eigenvalues for a hermitian matrix.

Parameters

a [Array] The hermitian square matrix to be diagonalized.
sort [\{'m>’, 'm<', '>’, ‘<', None\}] How the eigenvalues should are sorted within each charge block. Defaults to None, which is same as ' $<$ '. See argsort () for details.

Returns

W [1D ndarray] The eigenvalues, sorted within the same charge blocks according to sort.

Notes

The eigenvalues are sorted within blocks of the completely blocked legs.

eigvalsh

- full name: tenpy.linalg.np_conserved.eigvalsh
- parent module: tenpy.Iinalg.np_conserved
- type: function

```
tenpy.linalg.np_conserved.eigvalsh(a,UPLO='L', sort=None)
```

Calculate eigenvalues for a hermitian matrix.
Assumes that a is hermitian, a.conj().transpose() == a.

Parameters

a [Array] The hermitian square matrix to be diagonalized.
UPLO [\{ 'L', 'U'\}] Whether to take the lower ('L', default) or upper ('U') triangular part of a.
sort [\{'m>', 'm<', '>', '<', None\}] How the eigenvalues should are sorted within each charge block. Defaults to None, which is same as ' $<$ '. See argsort () for details.

Returns

W [1D ndarray] The eigenvalues, sorted within the same charge blocks according to sort.

Notes

The eigenvalues are sorted within blocks of the completely blocked legs.

expm

- full name: tenpy.linalg.np_conserved.expm
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.expm (a)
Use scipy.linalg.expm to calculate the matrix exponential of a square matrix.

Parameters

> a [Array] A square matrix to be exponentiated.

Returns

exp_a [Array] The matrix exponential expm (a), calculated using scipy.linalg.expm. Same legs/labels as a.
eye_like

- full name: tenpy.linalg.np_conserved.eye_like
- parent module: tenpy. linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.eye_like (a, axis=0)
Return an identity matrix contractible with the leg axis of the Array a.
grid_concat
- full name: tenpy.linalg.np_conserved.grid_concat
- parent module: tenpy. linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.grid_concat (grid, axes, copy=True)
Given an np.array of npc.Arrays, performs a multi-dimensional concatentation along 'axes'.
Similar to numpy.block (), but only for uniform blocking.
Stacks the qind of the array, without sorting/blocking.

Parameters

grid [array_like of Array] The grid of arrays.
axes [list of int] The axes along which to concatenate the arrays, same len as the dimension of the grid. Concatenate arrays of the i 'th axis of the grid along the axis "axes[i]"
copy [bool] Whether the _data blocks are copied.

See also:

Array.sort_legcharge can be used to block by charges.

Examples

Assume we have rank 2 Arrays A, B, C, D of shapes (1, 2), (1, 4), (3, 2), (3, 4) sharing the legs of equal sizes. Then the following grid will result in a $(1+3,2+4)$ shaped array:

```
>>> g = grid_concat([[A, B], [C, D]], axes=[0, 1])
>>> g.shape
(4, 6)
```

If A, B, C, D were rank 4 arrays, with the first and last leg as before, and sharing common legs 1 and 2 of dimensions 1,2 , then you would get a rank- 4 array:

```
>>> g = grid_concat([[A, B], [C, D]], axes=[0, 3])
>>> g.shape
(4, 1, 2, 6)
```


grid_outer

- full name: tenpy.linalg.np_conserved.grid_outer
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.grid_outer (grid, grid_legs, qtotal=None)
Given an np.array of npc.Arrays, return the corresponding higher-dimensional Array.

Parameters

grid [array_like of $\{$ Array 1 None $\}$] The grid gives the first part of the axes of the resulting array. Entries have to have all the same shape and charge-data, giving the remaining axes. None entries in the grid are interpreted as zeros.
grid_legs [list of LegCharge] One LegCharge for each dimension of the grid along the grid.
qtotal [charge] The total charge of the Array. By default (None), derive it out from a non-trivial entry of the grid.

Returns

res [Array] An Array with shape grid.shape + nontrivial_grid_entry. shape. Constructed such that res[idx] == grid[idx] for any index idx of the grid the grid entry is not trivial (None).

See also:

detect_grid_outer_legcharge can calculate one missing LegCharge of the grid.

Examples

A typical use-case for this function is the generation of an MPO. Say you have npc.Arrays Splus, Sminus, Sz, each with legs [phys.conj(), phys]. Further, you have to define appropriate LegCharges $l _l e f t ~ a n d ~$ l_right. Then one 'matrix' of the MPO for a nearest neighbour Heisenberg Hamiltonian could look like:

```
>>> Id = np.eye_like(Sz)
>>> W_mpo = grid_outer([[Id, Splus, Sminus, Sz, None],
... [None, None, None, None, J*Sminus],
... [None, None, None, None, J*Splus],
... [None, None, None, None, J*Sz],
... [None, None, None, None, Id]],
... leg_charges=[l_left, l_right])
>>> W_mpo.shape
(5, 5, 2, 2)
```

inner

- full name: tenpy.linalg.np_conserved.inner
- parent module: tenpy.linalg.np_conserved
- type: function

```
tenpy.linalg.np_conserved.inner(a,b,axes=None, do_conj=False)
```

Contract all legs in a and b, return scalar.

Parameters

\mathbf{a}, \mathbf{b} [class:Array] The arrays for which to calculate the product. Must have same rank, and compatible LegCharges.
axes [(axes_a, axes_b) | 'range', 'labels'] axes_a and axes_b specifiy the legs of a and b, respectively, which should be contracted. Legs can be specified with leg labels or indices. We contract leg axes_a[i] of a with leg axes_b[i] of b. The default axes='range' is equivalent to (range (rank), range (rank)). axes='labels' is equivalent to either (a.get_leg_labels(), a.get_leg_labels()) for do_conj=True, or to (a.get_leg_labels(), conj_labels(a.get_leg_labels())) for do_conj=False. In other words, axes='labels' requires a and b to have the same/conjugated labels up to a possible transposition, which is then reverted.
do_conj [bool] If False (Default), ignore it. if True, conjugate a before, i.e., return inner(a.conj(), b, axes)

Returns

inner_product [dtype] A scalar (of common dtype of a and b) giving the full contraction of a and b.

norm

- full name: tenpy.linalg.np_conserved.norm
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.norm(a, ord=None, convert_to_float=True)
Norm of flattened data.
Equivalent to np.linalg.norm(a.to_ndarray().flatten(), ord).
In contrast to numpy, we don't distinguish between matrices and vectors, but simply calculate the norm for the flat (block) data. The usual ord-norm is defined as $\left(\sum_{i}\left|a_{i}\right|^{\text {ord }}\right)^{1 / \text { ord }}$.

Ord	norm
None/'fro'	Frobenius norm (same as 2-norm)
np.inf	$\max (\operatorname{abs}(\mathrm{x}))$
-np.inf	$\min (\operatorname{abs}(\mathrm{x}))$
0	sum $(\mathrm{a} \quad!=0) \quad==$ np.count_nonzero (x)
other	ususal ord -norm

Parameters

a [Array I np.ndarray] The array of which the norm should be calculated.
ord : The order of the norm. See table above.
convert_to_float : Convert integer to float before calculating the norm, avoiding int overflow.

Returns

norm [float] The norm over the flat data of the array.
outer

- full name: tenpy.linalg.np_conserved.outer
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.outer (a, b)
Forms the outer tensor product, equivalent to tensordot (a, b, axes=0).
Labels are inherited from a and b. In case of a collision (same label in both a and b), they are both dropped.

Parameters

\mathbf{a}, \mathbf{b} [Array] The arrays for which to form the product.

Returns

\mathbf{c} [Array] Array of rank a.rank + b.rank such that (for $\mathrm{Ra}=\mathrm{a} . \mathrm{rank} ; \mathrm{Rb}=\mathrm{b}$. rank):

$$
\begin{array}{|l}
\hline c\left[i _1, \ldots, ~ i _R a, ~ j _1, ~ . . . ~ j _R\right] ~=~ a\left[i _1, ~ . . ., ~ i _R a\right] ~ * ~ b\left[j _1, ~ . ~ . ~ ., ~ b ~\right. \\
\left.\rightarrow j _r a n k _b\right] ~
\end{array}
$$

pinv

- full name: tenpy.linalg.np_conserved.pinv
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.pinv (a, cutoff=le-15)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Equivalent to the following procedure: Perform a SVD, U, S, VH $=\operatorname{svd}(a$, cutoff=cutoff) with a cutoff >0, calculate $\mathrm{P}=\mathrm{U} * \operatorname{diag}(1 / \mathrm{S}) * \mathrm{VH}$ (with * denoting tensordot) and return P.conj. transpose().

Parameters

a [(M, N) Array] Matrix to be pseudo-inverted.
cuttof [float] Cutoff for small singular values, as given to svd (). (Note: different convetion than numpy.)

Returns

B $[(\mathrm{N}, \mathrm{M})$ Array $]$ The pseudo-inverse of a.
qr

- full name: tenpy.linalg.np_conserved.qr
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.qr (a, mode='reduced', inner_labels=[None, None], cutoff=None) Q-R decomposition of a matrix.
Decomposition such that $\mathrm{A}==$ npc.tensordot $(q, r$, axes=1) up to numerical rounding errors.

Parameters

a [Array] A square matrix to be exponentiated, shape (M, N) .
mode ['reduced', 'complete'] 'reduced': return q and r with shapes (M, K) and (K, N), where $\mathrm{K}=\min (\mathrm{M}, \mathrm{N})$ 'complete': return q with shape (M,M).
inner_labels: [\{striNone\}, \{str|None\}] The first label is used for Q.legs [1] , the second for R.legs[0].
cutoff [None or float] If not None, discard linearly dependent vectors to given precision, which might reduce K of the 'reduced' mode even further.

Returns

q [Array] If mode is 'complete', a unitary matrix. For mode 'reduced' such thatOtherwise such that $q_{j, i}^{*} q_{j, k}=\delta_{i, k}$
\mathbf{r} [Array] Upper triangular matrix if both legs of A are sorted by charges; Otherwise a simple transposition (performed when sorting by charges) brings it to upper triangular form.

speigs

- full name: tenpy.linalg.np_conserved.speigs
- parent module: tenpy. Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.speigs (a, charge_sector, k, *args, **kwargs)
Sparse eigenvalue decomposition w, v of square a in a given charge sector.
Finds k right eigenvectors (chosen by kwargs['which']) in a given charge sector, tensordot(A, $\mathrm{V}[i], ~ a x e s=1)=W[i]$ * $\mathrm{V}[i]$.

Parameters

a [Array] A square array with contractible legs and vanishing total charge.
charge_sector [charges] ndim charges to select the block.
\mathbf{k} [int] How many eigenvalues/vectors should be calculated. If the block of charge_sector is smaller than k, k may be reduced accordingly.
*args, **kwargs : Additional arguments given to scipy.sparse.linalg.eigs.

Returns

W [ndarray] k (or less) eigenvalues
\mathbf{V} [list of Array] k (or less) right eigenvectors of A with total charge charge_sector. Note that when interpreted as a matrix, this is the transpose of what np. eigs normally gives.
svd

- full name: tenpy.linalg.np_conserved.svd
- parent module: tenpy. Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.svd $(a, \quad$ full_matrices=False, compute_uv=True, cutoff=None, qtotal_LR=[None, None], inner_labels=[None, None], inner_qconj=1)
Singualar value decomposition of an Array a.
Factorizes $\mathrm{U}, \mathrm{S}, \mathrm{VH}=\operatorname{svd}(\mathrm{a})$, such that a $=\mathrm{U} * \operatorname{diag}(\mathrm{~S}) * \mathrm{VH}$ (where * stands for a tensordot() and diag creates an correctly shaped Array with S on the diagonal). For a non-zero cutoff this holds only approximately.
There is a gauge freedom regarding the charges, see also Array.gauge_total_charge (). We ensure contractibility by setting U .legs[1] $=\mathrm{VH}$. legs [0].conj(). Further, we gauge the LegCharge such that U and V have the desired qtotal_LR.

Parameters

a [Array, shape (M, N)] The matrix to be decomposed.
full_matrices [bool] If False (default), U and V have shapes (M, K) and (K, N), where $\mathrm{K}=1 \mathrm{en}(\mathrm{S})$. If True, U and V are full square unitary matrices with shapes (M, M) and (N, N). Note that the arrays are not directly contractible in that case; diag (S) would need to be a rectangluar (M, N) matrix.
compute_uv [bool] Whether to compute and return U and V.
cutoff [None I float] Keep only singular values which are (strictly) greater than cutoff. (Then the factorization holds only approximately). If None (default), ignored.
qtotal_LR [[\{chargesINone\}, \{chargesINone\}]] The desired qtotal for U and $V H$, respectively. [None, None] (Default) is equivalent to [None, a.qtotal]. A single None entry is replaced the unique charge satisfying the requirement U.qtotal +VH. qtotal $=$ a.qtotal (modulo qmod).
inner_labels_LR: [\{striNone\}, \{str|None\}] The first label corresponds to U.legs [1], the second to VH.legs [0].
inner_qconj $[\{+1,-1\}]$ Direction of the charges for the new leg. Default +1 . The new LegCharge is constructed such that VH. legs [0].qconj $=$ qconj.

Returns

\mathbf{U} [Array] Matrix with left singular vectors as columns. Shape (M, M) or (M, K) depending on full_matrices.
\mathbf{S} [1D ndarray] The singluar values of the array. If no cutoff is given, it has lenght min (M , N) .

VH [Array] Matrix with right singular vectors as rows. Shape (N, N) or (K, N) depending on full_matrices.

tensordot

- full name: tenpy.linalg.np_conserved.tensordot
- parent module: tenpy.linalg.np_conserved
- type: function
tenpy.linalg.np_conserved.tensordot (a, b, axes $=2$)
Similar as np.tensordot but for Array.
Builds the tensor product of a and b and sums over the specified axes. Does not require complete blocking of the charges.

Labels are inherited from a and b. In case of a collision (= the same label would be inherited from a and b after the contraction), both labels are dropped.

Detailed implementation notes are available in the doc-string of _tensordot_worker().

Parameters

\mathbf{a}, \mathbf{b} [Array] The first and second npc Array for which axes are to be contracted.
axes [(axes_a, axes_b) I int] A single integer is equivalent to (range (-axes, 0), range (axes)). Alternatively, axes_a and axes_ b specifiy the legs of a and b, respectively, which should be contracted. Legs can be specified with leg labels or indices. Contract leg axes_a [i] of a with leg axes_b [i] of b.

Returns

a_dot_b [Array] The tensorproduct of a and b, summed over the specified axes. Returns a scalar in case of a full contraction.

to_iterable_arrays

- full name: tenpy.linalg.np_conserved.to_iterable_arrays
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.to_iterable_arrays (array_list)
Similar as to_iterable (), but also enclose npc Arrays in a list.
trace
- full name: tenpy.linalg.np_conserved.trace
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.trace ($a, \operatorname{leg} 1=0, \operatorname{leg} 2=1$)
Trace of a, summing over leg 1 and leg2.
Requires that the contracted legs are contractible (i.e. have opposite charges). Labels are inherited from a.

Parameters

leg1, leg2: strlint The leg label or index for the two legs which should be contracted (i.e. summed over).

Returns

traced [Arrayla.dtype] A scalar if a.rank $==2$, else an Array of rank a.rank 2. Equivalent to sum([a.take_slice([i, i], [leg1, leg2]) for i in range(a.shape[leg1])]).
zeros

- full name: tenpy.linalg.np_conserved.zeros
- parent module: tenpy.Iinalg.np_conserved
- type: function
tenpy.linalg.np_conserved.zeros (legcharges, dtype=<class 'numpy.float64'>, qtotal=None)
Create a npc array full of zeros (with no _data).
This is just a wrapper around Array (. . .), detailed documentation can be found in the class doc-string of Array.

Module description

A module to handle charge conservation in tensor networks.
A detailed introduction to this module (including notations) can be found in Introduction to np_conserved.
This module np_conserved implements a class Array designed to make use of charge conservation in tensor networks. The idea is that the Array class is used in a fashion very similar to the numpy. ndarray, e.g you can call the functions tensordot () or svd () (of this module) on them. The structure of the algorithms (as DMRG) is thus the same as with basic numpy ndarrays.

Internally, an Array saves charge meta data to keep track of blocks which are nonzero. All possible operations (e.g. tensordot, svd, ...) on such arrays preserve the total charge structure. In addition, these operations make use of the charges to figure out which of the blocks it has to use/combine - this is the basis for the speed-up.

Overview

Classes

Array(legcharges[, dtype, qtotal])	A multidimensional array (=tensor) for using charge conservation.
ChargeInfo([mod, names])	Meta-data about the charge of a tensor.
LegCharge(chargeinfo, slices, charges[, qconj])	Save the charge data associated to a leg of a tensor.
LegPipe(legs[, qconj, sort, bunch])	A LegPipe combines multiple legs of a tensor to one.

Array creation

Array.from_ndarray_trivial(data_flat[, dtype])	convert a flat numpy ndarray to an Array with trivial charge conservation.
Array.from_ndarray(data_flat, legcharges[,..])	convert a flat (numpy) ndarray to an Array.
Array.from_func(func, legcharges[, dtype, ...])	Create an Array from a numpy func.
Array.from_func_square(func, leg[, dtype,,	Create an Array from a (numpy) function.
$\ldots \ldots$)	Create a npc array full of zeros (with no _data).
zeros(legcharges[, dtype, qtotal])	Return an identity matrix contractible with the leg axis of the Array a.
eye_like(a[, axis])	Returns a square, diagonal matrix of entries s.
diag(s, leg[, dtype])	

Concatenation

concatenate(arrays[, axis, copy])	Stack arrays along a given axis, similar as np.concatenate.
grid_concat(grid, axes[, copy])	Given an np.array of npc.Arrays, performs a multi- dimensional concatentation along 'axes'.
grid_outer(grid, grid_legs[, qtotal])	Given an np.array of npc.Arrays, return the correspond- ing higher-dimensional Array.

Detecting charges of flat arrays

detect_qtotal(flat_array, legcharges[, cutoff])	Returns the total charge (w.r.t legs) of first non-zero sec- tor found in lat_array.
detect_legcharge(flat_array, chargeinfo,...)	Calculate a missing LegCharge by looking for nonzero entries of a flat array.
detect_grid_outer_legcharge(grid, grid_legs)	Derive a LegCharge for a grid used for grid_outer().

Contraction of some legs

tensordot $(\mathrm{a}, \mathrm{b}[$, axes $])$	Similar as np.tensordot but for Array.
outer (a, b)	Forms the outer tensor product, equivalent to tensordot $(\mathrm{a}, \mathrm{b}$, axes $=0)$.
inner $(\mathrm{a}, \mathrm{b}[$, axes, do_conj] $)$	Contract all legs in a and b, return scalar.
trace $(\mathrm{a}[, \operatorname{leg} 1$, leg2] $)$	Trace of a, summing over leg1 and leg2.

Linear algebra

$\operatorname{svd}(\mathrm{a}[$, full_matrices, compute_uv, cutoff,...$])$	Singualar value decomposition of an Array a.
$\operatorname{pin} v(\mathrm{a}[$, cutoff $])$	Compute the (Moore-Penrose) pseudo-inverse of a ma- trix.
norm(a[, ord, convert_to_float $])$	Norm of flattened data.
$\operatorname{qr}(\mathrm{a}[$, mode, inner_labels, cutoff $])$	Q-R decomposition of a matrix.
$\operatorname{expm}(\mathrm{a})$	Use scipy.linalg.expm to calculate the matrix exponen- tial of a square matrix.

Eigen systems

eigh(a[, UPLO, sort])	Calculate eigenvalues and eigenvectors for a hermitian matrix.
eig(a[, sort])	Calculate eigenvalues and eigenvectors for a nonhermitian matrix.
eigvalsh(a[, UPLO, sort])	Calculate eigenvalues for a hermitian matrix.
eigvals(a[, sort])	Calculate eigenvalues for a hermitian matrix.
speigs(a, charge_sector, k, *args, * $\$ * kwargs) & Sparse eigenvalue decomposition $\mathrm{w}, \quad \mathrm{v}$ of square a in a given charge sector.	

charges

- full name: tenpy.linalg.charges
- parent module: tenpy. linalg
- type: module

Classes

ChargeInfo([mod, names])	Meta-data about the charge of a tensor.
LegCharge(chargeinfo, slices, charges[, qconj])	Save the charge data associated to a leg of a tensor.
LegPipe(legs[, qconj, sort, bunch])	A LegPipe combines multiple legs of a tensor to one.

Chargelnfo

- full name: tenpy.linalg.charges.ChargeInfo
- parent module: tenpy.linalg.charges
- type: class
class tenpy.linalg.charges.ChargeInfo (mod=[], names=None)
Bases: object
Meta-data about the charge of a tensor.
Saves info about the nature of the charge of a tensor. Provides make_valid() for taking modulo m.
(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg. np_conserved for convenience.)

Parameters

mod [iterable of QTYPE] The len gives the number of charges, qnumber. For each charge one entry m : the charge is conserved modulo m. Defaults to trivial, i.e., no charge.
names [list of str] Descriptive names for the charges. Defaults to [' '] *qnumber.

Notes

Instances of this class can (should) be shared between different LegCharge and Array's.

Attributes

qnumber [int] The number of charges.
\bmod [ndarray[QTYPE,ndim=1]] Modulo how much each of the charges is taken.
names [list of strings] A descriptive name for each of the charges. May have " entries.
_mask_mod1 [1D array bool] mask $(\bmod ==1)$, to speed up make_valid in pure python.
_mod_masked [1D array QTYPE] Equivalent to self.mod[self._maks_mod1]
_qnumber, _mod : Storage of qnumber and mod.

Methods

add(chinfos)	Create a Charge Info combining multiple charges.
change(chinfo, charge, new_qmod[, new_name])	Change the qmod of a given charge.
check_valid(self, charges)	Check, if charges has all entries as expected from self.mod.
drop(chinfo[, charge])	Remove a charge from a ChargeInfo.
make_valid(self[, charges])	Take charges modulo self.mod.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

classmethod add (chinfos)

Create a ChargeInfo combining multiple charges.

Parameters

chinfos [iterable of ChargeInfo] ChargeInfo instances to be combined into a single one (in the given order).

Returns

chinfo [ChargeInfo] ChargeInfo combining all the given charges.

classmethod drop $($ chinfo, charge $=$ None $)$

Remove a charge from a ChargeInfo.

Parameters

chinfo [ChargeInfo] The ChargeInfo from where to drop/remove a charge.
charge [int I str] Number or name of the charge (within chinfo) which is to be dropped. None means dropping all charges.

Returns

chinfo [ChargeInfo] ChargeInfo where the specified charge is dropped.
classmethod change (chinfo, charge, new_qmod, new_name=")
Change the qmod of a given charge.

Parameters

chinfo [ChargeInfo] The ChargeInfo for which qmod of charge should be changed.
new_qmod [int] The new qmod to be set.
new_name [str] The new name of the charge.

Returns

chinfo [ChargeInfo] ChargeInfo where qmod of the specified charge was changed.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
property qnumber
The number of charges.
property mod
Modulo how much each of the charges is taken.
1 for a $U(1)$ charge, i.e., $\bmod 1->\bmod$ infinity.
make_valid (self, charges=None)
Take charges modulo self.mod.

Parameters

charges [array_like or None] 1D or 2D array of charges, last dimension self.qnumber None defaults to trivial charges np.zeros (qnumber, dtype=QTYPE).

Returns

charges : A copy of charges taken modulo mod, but with $\mathrm{x} \% 1:=\mathrm{x}$
check_valid (self, charges)
Check, if charges has all entries as expected from self.mod.

Parameters

charges [2D ndarray QTYPE_t] Charge values to be checked.

Returns

res [bool] True, if all $0<=$ charges $<=$ self. $\bmod ($ wherever self.mod != 1$)$

LegCharge

- full name: tenpy.linalg.charges.LegCharge
- parent module: tenpy.linalg.charges
- type: class
class tenpy.linalg.charges.LegCharge (chargeinfo, slices, charges, qconj=1) Bases: ob ject

Save the charge data associated to a leg of a tensor.
This class is more or less a wrapper around a 2D numpy array charges and a 1D array slices. See Introduction to np_conserved for more details.
(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg. np_conserved for convenience.)

Parameters

chargeinfo [ChargeInfo] The nature of the charge.
slices: 1D array_like, len(block_number+1) A block with 'qindex' qi correspondes to the leg indices in slice(slices[qi], slices[qi+1]).
charges [2D array_like, shape(block_number, chargeinfo.qnumber)] charges [qi] gives the charges for a block with 'qindex' qi.
qconj $[\{+1,-1\}]$ A flag telling whether the charge points inwards (+1, default) or outwards (-1).

Notes

Instances of this class can be shared between different npc.Array. Thus, functions changing self.slices or self.charges must always make copies. Further they must set sorted and bunched to False (if they might not preserve them).

Attributes

ind_len: int The number of indices for this leg.
block_number: The number of blocks, i.e., a 'qindex' for this leg is in range (block_number).
chinfo [Charge Info instance] The nature of the charge. Can be shared between LegCharges.
slices [ndarray[np.intp_t,ndim=1] (block_number+1)] A block with 'qindex' qi correspondes to the leg indices in slice(self.slices[qi], self.slices[qi+1]). See get_slice().
charges [ndarray[QTYPE_t,ndim=1] (block_number, chinfo.qnumber)] charges [qi] gives the charges for a block with 'qindex' qi. Note: the sign might be changed by qconj. See also get_charge().
qconj $[\{-1,1\}]$ A flag telling whether the charge points inwards (+1) or outwards (-1). Whenever charges are added, they should be multiplied with their qconj value.
sorted [bool] Whether the charges are guaranteed to be sorted.
bunched [bool] Whether the charges are guaranteed to be bunched.

Methods

bunch(self)	Return a copy with bunched self.charges: form blocks for contiguous equal charges.
charge_sectors(self)	Return unique rows of self.charges.
conj(self)	Return a (shallow) copy with opposite self. qconj.
copy(self)	Return a (shallow) copy of self.
extend(self, extra)	Return a new LegCharge, which extends self with futher charges.
flip_charges_qconj(self)	Return a copy with both negative qconj and charges.
from_add_charge(legs[, chargeinfo])	Add the (independent) charges of two or more legs to get larger qnumber.
from_change_charge(leg, charge, new_qmod[,	Remove a charge from a LegCharge.
\ldots])	Remove a charge from a LegCharge.
from_drop_charge(leg[, charge, chargeinfo])	Create a LegCharge from qdict form.
from_qdict(chargeinfo, qdict[, qconj])	Create a LegCharge from qflat form.
from_qflat(chargeinfo, qflat[, qconj])	Just a wrapper around self.__init_(), see class doc- string for parameters.
from_qind(chargeinfo, slices, charges[, qconj])	
from_trivial(ind_len[, chargeinfo, qconj])	Create trivial (qnumber=0) LegCharge for given len of indices ind_len.
get_charge(self, qindex)	Return charge self.charges [qindex] * self. qconj for a given qindex.
get_qindex(self, flat_index)	Find qindex containing a flat index.

Table 58 - continued from previous page

get_qindex_of_charges(self, charges)	Return the slice selecting the block for given charge values.
get_slice(self, qindex)	Return slice selecting the block for a given qindex.
is_blocked(self)	Returns whether self is blocked, i.e.
is_bunched(self)	Checks whether bunch() would change something.
is_sorted(self)	Returns whether self.charges is sorted lexiographically.
perm_flat_from_perm_qind(self, perm_qind)	Convert a permutation of qind (acting on self) into a flat permutation.
perm_qind_from_perm_flat(self, perm_flat)	Convert flat permutation into qind permutation.
project(self, mask)	Return copy keeping only the indices specified by mask.
sort(self[, bunch])	Return a copy of self sorted by charges (but maybe not bunched).
test_contractible(self, other)	Raises a ValueError if charges are incompatible for contraction with other.
test_equal(self, other)	Test if charges are equal including qconj.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
to_qdict(self)	Return charges in qdict form.
to_qflat(self)	Return charges in qfat form.

copy (self)
Return a (shallow) copy of self.
classmethod from_trivial (ind_len, chargeinfo=None, qconj=1)
Create trivial (qnumber=0) LegCharge for given len of indices ind_len.
classmethod from_qflat (chargeinfo, qfat, qconj=1)
Create a LegCharge from qflat form.
Does neither bunch nor sort. We recommend to sort (and bunch) afterwards, if you expect that tensors using the LegCharge have entries at all positions compatible with the charges.

Parameters

chargeinfo [ChargeInfo] The nature of the charge.
qflat [array_like (ind_len, qnumber)] qnumber charges for each index of the leg on entry.
qconj $[\{-1,1\}]$ A flag telling whether the charge points inwards (+1) or outwards (-1).

See also:

sort sorts by charges
bunch bunches contiguous blocks of the same charge.
classmethod from_qind (chargeinfo, slices, charges, qconj=1)
Just a wrapper around self.__init_(), see class doc-string for parameters.

See also:

sort sorts by charges
bunch bunches contiguous blocks of the same charge.
classmethod from_qdict (chargeinfo, qdict, qconj=1)
Create a LegCharge from qdict form.

Parameters

chargeinfo [ChargeInfo] The nature of the charge.
qdict [dict] A dictionary mapping a tuple of charges to slices.

classmethod from_add_charge (legs, chargeinfo=None)

Add the (independent) charges of two or more legs to get larger qnumber.

Parameters

legs [iterable of LegCharge] The legs for which the charges are to be combined/added.
chargeinfo [ChargeInfo] The ChargeInfo for all charges; create new if None.

Returns

combined [LegCharge] A LegCharge with the charges of both legs. Is neither sorted nor bunched!

```
classmethod from_drop_charge (leg, charge=None, chargeinfo=None)
```

Remove a charge from a LegCharge.

Parameters

leg [LegCharge] The leg from which to drop/remove a charge.
charge [int I str] Number or name of the charge (within chinfo) which is to be dropped. None means dropping all charges.
chargeinfo [ChargeInfo] The ChargeInfo with charge dropped; create new if None.

Returns

dropped [LegCharge] A LegCharge with the specified charge dropped. Is neither sorted nor bunched!
classmethod from_change_charge (leg, charge, new_qmod, new_name= ", chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

leg [LegCharge] The leg from which to drop/remove a charge.
charge [int I str] Number or name of the charge (within chinfo) for which mod is to be changed.
new_qmod [int] The new mod to be set for charge in the ChargeInfo.
new_name [str] The new name for charge.
chargeinfo [ChargeInfo] The ChargeInfo with charge changed; create new if None.

Returns

leg [LegCharge] A LegCharge with the specified charge changed. Is neither sorted nor bunched!
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
conj (self)
Return a (shallow) copy with opposite self.qconj.

Returns

conjugated [LegCharge] Shallow copy of self with flipped qconj. test_contractible () of self with conjugated will not raise an error.

flip_charges_qconj (self)

Return a copy with both negative qconj and charges.

Returns

conj_charges [LegCharge] (Shallow) copy of self with negative qconj and charges, thus representing the very same charges. test_equal () of self with conj_charges will not raise an error.

```
to_qflat (self)
```

Return charges in qflat form.
to_qdict (self)
Return charges in qdict form.
Raises ValueError, if not blocked.

is_blocked (self)

Returns whether self is blocked, i.e. qindex map 1:1 to charge values.

```
is_sorted(self)
```

Returns whether self.charges is sorted lexiographically.

```
is_bunched(self)
```

Checks whether bunch () would change something.
test_contractible (self, other)
Raises a ValueError if charges are incompatible for contraction with other.

Parameters

other [LegCharge] The LegCharge of the other leg condsidered for contraction.

Raises

ValueError If the charges are incompatible for direct contraction.

See also:

```
    test_equal self.test_contractible(other) just performs self.
```

 test_equal(other.conj()).

Notes

This function checks that two legs are ready for contraction. This is the case, if all of the following conditions are met:

- the ChargeInfo is equal
- the slices are equal
- the charges are the same up to opposite signs qcon j :

```
self.charges * self.qconj = - other.charges * other.qconj
```

In general, there could also be a change of the total charge, see Introduction to np_conserved This special case is not considered here - instead use gauge_total_charge (), if a change of the charge is desired.

If you are sure that the legs should be contractable, check whether the charges are actually valid or whether self and other are blocked or should be sorted.
test_equal (self, other)
Test if charges are equal including qconj.
Check that all of the following conditions are met:

- the ChargeInfo is equal
- the slices are equal
- the charges are the same up to the signs qcon j :

```
self.charges * self.qconj = other.charges * other.qconj
```

See also:
test_contractible self.test_equal(other) is equivalent to self. test_contractible(other.conj()).
get_slice (self, qindex)
Return slice selecting the block for a given qindex.
get_qindex (self,flat_index)
Find qindex containing a flat index.
Given a flat index, to find the corresponding entry in an Array, we need to determine the block it is saved in. For example, if slices $=[[0,3],[3,7],[7,12]]$, the flat index 5 corresponds to the second entry, qindex $=1$ (since 5 is in [3:7]), and the index within the block would be $2=5-3$.

Parameters

flat_index [int] A flat index of the leg. Negative index counts from behind.

Returns

qindex [int] The qindex, i.e. the index of the block containing flat_index.
index_within_block [int] The index of flat_index within the block given by qindex.
get_qindex_of_charges (self, charges)
Return the slice selecting the block for given charge values.
Inverse function of get_charge ().

Parameters

charges [1D array_like] Charge values for which the slice of the block is to be determined.

Returns

slice (\mathbf{i}, \mathbf{j}) [slice] Slice of the charge values for

Raises

ValueError [if the answer is not unique (because self is not blocked).]
get_charge (self, qindex)
Return charge self.charges[qindex] * self.qconj for a given qindex.
sort (self, bunch=True)
Return a copy of self sorted by charges (but maybe not bunched).
If bunch=True, the returned copy is completely blocked by charge.

Parameters

bunch [bool] Whether self.bunch is called after sorting. If True, the leg is guaranteed to be fully blocked by charge.

Returns

perm_qind [array (self.block_len,)] The permutation of the qindices (before bunching) used for the sorting. To obtain the flat permuation such that sorted_array [..., : $]=$ unsorted_array[..., perm_flat], use perm_flat = unsorted_leg. perm_flat_from_perm_qind(perm_qind)
sorted_copy [LegCharge] A shallow copy of self, with new qind sorted (and thus blocked if bunch) by charges.

See also:

bunch enlarge blocks for contiguous qind of the same charges.
numpy .take can apply perm_flat to a given axis
tenpy.tools.misc.inverse_permutation returns inverse of a permutation
bunch (self)
Return a copy with bunched self.charges: form blocks for contiguous equal charges.

Returns

idx [1D array] idx [:-1] are the indices of the old qind which are kept, idx[-1] = old_block_number.
cp [LegCharge] A new LegCharge with the same charges at given indices of the leg, but (possibly) shorter self.charges and self.slices.

See also:

sort sorts by charges, thus enforcing complete blocking in combination with bunch.
project (self, mask)
Return copy keeping only the indices specified by mask.

Parameters

mask [1D array(bool)] Whether to keep of the indices.

Returns

map_qind [1D array] Map of qindices, such that qind_new = map_qind[qind_old], and map_qind[qind_old] $=-1$ for qindices projected out.
block_masks [1D array] The bool mask for each of the remaining blocks.
projected_copy [LegCharge] Copy of self with the qind projected by mask.
extend (self, extra)
Return a new LegCharge, which extends self with futher charges.
This is needed to formally increase the dimension of an Array.

Parameters

extra [LegCharge I int] By what to extend, i.e. the charges to be appended to self. An int stands for extending the length of the array by a single new block of that size and zero charges.

Returns

extended_leg [LegCharge] Copy of self extended by the charge blocks of the extra leg.
charge_sectors (self)
Return unique rows of self.charges.

Returns

charges [array[QTYPE, ndim=2]] Rows are the rows of self.charges lexsorted and without duplicates.
perm_flat_from_perm_qind (self, perm_qind)
Convert a permutation of qind (acting on self) into a flat permutation.
perm_qind_from_perm_flat (self, perm_flat)
Convert flat permutation into qind permutation.

Parameters

perm_flat [1D array] A permutation acting on self, which doesn't mix the blocks of qind.

Returns

perm_qind [1D array] The permutation of self.qind described by perm_flat.

Raises

ValueError If perm_flat mixes blocks of different qindex.

LegPipe

- full name: tenpy.linalg.charges.LegPipe
- parent module: tenpy.linalg.charges
- type: class

```
class tenpy.linalg.charges.LegPipe(legs, qconj=1, sort=True, bunch=True)
```

Bases: tenpy.linalg.charges.LegCharge
A LegPipe combines multiple legs of a tensor to one.
Often, it is necessary to "combine" multiple legs into one: for example to perfom a SVD, the tensor needs to be viewed as a matrix.

This class does exactly this job: it combines multiple LegCharges ('incoming legs') into one 'pipe' (the 'outgoing leg'). The pipe itself is a LegCharge, with indices running from 0 to the product of the individual legs' ind_len, corresponding to all possible combinations of input leg indices.
(This class is implemented in tenpy.linalg.charges but also imported in tenpy.linalg. np_conserved for convenience.)

Parameters

legs [list of LegCharge] The legs which are to be combined.
qconj $[\{+1,-1\}]$ A flag telling whether the charge of the resulting pipe points inwards $(+1$, default) or outwards (-1).
sort [bool] Whether the outgoing pipe should be sorted. Default True; recommended. Note: calling sort () after initialization converts to a LegCharge.
bunch [bool] Whether the outgoing pipe should be bunched. Default True; recommended. Note: calling bunch () after initialization converts to a LegCharge.

Notes

For np.reshape, taking, for example, $i, j, \ldots \rightarrow k$ amounted to $k=s_{1} * i+s_{2} * j+\ldots$ for appropriate strides s_{1}, s_{2}.

In the charged case, however, we want to block k by charge, so we must implicitly permute as well. This reordering is encoded in q_{-}map.

Each qindex combination of the nlegs input legs $\left(i_{1}, \ldots, i_{\text {nlegs }}\right)$, will end up getting placed in some slice $a_{j}: a_{j+1}$ of the outgoing pipe. Within this slice, the data is simply reshaped in usual row-major fashion (' C '-order), i.e., with strides $s_{1}>s_{2}>\ldots$.

It will be a subslice of a new total block labeled by qindex I_{s}. Because many charge combinations fuse to the same total charge, in general there will be many tuples $\left(i_{1}, \ldots, i_{\text {nlegs }}\right)$ belonging to the same I_{s}. The rows of q_map are precisely the collections of [b_j, b_\{j+1\}, I_s, i_1, . . . , i_\{nlegs\}]. Here, $b_{j}: b_{j+1}$ denotes the slice of this qindex combination within the total block $I_{-} s$, i.e., $b_{-} j=a_{-}-$self. slices[I_s].
The rows of q _map are lex-sorted first by I_s, then the i. Each I_s will have multiple rows, and the order in which they are stored in q_map is the order the data is stored in the actual tensor, i.e., it might look like

```
[ ...,
    [ b_j, b_{j+1}, I_s, i_1, ..., i_{nlegs} ],
    [ b_{j+1}, b_{j+2}, I_s, i'_1, ..., i'_{nlegs} ],
    [ 0, b_{j+3}, I_s + 1, i''_1, ..., i''__{nlegs} ],
    [ b_{j+3}, b_{j+4}, I_s + 1, i'''_1, ..., i'''_{nlegs}],
...]
```

The charge fusion rule is:

```
self.charges[Qi]*self.qconj == sum([l.charges[qi_l]*l.qconj for l in self.legs])
mod qmod
```

Here the qindex Qi of the pipe corresponds to qindices qi_l on the individual legs.

Attributes

nlegs [int] The number of legs.
legs [tuple of LegCharge] The original legs, which were combined in the pipe.
subshape [tuple of int] ind_len for each of the incoming legs.
subqshape [tuple of int] block_number for each of the incoming legs.
q_map: $\operatorname{array[np.intp,~ndim=2]~Shape~(block_ number,~} 3$ + nlegs). Rows: [b_j, b_\{j+1\}, I_s, i_1, ..., i_\{nlegs\}], See Notes below for details.
q_map_slices [array[np.intp, ndim=1]] Defined such that the row indices of in range(q_map_slices[I_s], q_map_slices[I_s+1]) have q_map[:, 2] == I_s.
_perm [1D array] A permutation such that q_map [_perm, 3:] is sorted by i_l.
_strides [1D array] Strides for mapping incoming qindices $i _l$ to the index of q_map [_perm, :].

Methods	
bunch(self, **args, ***kwargs)	Convert to LegCharge and call LegCharge. bunch().
Charge_sectors(self)	Return unique rows of self.charges.
conj(self)	Return a shallow copy with opposite self.qconj.
Copy (self)	Return a (shallow) copy of self.
extend(self, extra)	Return a new LegCharge, which extends self with futher charges.
flip_charges_qconj(self)	Return a copy with both negative qconj and charges.
from_add_charge(legs[, chargeinfo])	Add the (independent) charges of two or more legs to get larger qnumber.
from_change_charge(leg, charge, new_qmod[, ...]) ...])	Remove a charge from a LegCharge.
from_drop_charge(leg[, charge, chargeinfo])	Remove a charge from a LegCharge.
from_qdict(chargeinfo, qdict[, qconj])	Create a LegCharge from qdict form.
from_qflat(chargeinfo, qflat[, qconj])	Create a LegCharge from qflat form.
from_qind(chargeinfo, slices, charges[, qconj])	Just a wrapper around self.__init_(), see class docstring for parameters.
from_trivial(ind_len[, chargeinfo, qconj])	Create trivial (qnumber=0) LegCharge for given len of indices ind_len.
get_charge(self, qindex)	Return charge self.charges[qindex] * self. qconj for a given qindex.
get_qindex(self, flat_index)	Find qindex containing a flat index.
get_qindex_of_charges(self, charges)	Return the slice selecting the block for given charge values.
get_slice(self, qindex)	Return slice selecting the block for a given qindex.
is_blocked(self)	Returns whether self is blocked, i.e.
is_bunched(self)	Checks whether bunch() would change something.
is_sorted(self)	Returns whether self.charges is sorted lexiographically.
map_incoming_flat(self, incoming_indices)	Map (flat) incoming indices to an index in the outgoing pipe.
outer_conj(self)	Like conj(), but don't change qconj for incoming legs.
perm_flat_from_perm_qind(self, perm_qind)	Convert a permutation of qind (acting on self) into a flat permutation.
perm_qind_from_perm_flat(self, perm_flat)	Convert flat permutation into qind permutation.
project(self, *args, ***kwargs)	Convert self to LegCharge and call LegCharge. project ().
sort(self, *args, ***kwargs)	Convert to LegCharge and call LegCharge. sort ().
test_contractible(self, other)	Raises a ValueError if charges are incompatible for contraction with other.
test_equal(self, other)	Test if charges are equal including qconj.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
to_LegCharge(self)	Convert self to a LegCharge, discarding the information how to split the legs.
to_qdict(self)	Return charges in qdict form.

Table 59 - continued from previous page
to_qflat(self) Return charges in qfat form.

copy (self)

Return a (shallow) copy of self.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

to_LegCharge (self)

Convert self to a LegCharge, discarding the information how to split the legs.
Usually not needed, but called by functions, which are not implemented for a LegPipe.
conj (self)
Return a shallow copy with opposite self.qconj.

Returns

conjugated [LegCharge] Shallow copy of self with flipped qconj. Whenever we contract two legs, they need to be conjugated to each other. The incoming legs of the pipe are also conjugated.
outer_conj (self)
Like conj(), but don't change qcon j for incoming legs.
sort (self, *args, **kwargs)
Convert to LegCharge and call LegCharge. sort ().
bunch (self, *args, **kwargs)
Convert to LegCharge and call LegCharge. bunch ().
project (self, *args, **kwargs)
Convert self to LegCharge and call LegCharge. project ().
In general, this could be implemented for a LegPipe, but would make split_legs () more complicated, thus we keep it simple. If you really want to project and split afterwards, use the following work-around, which is for example used in exact_diagonalization:

1) Create the full pipe and save it separetely.
2) Convert the Pipe to a Leg \& project the array with it.
3) $[\ldots$ do calculations ...]
4) To split the 'projected pipe' of A, create and empty array B with the legs of A, but replace the projected leg by the full pipe. Set A as a slice of B. Finally split the pipe.

map_incoming_flat (self, incoming_indices)

Map (flat) incoming indices to an index in the outgoing pipe.

Parameters

incoming_indices [iterable of int] One (flat) index on each of the incoming legs.

Returns

outgoing_index [int] The index in the outgoing leg.

```
charge_sectors (self)
```

Return unique rows of self.charges.

Returns

charges [array[QTYPE, ndim=2]] Rows are the rows of self.charges lexsorted and without duplicates.
extend (self, extra)
Return a new LegCharge, which extends self with futher charges.
This is needed to formally increase the dimension of an Array.

Parameters

extra [LegCharge I int] By what to extend, i.e. the charges to be appended to self. An int stands for extending the length of the array by a single new block of that size and zero charges.

Returns

extended_leg [LegCharge] Copy of self extended by the charge blocks of the extra leg.
flip_charges_qconj (self)
Return a copy with both negative qconj and charges.

Returns

conj_charges [LegCharge] (Shallow) copy of self with negative qconj and charges, thus representing the very same charges. test_equal () of self with conj_charges will not raise an error.
classmethod from_add_charge (legs, chargeinfo=None)
Add the (independent) charges of two or more legs to get larger qnumber.

Parameters

legs [iterable of LegCharge] The legs for which the charges are to be combined/added.
chargeinfo [ChargeInfo] The ChargeInfo for all charges; create new if None.

Returns

combined [LegCharge] A LegCharge with the charges of both legs. Is neither sorted nor bunched!
classmethod from_change_charge (leg, charge, new_qmod, new_name=", chargeinfo=None) Remove a charge from a LegCharge.

Parameters

leg [LegCharge] The leg from which to drop/remove a charge.
charge [int I str] Number or name of the charge (within chinfo) for which mod is to be changed.
new_qmod [int] The new mod to be set for charge in the ChargeInfo.
new_name [str] The new name for charge.
chargeinfo [ChargeInfo] The ChargeInfo with charge changed; create new if None.

Returns

leg [LegCharge] A LegCharge with the specified charge changed. Is neither sorted nor bunched!
classmethod from_drop_charge (leg, charge=None, chargeinfo=None)
Remove a charge from a LegCharge.

Parameters

leg [LegCharge] The leg from which to drop/remove a charge.
charge [int I str] Number or name of the charge (within chinfo) which is to be dropped. None means dropping all charges.
chargeinfo [Charge Info] The ChargeInfo with charge dropped; create new if None.

Returns

dropped [LegCharge] A LegCharge with the specified charge dropped. Is neither sorted nor bunched!
classmethod from_qdict (chargeinfo, qdict, qconj=1)
Create a LegCharge from qdict form.

Parameters

chargeinfo [ChargeInfo] The nature of the charge.
qdict [dict] A dictionary mapping a tuple of charges to slices.
classmethod from_qflat (chargeinfo, qfat, qconj=1)
Create a LegCharge from qflat form.
Does neither bunch nor sort. We recommend to sort (and bunch) afterwards, if you expect that tensors using the LegCharge have entries at all positions compatible with the charges.

Parameters

chargeinfo [ChargeInfo] The nature of the charge.
qflat [array_like (ind_len, qnumber)] qnumber charges for each index of the leg on entry.
qconj $[\{-1,1\}]$ A flag telling whether the charge points inwards (+1) or outwards (-1).

See also:

sort sorts by charges
bunch bunches contiguous blocks of the same charge.
classmethod from_qind (chargeinfo, slices, charges, qconj=1)
Just a wrapper around self.__init_(), see class doc-string for parameters.
See also:
sort sorts by charges
bunch bunches contiguous blocks of the same charge.
classmethod from_trivial (ind_len, chargeinfo=None, qconj=1)
Create trivial (qnumber=0) LegCharge for given len of indices ind_len.
get_charge (self, qindex)
Return charge self.charges [qindex] * self.qconj for a given qindex.
get_qindex (self, flat_index)
Find qindex containing a flat index.
Given a flat index, to find the corresponding entry in an Array, we need to determine the block it is saved in. For example, if slices $=[[0,3],[3,7],[7,12]]$, the flat index 5 corresponds to the second entry, qindex $=1$ (since 5 is in [3:7]), and the index within the block would be $2=5-3$.

Parameters

flat_index [int] A flat index of the leg. Negative index counts from behind.

Returns

qindex [int] The qindex, i.e. the index of the block containing flat_index.
index_within_block [int] The index of flat_index within the block given by qindex.

get_qindex_of_charges (self, charges)

Return the slice selecting the block for given charge values.
Inverse function of get_charge ().

Parameters

charges [1D array_like] Charge values for which the slice of the block is to be determined.

Returns

slice (\mathbf{i}, \mathbf{j}) [slice] Slice of the charge values for

Raises

ValueError [if the answer is not unique (because self is not blocked).]
get_slice (self, qindex)
Return slice selecting the block for a given qindex.

is_blocked (self)

Returns whether self is blocked, i.e. qindex map $1: 1$ to charge values.
is_bunched (self)
Checks whether bunch () would change something.

is_sorted (self)

Returns whether self.charges is sorted lexiographically.
perm_flat_from_perm_qind (self, perm_qind)
Convert a permutation of qind (acting on self) into a flat permutation.
perm_qind_from_perm_flat (self, perm_flat)
Convert flat permutation into qind permutation.

Parameters

perm_flat [1D array] A permutation acting on self, which doesn't mix the blocks of qind.

Returns

perm_qind [1D array] The permutation of self.qind described by perm_flat.

Raises

ValueError If perm_flat mixes blocks of different qindex.

test_contractible (self, other)

Raises a ValueError if charges are incompatible for contraction with other.

Parameters

other [LegCharge] The LegCharge of the other leg condsidered for contraction.

Raises

ValueError If the charges are incompatible for direct contraction.

See also:

```
test_equal self.test_contractible(other) just performs self.
        test_equal(other.conj()).
```


Notes

This function checks that two legs are ready for contraction. This is the case, if all of the following conditions are met:

- the ChargeInfo is equal
- the slices are equal
- the charges are the same up to opposite signs qcon j :

```
self.charges * self.qconj = - other.charges * other.qconj
```

In general, there could also be a change of the total charge, see Introduction to np_conserved This special case is not considered here - instead use gauge_total_charge (), if a change of the charge is desired.

If you are sure that the legs should be contractable, check whether the charges are actually valid or whether self and other are blocked or should be sorted.

test_equal (self,other)

Test if charges are equal including qconj.
Check that all of the following conditions are met:

- the ChargeInfo is equal
- the slices are equal
- the charges are the same up to the signs qcon j :

```
self.charges * self.qconj = other.charges * other.qconj
```

See also:
test_contractible self.test_equal(other) is equivalent to self. test_contractible(other.conj()).
to_qdict (self)
Return charges in qdict form.
Raises ValueError, if not blocked.
to_qflat (self)
Return charges in qflat form.

Module description

Basic definitions of a charge.
This module contains implementations for handling the quantum numbers ("charges") of the Array.
In particular, the classes ChargeInfo, LegCharge and LegPipe are implemented here.

Note: The contents of this module are imported in np_conserved, so you usually don't need to import this module in your application.

A detailed introduction to $n p _$conserved can be found in Introduction to np_conserved.
In this module, some functions have the python decorator @use_cython. Functions with this decorator are replaced by the ones written in Cython, implemented in the file tenpy/linalg/_npc_helper.pyx. For further details, see the definition of use_cython ().
svd_robust

- full name: tenpy.linalg.svd_robust
- parent module: tenpy. linalg
- type: module

Functions

$\operatorname{svd}(\mathrm{a}[$, full_matrices, compute_uv, ...])	Wrapper around scipy.linalg.svd() with gesvd backup plan.
svd_gesvd(a[, full_matrices, compute_uv, ...])	svd with LAPACK's '\#gesvd' (with \# $=\mathrm{d} / \mathrm{z}$ for float/complex).

svd

- full name: tenpy.linalg.svd_robust.svd
- parent module: tenpy. Iinalg.svd_robust
- type: function
tenpy.linalg.svd_robust.svd (a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, lapack_driver='gesdd', warn=True)
Wrapper around scipy.linalg.svd() with gesvd backup plan.
Tries to avoid raising an LinAlgError by using using the lapack_driver gesvd, if gesdd failed.

Parameters

overwrite_a [bool] Ignored (i.e. set to False) if lapack_driver='gesdd'. Otherwise described in scipy.linalg.svd().
lapack_driver [\{'gesdd', 'gesvd'\}, optional] Whether to use the more efficient divide-andconquer approach ('gesdd') or general rectangular approach ('gesvd') to compute the SVD. MATLAB and Octave use the 'gesvd' approach. Default is 'gesdd'. If 'gesdd' fails, 'gesvd' is used as backup.
warn [bool] whether to create a warning when the SVD failed.
Other parameters as described in doc-string of :func:`scipy.linalg.svd`

Returns

$\mathbf{U}, \mathbf{S}, \mathbf{V h}$ [ndarray] As described in doc-string of scipy.linalg.svd()

svd_gesvd

- full name: tenpy.linalg.svd_robust.svd_gesvd
- parent module: tenpy.linalg.svd_robust
- type: function
tenpy.linalg.svd_robust.svd_gesvd $(a, \quad$ full_matrices=True, compute_uv=True, check_finite=True)
svd with LAPACK's '\#gesvd' (with \# = d/z for float/complex).
Similar as numpy. linalg.svd (), but use LAPACK 'gesvd' driver. Works only with 2D arrays. Outer part is based on the code of numpy.linalg.svd.

Parameters

a, full_matrices, compute_uv: See numpy.linalg.svd() for details.
check_finite : check whether input arrays contain ' NaN ' or 'inf'.

Returns

$\mathbf{U , S , V h}$ [ndarray] See numpy.linalg.svd () for details.

Module description

(More) robust version of singular value decomposition.
We often need to perform an SVD. In general, an SVD is a matrix factorization that is always well defined and should also work for ill-conditioned matrices. But sadly, both numpy.linalg.svd() and scipy.linalg.svd() fail from time to time, raising LinalgError ("SVD did not converge"). The reason is that both of them call the LAPACK function \#gesdd (where \# depends on the data type), which takes an iterative approach that can fail. However, it is usually much faster than the alternative (and robust) \#gesvd.

Our workaround is as follows: we provide a function $\operatorname{svd}()$ with call signature as scipy's svd. This function is basically just a wrapper around scipy's svd, i.e., we keep calling the faster dgesdd. But if that fails, we can still use dgesvd as a backup.

Sadly, dgesvd and zgesvd were not included into scipy until version '0.18.0' (nor in numpy), which is as the time of this writing the latest stable scipy version. For scipy version newer than ' 0.18 .0 ', we make use of the new keyword 'lapack_driver' for svd, otherwise we (try to) load dgesvd and zgesvd from shared LAPACK libraries.

The tribute for the dgesvd wrapper code goes to 'jgarcke’, originally posted at http://projects.scipy.org/numpy/ticket/ 990, which is now hosted at https://github.com/numpy/numpy/issues/1588 He explains a bit more in detail what fails.

The include of dgesvd to scipy was done in https://github.com/scipy/scipy/pull/5994.

Examples

The idea is that you just import the $s v d$ from this module and use it as replacement for np.linalg.svd or scipy. linalg.svd:

```
>>> from svd_robust import svd
>>> U, S, VT = svd([[1., 1.], [0., [1.]])
```


random_matrix

- full name: tenpy.linalg.random_matrix
- parent module: tenpy. Iinalg
- type: module

Functions

$C O E($ size $)$	Circular orthogonal ensemble (COE).
$C R E($ size $)$	Circular real ensemble (CRE).
$C U E($ size $)$	Circular unitary ensemble (CUE).
$G O E($ size $)$	Gaussian orthogonal ensemble (GOE).
$G U E($ size $)$	Gaussian unitary ensemble (GUE).
O_Close_I(size[, a])	return an random orthogonal matrix 'close' to the Iden- tity.
U_close_I(size[, a])	return an random orthogonal matrix 'close' to the iden- tity.
box(size[, W])	return random number uniform in (-W, W].
standard_normal_complex(size)	return $(\mathrm{R}+1 \cdot j * I)$ for independent R and I from
	np.random.standard_normal.

COE

- full name: tenpy.linalg.random_matrix.COE
- parent module: tenpy.Iinalg.random_matrix
- type: function
tenpy.linalg.random_matrix. COE (size)
Circular orthogonal ensemble (COE).

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.

Returns

\mathbf{U} [ndarray] Unitary, symmetric (complex) matrix drawn from the COE (=Haar measure on this space).

CRE

- full name: tenpy.linalg.random_matrix.CRE
- parent module: tenpy.Iinalg.random_matrix
- type: function
tenpy.linalg.random_matrix. CRE (size)
Circular real ensemble (CRE).

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.

Returns

\mathbf{U} [ndarray] Orthogonal matrix drawn from the CRE (=Haar measure on $\mathrm{O}(\mathrm{n})$).

CUE

- full name: tenpy.linalg.random_matrix.CUE
- parent module: tenpy.linalg.random_matrix
- type: function
tenpy.linalg.random_matrix.CUE (size)
Circular unitary ensemble (CUE).

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.

Returns

\mathbf{U} [ndarray] Unitary matrix drawn from the CUE (=Haar measure on $U(n)$).

GOE

- full name: tenpy.linalg.random_matrix.GOE
- parent module: tenpy.linalg.random_matrix
- type: function
tenpy.linalg.random_matrix. GOE (size)
Gaussian orthogonal ensemble (GOE).

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.

Returns

\mathbf{H} [ndarray] Real, symmetric numpy matrix drawn from the GOE, i.e. $p(H)=$ $1 / Z \exp \left(-n / 4 \operatorname{tr}\left(H^{2}\right)\right)$

GUE

- full name: tenpy.linalg.random_matrix.GUE
- parent module: tenpy.linalg.random_matrix
- type: function
tenpy.linalg.random_matrix.GUE (size)
Gaussian unitary ensemble (GUE).

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.

Returns

\mathbf{H} [ndarray] Hermitian (complex) numpy matrix drawn from the GUE, i.e. $p(H)=$ $1 / \operatorname{Zexp}\left(-n / 4 \operatorname{tr}\left(H^{2}\right)\right)$.

O_close_1

- full name: tenpy.linalg.random_matrix.O_close_1
- parent module: tenpy.linalg.random_matrix
- type: function
tenpy.linalg.random_matrix.O_close_1 (size, $a=0.01$)
return an random orthogonal matrix 'close' to the Identity.

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.
a [float] Parameter determining how close the result is on $O ; \lim _{a \rightarrow 0}<|O-E|>_{a}=0$ (where E is the identity).

Returns

\mathbf{O} [ndarray] Orthogonal matrix close to the identiy (for small a).

U_close_1

- full name: tenpy.linalg.random_matrix.U_close_1
- parent module: tenpy.Iinalg.random_matrix
- type: function
tenpy.linalg.random_matrix.U_close_1 (size, $a=0.01$) return an random orthogonal matrix 'close' to the identity.

Parameters

size [tuple] (n, n), where n is the dimension of the output matrix.
a [float] Parameter determining how close the result is to the identity. $\lim _{a \rightarrow 0}<|O-E|>_{a}=0$ (where E is the identity).

Returns

\mathbf{U} [ndarray] Unitary matrix close to the identiy (for small a). Eigenvalues are chosen i.i.d. as $\exp (1 . j * a * x)$ with x uniform in $[-1,1]$.
box

- full name: tenpy.linalg.random_matrix.box
- parent module: tenpy. linalg.random_matrix
- type: function
tenpy.linalg.random_matrix.box (size, $W=1.0$) return random number uniform in $(-W, W]$.

standard_normal_complex

- full name: tenpy.linalg.random_matrix.standard_normal_complex
- parent module: tenpy.linalg.random_matrix
- type: function

```
tenpy.linalg.random_matrix.standard_normal_complex (size)
```

return $(R+1 \cdot j * I)$ for independent R and I from np.random.standard_normal.

Module description

Provide some random matrix ensembles for numpy.
The implemented ensembles are:

ensemble	matrix class drawn from	measure	invariant under	beta
GOE	real, symmetric	$\sim \exp \left(-\mathrm{n} / 4 \operatorname{tr}\left(\mathrm{H}^{\wedge} 2\right)\right)$	orthogonal O	1
GUE	hermitian	$\sim \exp \left(-\mathrm{n} / 2 \operatorname{tr}\left(\mathrm{H}^{\wedge} 2\right)\right)$	unitary U	2
CRE	O(n)	Haar	orthogonal O	$/$
COE	U in U(n) with $\mathrm{U}=\mathrm{U}^{\wedge} \mathrm{T}$	Haar	orthogonal O	1
CUE	$\mathrm{U}(\mathrm{n})$	Haar	unitary U	2
O_close_1	O(n)	$?$	$/$	$/$
U_close_1	$\mathrm{U}(\mathrm{n})$	$?$	$/$	$/$

All functions in this module take a tuple (n, n) as first argument, such that we can use the function from_func () to generate a block diagonal Array with the block from the corresponding ensemble, for example:

```
npc.Array.from_func_square(GOE, [leg, leg.conj()])
```


sparse

- full name: tenpy.linalg.sparse
- parent module: tenpy. linalg
- type: module

Classes

FlatHermitianOperator(npc_matvec, leg, Hermitian variant of FlatLinearOperator.
dtype)

| FlatinearOperator(npc_matvec, leg, dtype[,
 $\ldots])$ | Square Linear operator acting on numpy arrays based
 on a matvec acting on npc Arrays. |
| :--- | :--- | :--- |
| NpcLinearOperator | Prototype for a Linear Operator acting on Array. |

FlatHermitianOperator

- full name: tenpy.linalg.sparse.FlatHermitianOperator
- parent module: tenpy. linalg.sparse
- type: class
class tenpy.linalg.sparse.FlatHermitianOperator (npc_matvec, leg, dtype, charge_sector $=0$, vec_label $=$ None)
Bases: tenpy.linalg.sparse.FlatLinearoperator
Hermitian variant of FlatLinearOperator.
Note that we don't check matvec () to return a hermitian result, we only define an adjoint to be self.

Attributes

H Hermitian adjoint.
T Transpose this linear operator.
charge_sector Charge sector of the vector which is acted on.

Methods

__call__(self, x)	Call self as a function.
adjoint(self)	Hermitian adjoint.
$\operatorname{dot}($ self, x$)$	Matrix-matrix or matrix-vector multiplication.
flat_to_npc(self, vec)	Convert flat vector of selected charge sector into npc Array.
from_NpCArray(mat[, charge_sector])	Create a FlatLinearOperator from a square Array.
from_guess_with_pipe(npc_matvec, v0_guess[, ...])	Create a FlatLinearOperator` from a matvec function acting on multiple legs.
matmat(self, X)	Matrix-matrix multiplication.
matvec(self, x)	Matrix-vector multiplication.
npc_to_flat(self, npc_vec)	Convert npc Array with qtotal $=$ self.charge_sector into ndarray.
rmatmat(self, X)	Adjoint matrix-matrix multiplication.
rmatvec(self, \mathbf{x})	Adjoint matrix-vector multiplication.
transpose(self)	Transpose this linear operator.

property H

Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.
Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.

```
property T
```

Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

adjoint (self)

Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.
property charge_sector
Charge sector of the vector which is acted on.
$\operatorname{dot}($ self, x)
Matrix-matrix or matrix-vector multiplication.

Parameters

\mathbf{x} [array_like] 1-d or 2-d array, representing a vector or matrix.

Returns

Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.
flat_to_npc (self, vec)
Convert flat vector of selected charge sector into npc Array.

Parameters

vec [1D ndarray] Numpy vector to be converted. Should have the entries according to self.charge_sector.

Returns

npc_vec [Array] Same as vec, but converted into a flat array.
classmethod from_NpcArray (mat, charge_sector $=0$)
Create a FlatLinearOperator from a square Array.

Parameters

mat [Array] A square matrix, with contractable legs.
charge_sector [None I charges I 0] Selects the charge sector of the vector onto which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0 , i.e., assumes the dominant eigenvector is in charge sector 0 .
classmethod from_guess_with_pipe (npc_matvec, v0_guess, labels_split=None, dtype=None)
Create a FlatLinearOperator` from a matvec function acting on multiple legs.
This function creates a wrapper matvec function to allow acting on a "vector" with multiple legs. The wrapper combines the legs into a LegPipe before calling the actual matvec function, and splits them again in the end.

Parameters

npc_matvec [function] Function to calculate the action of the linear operator on an npc vector with the given split labels labels_split. Has to return an npe vector with the same legs.
v0_guess [Array] Initial guess/starting vector which can be applied to npc_matvec.
labels_split [None I list of str] Labels of v0_guess in the order in which they are to be combined into a LegPipe. None defaults to v0_guess.get_leg_labels().
dtype [np.dtype I None] The data type of the arrays. None defaults to dtype of $v 0 _$guess (!).

Returns

lin_op [cls] Instance of the class to be used as linear operator
guess_flat [np.ndarray] Numpy vector representing the guess v0_guess.
matmat (self, X)
Matrix-matrix multiplication.
Performs the operation $y=A * X$ where A is an $M x N$ linear operator and X dense $N * K$ matrix or ndarray.

Parameters

\mathbf{X} [\{matrix, ndarray $\}]$ An array with shape (N,K).

Returns

\mathbf{Y} [\{matrix, ndarray $\}]$ A matrix or ndarray with shape (M, K) depending on the type of the X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.
matvec (self, x)
Matrix-vector multiplication.
Performs the operation $y=A * x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array.

Parameters

\mathbf{x} [\{matrix, ndarray $\}]$ An array with shape (N,) or $(\mathrm{N}, 1)$.

Returns

\mathbf{y} [\{matrix, ndarray \}] A matrix or ndarray with shape (M,) or ($M, 1$) depending on the type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.
npc_to_flat (self, npc_vec)
Convert npc Array with qtotal $=$ self.charge_sector into ndarray.

Parameters

npc_vec [Array] Npc Array to be converted. Should only have entries in self.charge_sector.

Returns

vec [1D ndarray] Same as $n p c_{-} v e c$, but converted into a flat Numpy array.

rmatmat (self, X)

Adjoint matrix-matrix multiplication.
Performs the operation $y=A^{\wedge} H^{*} x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

\mathbf{X} [\{matrix, ndarray $\}]$ A matrix or 2D array.

Returns

\mathbf{Y} [\{matrix, ndarray \}] A matrix or 2D array depending on the type of the input.

Notes

This rmatmat wraps the user-specified rmatmat routine.
rmatvec (self, x)
Adjoint matrix-vector multiplication.
Performs the operation $y=A^{\wedge} H^{*} x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array.

Parameters

$\mathbf{x}[\{$ matrix, ndarray $\}]$ An array with shape $(M$,$) or (M, 1)$.

Returns

\mathbf{y} [\{matrix, ndarray $\}]$ A matrix or ndarray with shape $(\mathrm{N}$,) or $(\mathrm{N}, 1)$ depending on the type and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.
transpose (self)
Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

FlatLinearOperator

- full name: tenpy.linalg.sparse.FlatLinearOperator
- parent module: tenpy.linalg.sparse
- type: class
class tenpy.linalg.sparse.FlatLinearOperator (npc_matvec, leg, dtype, charge_sector=0, vec_label=None)
Bases: scipy.sparse.linalg.interface.LinearOperator
Square Linear operator acting on numpy arrays based on a matvec acting on npc Arrays.
Note that this class represents a square linear operator. In terms of charges, this means it has legs [self.leg. conj(), self.leg] and trivial (zero) qtotal.

Parameters

npc_matvec [function] Function to calculate the action of the linear operator on an npc vector (with the specified leg). Has to return an npc vector with the same leg.
leg [LegCharge] Leg of the vector on which npc_matvec can act on.
dtype [np.dtype] The data type of the arrays.
charge_sector [None I charges I 0] Selects the charge sector of the vector onto which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0 , i.e., assumes the dominant eigenvector is in charge sector 0 .
vec_label [None I str] Label to be set to the npc vector before acting on it with npc_matvec. Ignored if None.

Attributes

charge_sector Charge sector of the vector which is acted on.
possible_charge_sectors [ndarray[QTYPE, ndim=2]] Each row corresponds to one possible choice for charge_sector.
shape [(int, int)] The dimensions for the selected charge sector.
dtype [np.dtype] The data type of the arrays.
leg [LegCharge] Leg of the vector on which npc_matvec can act on.
vec_label [None I str] Label to be set to the npc vector before acting on it with npc_matvec. Ignored if None.
npc_matvec [function] Function to calculate the action of the linear operator on an npc vector (with one leg).
matvec_count [int] The number of times npc_matvec was called.
_mask [ndarray[ndim=1, bool]] The indices of leg corresponding to the charge_sector to be diagonalized.
_npc_matvec_multileg [function I None] Only set if initalized with from_guess_with_pipe(). The npc_matvec function to be wrapped around. Takes the npc Array in multidimensional form and returns it that way.
_labels_split [list of str] Only set if initalized with from_guess_with_pipe (). Labels of the guess before combining them into a pipe (stored as leg).

Methods

__call__(self, x)	Call self as a function.
adjoint(self)	Hermitian adjoint.
dot(self, x)	Matrix-matrix or matrix-vector multiplication.
flat_to_npc(self, vec)	Convert flat vector of selected charge sector into npc Array.
from_NpcArray(mat[, charge_sector])	Create a FlatLinearOperator from a square Array.
from_guess_with_pipe(npc_matvec,	Create a FlatLinearOperator from a matvec func- tion acting on multiple legs.
matmat(self, X)	Matrix-matrix multiplication.
matvec(self, $x)$	Matrix-vector multiplication.

Continued on next page

Table 64 - continued from previous page

npc_to_flat(self, npc_vec)	Convert npc Array with qtotal $=$ self.charge_sector into ndarray.
rmatmat(self, X)	Adjoint matrix-matrix multiplication.
rmatvec(self, x)	Adjoint matrix-vector multiplication.
transpose(self)	Transpose this linear operator.

classmethod from_NpcArray (mat, charge_sector=0)
Create a FlatLinearOperator from a square Array.

Parameters

mat [Array] A square matrix, with contractable legs.
charge_sector [None I charges I 0] Selects the charge sector of the vector onto which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0 , i.e., assumes the dominant eigenvector is in charge sector 0 .

```
classmethod from_guess_with_pipe (npc_matvec, v0_guess, labels_split=None,
    dtype=None)
```

Create a FlatLinearOperator` from a matvec function acting on multiple legs.
This function creates a wrapper matvec function to allow acting on a "vector" with multiple legs. The wrapper combines the legs into a LegPipe before calling the actual matvec function, and splits them again in the end.

Parameters

npc_matvec [function] Function to calculate the action of the linear operator on an npc vector with the given split labels labels_split. Has to return an npe vector with the same legs.
v0_guess [Array] Initial guess/starting vector which can be applied to npc_matvec.
labels_split [None I list of str] Labels of v0_guess in the order in which they are to be combined into a LegPipe. None defaults to vo_guess.get_leg_labels ().
dtype [np.dtype I None] The data type of the arrays. None defaults to dype of $v 0 _$guess (!).

Returns

lin_op [cls] Instance of the class to be used as linear operator
guess_flat [np.ndarray] Numpy vector representing the guess $v 0$ _guess.
property charge_sector
Charge sector of the vector which is acted on.
flat_to_npc (self, vec)
Convert flat vector of selected charge sector into npc Array.

Parameters

vec [1D ndarray] Numpy vector to be converted. Should have the entries according to self.charge_sector.

Returns

npc_vec [Array] Same as vec, but converted into a flat array.

```
npc_to_flat (self, npc_vec)
```

Convert npe Array with qtotal = self.charge_sector into ndarray.

Parameters

npc_vec [Array] Npc Array to be converted. Should only have entries in self.charge_sector.

Returns

vec [1D ndarray] Same as $n p c_{-} v e c$, but converted into a flat Numpy array.

property H

Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.

property T

Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().
adjoint (self)
Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.
$\operatorname{dot}($ self, x)
Matrix-matrix or matrix-vector multiplication.

Parameters

\mathbf{x} [array_like] 1-d or 2-d array, representing a vector or matrix.

Returns

Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.
matmat (self, X)
Matrix-matrix multiplication.
Performs the operation $y=A * X$ where A is an $M x N$ linear operator and X dense $N * K$ matrix or ndarray.

Parameters

\mathbf{X} [\{matrix, ndarray \}] An array with shape (N, K).

Returns

\mathbf{Y} [\{matrix, ndarray $\}]$ A matrix or ndarray with shape (M, K) depending on the type of the X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.
matvec (self, x)
Matrix-vector multiplication.
Performs the operation $y=A^{*} x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array.

Parameters

\mathbf{x} [\{matrix, ndarray $\}]$ An array with shape (N,) or $(\mathrm{N}, 1)$.

Returns

\mathbf{y} [\{matrix, ndarray $\}]$ A matrix or ndarray with shape $(\mathrm{M}$,$) or (\mathrm{M}, 1)$ depending on the type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

rmatmat (self, X)

Adjoint matrix-matrix multiplication.
Performs the operation $y=A^{\wedge} H^{*} x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

\mathbf{X} [\{matrix, ndarray $\}]$ A matrix or 2D array.

Returns

$\mathbf{Y}[\{$ matrix, ndarray $\}]$ A matrix or 2D array depending on the type of the input.

Notes

This rmatmat wraps the user-specified rmatmat routine.
rmatvec (self, x)
Adjoint matrix-vector multiplication.
Performs the operation $y=A^{\wedge} H^{*} x$ where A is an $M x N$ linear operator and x is a column vector or 1-d array.

Parameters

$\mathbf{x}[\{$ matrix, ndarray $\}]$ An array with shape $(\mathrm{M}$,$) or (\mathrm{M}, 1)$.

Returns

\mathbf{y} [\{matrix, ndarray $\}]$ A matrix or ndarray with shape $(\mathrm{N}$,) or $(\mathrm{N}, 1)$ depending on the type and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.
transpose (self)
Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

NpcLinearOperator

- full name: tenpy.linalg.sparse.NpcLinearOperator
- parent module: tenpy.linalg.sparse
- type: class
class tenpy.linalg.sparse. NpcLinearOperator
Bases: ob ject
Prototype for a Linear Operator acting on Array.
Note that an Array implements a matvec function. Thus you can use any (square) npc Array as an NpcLinearOperator.

Attributes

dtype [np.type] The data type of its action.
acts_on [list of str] Labels of the state on which the operator can act. NB: Class attribute.

Methods

> matvec(self, vec) Calculate the action of the operator on a vector vec.
matvec (self, vec)
Calculate the action of the operator on a vector vec.
Note that we don't require vec to be one-dimensional. However, for square operators we require that the result of matvec has the same legs (in the same order) as vec such that they can be added. Note that this excludes a non-trivial qtotal for square operators.

Module description

Providing support for sparse algorithms (using matrix-vector products only).
Some linear algebra algorithms, e.g. Lanczos, do not require the full representations of a linear operator, but only the action on a vector, i.e., a matrix-vector product matvec. Here we define the strucuture of such a general operator, NpcLinearOperator, as it is used in our own implementations of these algorithms (e.g., lanczos). Moreover, the FlatLinearOperator allows to use all the scipy sparse methods by providing functionality to convert flat numpy arrays to and from np_conserved arrays.

lanczos

- full name: tenpy.linalg.lanczos
- parent module: tenpy. linalg
- type: module

Classes

LanczosEvolution(H, psi0, params)	Calculate exp $($ delta $H) \mid$ psi0 $>$ using Lanczos.
LanczosGroundState(H, psi0, params[,..])	Lanczos algorithm working on npc arrays.

LanczosEvolution

- full name: tenpy.linalg.lanczos.LanczosEvolution
- parent module: tenpy.linalg.lanczos
- type: class
class tenpy.linalg.lanczos.LanczosEvolution(H, psiO, params)
Bases: tenpy. Iinalg. Ianczos. LanczosGroundState
Calculate $\exp ($ deltaH $) \mid p s i 0>$ using Lanczos.
It turns out that the Lanczos algorithm is also good for calculating the matrix exponential applied to the starting vector. Instead of diagonalizing the tri-diagonal T and taking the ground state, we now calculate exp (delta T) e_0 in the Krylov ONB, where '`e_0 $=(1,0,0, \ldots)$ corresponds to psio in the original basis.

Parameters

H, psi0, params : Hamiltonian, starting vector and parameters as defined in LanczosGroundState. The parameters $E _t o l$ and min_gap are ignored, the parameters P_{-}tol defines when convergence is reached, see _converged () for details.

Attributes

delta [float/complex] Prefactor of H in the exponential.
_result_norm [float] Norm of the resulting vector.

Methods

run(self, delta)	Calculate expm(delta H).dot(psi0) using
	Lanczos.

run (self, delta)
Calculate expm(delta H).dot(psiO) using Lanczos.

Parameters

delta [float/complex] Time step by which we should evolve psi0: prefactor of H in the exponential. Note that the complex i is not included!

Returns

psi_f [Array] Best approximation for expm(delta H).dot(psio)
\mathbf{N} [int] Krylov space dimension used.

LanczosGroundState

- full name: tenpy.linalg.lanczos.LanczosGroundState
- parent module: tenpy.linalg.lanczos
- type: class
class tenpy.linalg.lanczos.LanczosGroundState (H, psi0, params, orthogonal_to=[])
Bases: ob ject
Lanczos algorithm working on npe arrays.
The Lanczos algorithm can finds extremal eigenvalues (in terms of magnitude) along with the corresponding eigenvectors. It assumes that the linear operator H is hermitian. Given a start vector psi0, it generates an orthonormal basis of the Krylov space, in which H is a small tridiagonal matrix, and solves the eigenvalue problem there. Finally, it transform the resulting ground state back into the original space.

Parameters

H [NpcLinearOperator-like] A hermitian linear operator. Must implement the method matvec acting on a Array; nothing else required. The result has to have the same legs as the argument.
psi0 [Array] The starting vector defining the Krylov basis. For finding the ground state, this should be the best guess available. Note that it must not be a 1D "vector", we are fine with viewing higher-rank tensors as vectors.
params [dict] Further optional parameters as described in the following table. Add a parameter verbose $>=1$ to print the used parameters during runtime. The algorithm stops if both criteria for $e_{-} t o l$ and $p_{-} t o l$ are met or if the maximum number of steps was reached.

key	type	description
N_minint	Minimum number of steps to perform.	
N_maxint	Maximum number of steps to perform.	
E_tol float	Stop if energy difference per step <E_tol	
P_tol	float	Tolerance for the error estimate from the Ritz Residual, stop if (Rit zRes / gap) $* * 2<$ P_ 2 tol
min_gaffoat	Lower cutoff for the gap estimate used in the P_tol criterion.	
N_cachiat	The maximum number of psi to keep in memory during the first iteration. By default, we keep all states (up to N_max). Set this to a number >= 2 if you are short on memory. The penalty is that one needs another Lanczos iteration to determine the ground state in the end, i.e., runtime is large.	
re- ortho	bool	For poorly conditioned matrices, one can quickly loose orthogonality of the generated Krylov basis. If reortho is True, we re-orthogonalize against all the vectors kept in cache to avoid that problem.
cut- off	float	Cutoff to abort if beta (= norm of next vector in Krylov basis before nor- malizing) is too small. This is necessary if the rank of A is smaller than N_max - then we get a complete basis of the Krylov space, and beta will be zero.

orthogonal_to [list of Array] Vectors (same tensor structure as psi) against which Lanczos will orthogonalize, ensuring that the result is perpendicular to them. (Assumes that the
smallest eigenvalue is smaller than 0 , which should always be the case if you want to find ground states with Lanczos!)

Notes

I have computed the Ritz residual RitzRes according to http://web.eecs.utk.edu/~dongarra/etemplates/node103. html\#estimate_residual. Given the gap, the Ritz residual gives a bound on the error in the wavefunction, err $<$ (RitzRes/gap) $* * 2$. The gap is estimated from the full Lanczos spectrum.

Attributes

H [NpcLinearOperator-like] The hermitian linear operator.
psi0 [Array] The starting vector.
orthogonal_to [list of Array] Vectors to orthogonalize against.
N_min, N_max, E_tol, P_tol, N_cache, reortho: Parameters as described above.
Es [ndarray, shape(N_max, N_max)]Es[n, :] contains the energies of_T[:n+1, :n+1] in step n.
_T [ndarray, shape (N_max + 1, N_max +1)] The tridiagonal matrix representing H in the orthonormalized Krylov basis.
_cutoff [float] See parameter cutoff.
_cache [list of psi0-like vectors] The ONB of the Krylov space generated during the iteration. FIFO (first in first out) cache of at most N_cache vectors.
_result_krylov [ndarray] Result in the ONB of the Krylov space: ground state of _T.

Methods

Functions

gram_schmidt(vecs[, rcond, verbose])	In place Gram-Schmidt Orthogonalization and normal- ization for npc Arrays.
lanczos(H, psi[, lanczos_params, orthogonal_to])	Simple wrapper calling LanczosGroundState (H, psi, params, orthogonal_to).run()
lanczos_arpack(H, psi[, lanczos_params,...])	Use scipy.sparse.linalg.eigsh() to find the ground state of H.
plot_stats(ax, Es)	Plot the convergence of the energies.

gram_schmidt

- full name: tenpy.linalg.lanczos.gram_schmidt
- parent module: tenpy. linalg.lanczos
- type: function
tenpy.linalg.lanczos.gram_schmidt (vecs, rcond=le-14, verbose=0)
In place Gram-Schmidt Orthogonalization and normalization for npc Arrays.

Parameters

vecs [list of Array] The vectors which should be orthogonalized. All with the same order of the legs. Entries are modified in place. if a norm < rcond, the entry is set to None.
rcond [float] Vectors of norm < rcond (after projecting out previous vectors) are discarded. verbose [int] Print additional output if verbose $>=1$.

Returns

vecs [list of Array] The ortho-normalized vectors (without any None).
ov [2D Array] For $j>=i, \quad o v[j, i]=n p c . i n n e r(v e c s[j], ~ v e c s[i]$, 'range', do_conj=True) (where vecs[j] was orthogonalized to all vecs $[k], k$ < i).

lanczos

- full name: tenpy.linalg.lanczos.lanczos
- parent module: tenpy. linalg.lanczos
- type: function
tenpy.linalg.lanczos.lanczos(H, psi, lanczos_params=\{\}, orthogonal_to=[])
Simple wrapper calling LanczosGroundState (H, psi, params, orthogonal_to).run()

Parameters

H, psi, lanczos_params, orthogonal_to : See LanczosGroundState.

Returns

E0, psi0, N : See LanczosGroundState.run().

lanczos_arpack

- full name: tenpy.linalg.lanczos.lanczos_arpack
- parent module: tenpy. linalg.lanczos
- type: function
tenpy.linalg.lanczos.lanczos_arpack (H, psi, lanczos_params=\{\},orthogonal_to=[])
Use scipy. sparse. linalg.eigsh() to find the ground state of H.
This function has the same call/return structure as lanczos (), but uses the ARPACK package through the functions speigsh () instead of the custom lanczos implementation in LanczosGroundState. This function is mostly intended for debugging, since it requires to convert the vector from np_conserved Array into a flat numpy array and back during each matvec-operation!

Parameters

H, psi, lanczos_params, orthogonal_to : See LanczosGroundState. H and psi should have/use labels.

Returns

E0 [float] Ground state energy.
psi0 [Array] Ground state vector.

plot_stats

- full name: tenpy.linalg.lanczos.plot_stats
- parent module: tenpy.linalg.lanczos
- type: function
tenpy.linalg.lanczos.plot_stats (ax, Es)
Plot the convergence of the energies.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
Es [list of ndarray.] The energies Lanczos.Es.

Module description

Lanczos algorithm for np_conserved arrays.

7.2.3 models

- full name: tenpy.models
- parent module: tenpy
- type: module

Module description

Definition of the various models.
For an introduction to models see Introduction to models.
The module tenpy.models.model contains base classes for models. The module tenpy.models.lattice contains base classes and implementations of lattices. All other modules in this folder contain model classes derived from these base classes.

Submodules

lattice	Classes to define the lattice structure of a model.
model	This module contains some base classes for models.

lattice

- full name: tenpy.models.lattice
- parent module: tenpy.models
- type: module

Classes

Chain(L, site, **kwargs)	A chain of L equal sites.
Honeycomb(Lx, Ly, sites, **kwargs)	A honeycomb lattice.
IrregularLattice(mps_sites, based_on[, order])	A variant of a regular lattice, where we might have extra sites or sites missing.
Kagome(Lx, Ly, sites, **kwargs)	A Kagome lattice.
Ladder(L, sites, **kwargs)	A ladder coupling two chains.
Lattice(Ls, unit_cell[, order, bc, bc_MPS, ...])	A general, regular lattice.
SimpleLattice(Ls, site, **kwargs)	A lattice with a unit cell consiting of just a single site.
Square(Lx, Ly, site, **kwargs)	A square lattice.
Triangular(Lx, Ly, site, **kwargs)	A triangular lattice.
TrivialLattice(mps_sites, **kwargs)	Trivial lattice consisting of a single (possibly large) unit cell in 1D.

Chain

- full name: tenpy.models.lattice.Chain
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice. Chain (L, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice
A chain of L equal sites.

Parameters

\mathbf{L} [int] The lenght of the chain.
site [Site] The local lattice site. The unit_cell of the Lattice is just [site].
**kwargs : Additional keyword arguments given to the Lattice. pairs are initialize with [next_]next_] nearest_neighbors. positions can be specified as a single vector.

Attributes

nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices ($x _0, \ldots, x_{-}\{D-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, .. ., $\left.x _\{d i m-1\}, u\right)$.
mps2lat_values(self, A[, axes, u])	same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, ***kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
possible_multi_couplings(self, u0, other_us, dx)	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index i
test_sanity(self)	Sanity check.

ordering (self, order)

Provide possible orderings of the N lattice sites.
The following orders are defined in this method compared to Lattice. ordering ():

or- der	Resulting order
'defaudl, $\mathrm{t} 1,2,2,4, \ldots, \mathrm{~L}-1$	
'foldeds' $\mathrm{L}-1, \quad 1, \mathrm{~L}-2, \ldots, \quad \mathrm{~L} / / 2$. This order might be usefull if you want to consider a	
ring with periodic boundary conditions with a finite MPS: It avoids the ultra-long range of the	
coupling from site 0 to L present in the default order.	

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices ($\mathrm{x} _0, \ldots, \mathrm{x} _\{\mathrm{D}-1\}, \mathrm{u}$) to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index i to lattice indices ($\mathrm{x} _0$, ..., $\left.\mathrm{x}_{-}\{\operatorname{dim}-1\}, u\right)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim $^{`}+1$ and contains the lattice indices " $\left(x _0, \ldots, x _\{\text {dim- } 1\}, u\right)$ ' corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, A, axes $=0, u=$ None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.
This order defines how an MPS/MPO winds through the lattice.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites.
If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. De-
faults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, $\ldots, u 1)$ to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot ().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u
\% len (markers)].
**kwargs : Further keyword arguments given to ax.plot ().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==\mathrm{False}$) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling().
other_us [list of int] The u of the other_ops in add_multi_coupling().
dx [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to i) and boundary coundary
conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

Honeycomb

- full name: tenpy.models.lattice.Honeycomb
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice. Honeycomb (Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice
A honeycomb lattice.

Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] The length in each direction.
sites [(list of) Site] The two local lattice sites making the unit_cell of the Lattice. If only a single Site is given, it is used for both sites.
**kwargs : Additional keyword arguments given to the Lattice. basis, pos and [[next_]next_]nearest_neighbors are set accordingly. For the Honeycomb lattice 'fourth_nearest_neighbors', 'fifth_nearest_neighbors' are set in pairs.

Attributes

fifth_nearest_neighbors
fourth_nearest_neighbors
nearest_neighbors
next_nearest_neighbors

next_next_nearest_neighbors

order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a cou- pling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, ., x_\{dim-1\}, u $).$
mps2lat_values(self, A[, axes, u])	Reshape/reorder A to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[,	Deprecated.
u])	Provide possible orderings of the N lattice sites.
ordering(self, order)	Plot arrows indicating the basis vectors of the lattice.

ordering (self, order)
Provide possible orderings of the N lattice sites.
The following orders are defined in this method compared to Lattice.ordering():

order	equivalent priority	equivalent snake_winding
'default'	$(0,2,1)$	(False, False, False)
'snake'	$(0,2,1)$	(False, True, False)

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices ($\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\mathrm{D}-1\}, \mathrm{u}$) to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices ($\mathrm{x} _0$, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self, i)
Translate MPS index i to lattice indices (x_0, ..., $\mathrm{x} _\{\operatorname{dim-1\} ,~u).~}$

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim +1 and contains the lattice indices " $\left(x _0, \ldots, x_{-}\{\text {dim- } 1\}, u\right)^{`}$ corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, A, axes $=0$, $u=$ None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if u is None, or A.shape[axes] = self. N_cells if u is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of A, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of u.

Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index j is replaced by res_A[..., self.order, ...] = A[..., np.arange(self. N_sites), ...]

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function $C[i, j]$, it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument u of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.
This order defines how an MPS/MPO winds through the lattice.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, $\ldots, u 1)$ to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "'None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

$\mathbf{a x}$ [matplotlib. axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len(markers)].
**kwargs : Further keyword arguments given to ax.plot().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==$ False) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_{-}a is limited to $0<=x_{\text {_ }}<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, u0, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling().
dx [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x$ ($\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i

```
test_sanity(self)
```

Sanity check.
Raises ValueErrors, if something is wrong.

IrregularLattice

- full name: tenpy.models.lattice.IrregularLattice
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.IrregularLattice (mps_sites, based_on,order=None)
Bases: tenpy.models.lattice.Lattice
A variant of a regular lattice, where we might have extra sites or sites missing.

Todo:

- this doesn't fully work yet. .

Attributes

dim The dimension of the lattice.
nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., x_\{D-1\}, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices ($x _0$, . . $\left.., x_{-}\{\operatorname{dim}-1\}, u\right) .$
mps2lat_values(self, A[, axes, u])	Reshape/reorder A to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, **kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.

Table 74 - continued from previous page

plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
possible_multi_couplings(self, other_us, dx)	u0,
Generalization of possible_couplings () to	
couplings with more than 2 sites.	

from_add_sites	
from_mps_sites	

mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
property dim
The dimension of the lattice.
lat2mps_idx (self, lat_idx)
Translate lattice indices (x_0, ..., $\left.x_{-}\{D-1\}, u\right)$ to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index i to lattice indices (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim +1 and contains the lattice indices " $\left(x _0, \ldots, x_{-}\{\right.$dim-1 $\}$, u) ' corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x _0$ accordingly.
mps2lat_values (self, A, axes $=0$, $u=$ None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if u is None, or A.shape[axes] = self.N_cells if u is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of A, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of u.

Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index j is replaced by res_A[..., self.order, ...] = A[..., np.arange(self. N_sites), ...]

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function C [i, j], it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument u of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.
ordering (self, order)
Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	($0,1, \ldots$, dim-1, dim)	(False, ..., False, False)
'default'		
'snake'	(0, 1, .., dim-1, dim)	(True, ..., True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, .., 1, 0, dim)	(False, ..., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \mathrm{dim})$	(False, ..., False, False)

Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function, 'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape (N, D+1), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, $\ldots, u 1)$ to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs=\{\}, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "'None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len(markers)].
**kwargs : Further keyword arguments given to ax.plot().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==$ False) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling ().
dx [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to $i)$ and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i

```
test_sanity(self)
```

Sanity check.
Raises ValueErrors, if something is wrong.

Kagome

- full name: tenpy.models.lattice.Kagome
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.Kagome (Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice. Lattice
A Kagome lattice.

Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] The length in each direction.
sites [(list of) Site] The two local lattice sites making the unit_cell of the Lattice. If only a single S ite is given, it is used for both sites.
**kwargs : Additional keyword arguments given to the Lattice. basis, pos and [[next_]next_]nearest_neighbors are set accordingly.

Attributes

nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., $x _\{D-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, . $\text { ., } \left.x_{-}\{\operatorname{dim}-1\}, u\right) .$
mps2lat_values(self, A[, axes, u])	Reshape/reorder A to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, *1*kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index $i$
test_sanity(self)	Sanity check.

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

## Parameters

$\mathbf{u}$ [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

## Returns

number [int] Number of nearest neighbors (or whatever key specified) for the $u$-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$ )
Calculate correct shape of the strengths for a coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices ( $\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\mathrm{D}-1\}, \mathrm{u}$ ) to MPS index $i$.

## Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

## Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index $i$ to lattice indices ( $\left.x _0, \ldots, x_{-}\{\operatorname{dim}-1\}, u\right)$.

## Parameters

i [int I array_like of int] MPS index/indices.

## Returns

lat_idx [array] First dimensions like $i$, last dimension has len dim +1 and contains the lattice indices ' $\left(x _0, \ldots, x_{-}\{\right.$dim- 1$\left.\}, u\right)$ ' corresponding to $i$. For $i$ accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, $A$, axes $=0$, $u=$ None)
Reshape/reorder $A$ to replace an MPS index by lattice indices.

## Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.n_sites if $u$ is None, or A.shape[axes] = self. N_cells if $u$ is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of $A$, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of $u$.

## Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index $j$ is replaced by res_A[..., self.order, ...] = A[..., np.arange (self. N_sites), ...]

## Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array $A$, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function C [i, j], it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument $u$ of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is $u$.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

## Parameters

$\mathbf{u}$ [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

## Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices $i$ for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row $j$ contains the lattice index (without $u$ ) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$ )
Calculate correct shape of the strengths for a multi_coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.
This order defines how an MPS/MPO winds through the lattice.

## ordering (self, order)

Provide possible orderings of the $N$ lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(False, $\ldots$, False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(True,.., True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $., 1,0, \operatorname{dim})$	(False,.., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False,., False, False)

## Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function,
'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

## Returns

order [array, shape ( $\mathrm{N}, \mathrm{D}+1$ ), dtype np.intp] the order to be used for order.

## See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ( $i 0, i 1, \ldots$ ), we plot a connection from the site (i0, i1, ..., u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot ().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

## Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering (); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site $u$ in the unit cell is plotted with a marker markers [ $u$ \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot ().
position (self, lat_idx)
return 'space' position of one or multiple sites.

## Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

## Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$ )
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ( $\mathrm{bc}[\mathrm{a}]==\mathrm{False}$ ) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

## Parameters

u1, $\mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
$\mathbf{d x}$ [array] Length dim. The translation in terms of basis vectors for the coupling.

## Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, u0, other_us, $d x$ )
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

## Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The $u$ of the other_ops in add_multi_coupling().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

## Returns

mps_ijkl [2D int array] Each row contains MPS indices $i, j, k, l, \ldots `$ for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, \mathrm{l}, \ldots$ relative to $i$ ) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.

```
site (self, i)
```

return Site instance corresponding to an MPS index $i$

```
test_sanity(self)
```

Sanity check.
Raises ValueErrors, if something is wrong.

## Ladder

- full name: tenpy.models.lattice.Ladder
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.Ladder (L, sites, **kwargs)
Bases: tenpy.models.lattice. Lattice
A ladder coupling two chains.



## Parameters

$\mathbf{L}$ [int] The length of each chain, we have $2 *$ L sites in total.
sites [(list of) Site] The two local lattice sites making the unit_cell of the Lattice. If only a single Site is given, it is used for both chains.
**kwargs: Additional keyword arguments given to the Lattice. basis, pos and [[next_]next_]nearest_neighbors are set accordingly.

## Attributes

nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.

## Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., $x _\{D-1\}$, u) to MPS index $i$.
mps2lat_idx(self, i)	Translate MPS index $i$ to lattice indices (x_0, . $\text { ., } \left.x_{-}\{\operatorname{dim}-1\}, u\right) .$
mps2lat_values(self, A[, axes, u])	Reshape/reorder $A$ to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is $u$.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the $N$ lattice sites.
plot_basis(self, ax, *1*kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index i
test_sanity(self)	Sanity check.

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices (x_0, ..., x_\{D-1\}, u) to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index i to lattice indices (x_0, ..., x_\{dim-1\}, u).

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim $^{`}+1$ and contains the lattice indices " $\left(x _0, \ldots, x_{_}\{\right.$dim- 1$\}, u$) corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, A, axes=0, $u=$ None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if u is None, or A. shape[axes] = self.N_cells if u is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of A, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of u.

Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index j is replaced by res_A[..., self.order, ...] = A[..., np.arange(self. N_sites), ...]

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function C [i, j], it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument u of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.

property order

Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.

ordering (self, order)

Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots$, dim-1, dim)	(False,.., False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1$, dim)	(True, \ldots, True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $., 1,0, \operatorname{dim})$	(False,.., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False,.., False, False)

Parameters

order [str l ('standard', snake_winding, priority) I ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function,
'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape ($\mathrm{N}, \mathrm{D}+1$), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, ..., u1) to the site (i0 $+d x[0]$, $i 1+d x[1], \ldots, u 2$), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

$\mathbf{a x}$ [matplotlib. axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering (); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==\mathrm{False}$) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

u1, $\mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
$\mathbf{d x}$ [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling ().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices $i, j, k, l, \ldots `$ for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, \mathrm{l}, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

Lattice

- full name: tenpy.models.lattice.Lattice
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.Lattice (Ls, unit_cell, order='default', bc='open', $b c_{_} M P S=$ 'finite', basis=None, positions=None, nearest_neighbors=None, next_nearest_neighbors=None, next_next_nearest_neighbors=None, pairs=None)
Bases: ob ject
A general, regular lattice.
The lattice consists of a unit cell which is repeated in dim different directions. A site of the lattice is thus identified by lattice indices ($\mathrm{x}_{-} 0, \ldots, \mathrm{x}_{-}\left\{\right.$dim-1\}, u), where $0<=x_{_} 1<\operatorname{Ls}[1]$ pick the position of the unit cell in the lattice and $0<=u<$ len (unit_cell) picks the site within the unit cell. The site is located in 'space' at sum_l x_l*basis[l] + unit_cell_positions[u] (see position()). (Note that the position in space is only used for plotting, not for defining the couplings.)
In addition to the pure geometry, this class also defines an order of all sites. This order maps the lattice to a finite 1D chain and defines the geometry of MPSs and MPOs. The MPS index i corresponds thus to the lattice sites given by ($x_{-} 0, \ldots, x_{_}\{\operatorname{dim}-1\}, u$) $=$ tuple (self.order[i]). Infinite boundary conditions of the MPS repeat in the first spatial direction of the lattice, i.e., if the site at (x_0, x_1, \ldots, x_{-}\{dim$1\}, \mathrm{u}$ " " has MPS index i, the site at at ($\left.\mathrm{x}_{-} 0+a \times \operatorname{Ls}[0], x_{-} 1 \ldots, x_{-}\{\operatorname{dim}-1\}, u\right)$ corresponds to MPS index i + N_sites. Use mps2lat_idx() and lat2mps_idx() for conversion of indices. The function mps2lat_values () performs the necessary reshaping and re-ordering from arrays indexed in MPS form to arrays indexed in lattice form.

Parameters

Ls [list of int] the length in each direction
unit_cell [list of Site] The sites making up a unit cell of the lattice. If you want to specify it only after initialization, use None entries in the list.
order [str | ('standard', snake_winding, priority) I ('grouped', groups)] A string or tuple specifying the order, given to ordering().
be [(iterable of) \{'open'। 'periodic' । int \}] Boundary conditions in each direction of the lattice. A single string holds for all directions. An integer shift means that we have periodic boundary conditions along this direction, but shift/tilt by -shift*lattice.basis [0] (cylinder axis for bc_MPS='infinite') when going around the boundary along this direction.
bc_MPS ['finite' | 'segment' I 'infinite'] Boundary conditions for an MPS/MPO living on the ordered lattice. If the system is 'infinite', the infinite direction is always along the first basis vector (justifying the definition of $N _$rings and $N _$sites_per_ring).
basis [iterable of 1D arrays] For each direction one translation vectors shifting the unit cell. Defaults to the standard ONB np. eye (dim).
positions [iterable of 1D arrays] For each site of the unit cell the position within the unit cell. Defaults to np.zeros((len(unit_cell), dim)).
nearest_neighbors [None 1 list of (u1, $u 2, d x)$] Deprecated. Specify as pairs['nearest_neighbors'] instead.
next_nearest_neighbors [None | list of (u1, u2, dx)] Deprecated. Specify as pairs['next_nearest_neighbors'] instead.
next_next_nearest_neighbors [None | list of (u1, u2, dx)] Deprecated. Specify as pairs['next_next_nearest_neighbors'] instead.
pairs [dict] Of the form \{'nearest_neighbors': [(u1, u2, dx), ...], .. .\}. Typical keys are 'nearest_neighbors', 'next_nearest_neighbors'. For each of them, it specifies a list of tuples (u1, u2, dx) which can be used as parameters for add_coupling() to generate couplings over each pair of e.g. 'nearest_neighbors'. Note that this adds couplings for each pair only in one direction!

Attributes

dim [int] The dimension of the lattice.
order [ndarray (N_sites, dim+1)] Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

N_cells [int] the number of unit cells in the lattice, np.prod(self.Ls).
N_sites [int] the number of sites in the lattice, np.prod (self.shape).
N_sites_per_ring [int] Defined as N_sites / Ls [0], for an infinite system the number of cites per "ring".
N_rings [int] Alias for Ls [0], for an infinite system the number of "rings" in the unit cell.
Ls [tuple of int] the length in each direction.
shape [tuple of int] the 'shape' of the lattice, same as Ls + (len (unit_cell),)
unit_cell [list of Site] the lattice sites making up a unit cell of the lattice.
bc [bool ndarray] Boundary conditions of the couplings in each direction of the lattice, translated into a bool array with the global $b c_{-}$choices.
bc_shift [None I ndarray(int)] The shift in x-direction when going around periodic boundaries in other directions.
bc_MPS ['finite' I 'segment' I 'infinite'] Boundary conditions for an MPS/MPO living on the ordered lattice. If the system is 'infinite', the infinite direction is always along the first basis vector (justifying the definition of N_{-}rings and N_{-}sites_per_ring).
basis [ndarray (dim, Dim)] translation vectors shifting the unit cell. The row i gives the vector shifting in direction i.
unit_cell_positions [ndarray, shape (len(unit_cell), Dim)] for each site in the unit cell a vector giving its position within the unit cell.
pairs [dict] See above.
_order [ndarray (N_sites, dim+1)] The place where order is stored.
_strides [ndarray (dim,)] necessary for mps2lat_idx ()
_perm [ndarray (N, s] permutation needed to make order lexsorted.
_mps2lat_vals_idx [ndarray shape] index array for reshape/reordering in mps2lat_vals()
_mps_fix_u [tuple of ndarray (N_cells,) np.intp] for each site of the unit cell an index array selecting the mps indices of that site.
_mps2lat_vals_idx_fix_u [tuple of ndarray of shape $L s$] similar as _mps2lat_vals_idx, but for a fixed u picking a site from the unit cell.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices ($x _0, \ldots, x_{-}\{D-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, .. ., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$.
mps2lat_values(self, A[, axes, u])	Reshape/reorder A to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, ***kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
possible_multi_couplings(self, u0, other_us, dx)	Generalization of possible_couplings () to couplings with more than 2 sites.

Continued on next page

Table 77 - continued from previous page

site(self, $i)$	return Site instance corresponding to an MPS in- dex i
test_sanity(self)	Sanity check.

test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.
property dim
The dimension of the lattice.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.
This order defines how an MPS/MPO winds through the lattice.

ordering (self, order)

Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	(0, 1, ..., dim-1, dim)	(False, ..., False, False)
'default'		
'snake'	($0,1, \ldots$, dim- 1, dim)	(True, ..., True, True)
'snakecstyle'		
'Fstyle'	(dim-1, .., 1, 0, dim)	(False, ..., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False, ..., False, False)

Parameters

order [str | ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function, 'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape (N, D+1), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
position(self,lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
site (self, i)
return Site instance corresponding to an MPS index i
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
mps2lat_idx (self,i)
Translate MPS index i to lattice indices ($\mathrm{x} _0, \ldots, \mathrm{x}_{\mathrm{o}}\{$ dim-1\}, u$)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim +1 and contains the lattice indices " $\left(x_{-} 0, \ldots, x_{-}\{\operatorname{dim}-1\}, u\right)^{\text {` }}$ corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x _0$ accordingly.
lat2mps_idx (self, lat_idx)
Translate lattice indices ($\mathrm{x} _0$, ..., $\mathrm{x} _\{\mathrm{D}-1\}, \mathrm{u}$) to MPS index i.

Parameters

lat_idx [array_like $\left[\ldots\right.$, dim+1]] The last dimension corresponds to lattice indices ($\mathrm{x} _0$, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps2lat_values (self, A, axes=0, $u=$ None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if u is None, or A.shape[axes] = self. N_cells if u is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
\mathbf{u} [None lint] Optionally choose a subset of MPS indices present in the axes of A, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of u.

Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index j is replaced by res_A[..., self.order, ...] = A[..., np.arange (self. N_sites), ...]

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function $C[i, j]$, it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument u of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values. . .
count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==$ False) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=x _a<L s[a]$ and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
$\mathbf{d x}$ [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings () to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling ().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots ' for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, \mathrm{l}, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
plot_sites (self, ax, markers=['o', ' ', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u
\% len(markers)].
***wargs : Further keyword arguments given to ax.plot () .
plot_order (self, ax, order=None, textkwargs=\{\}, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering (); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot().
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices $(i 0, i l, \ldots$), we plot a connection from the site (i0, i1, $\ldots, u 1)$ to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot ().
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites.
If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.

SimpleLattice

- full name: tenpy.models.lattice.SimpleLattice
- parent module: tenpy.models.lattice
- type: class

```
class tenpy.models.lattice.SimpleLattice(Ls, site, **kwargs)
```

Bases: tenpy.models.lattice.Lattice
A lattice with a unit cell consiting of just a single site.
In many cases, the unit cell consists just of a single site, such that the the last entry of u of an 'lattice index' can only be 0 . From the point of internal algorithms, we handle this class like a Lattice - in that way we don't need to distinguish special cases in the algorithms.

Yet, from the point of a tenpy user, for example if you measure an expectation value on each site in a SimpleLattice, you expect to get an ndarray of dimensions self.Ls, not self.shape. To avoid that problem, SimpleLattice overwrites just the meaning of $u=N o n e$ in mps2lat_values () to be the same as $u=0$.

Parameters

Ls [list of int] the length in each direction
site [Site] the lattice site. The unit_cell of the Lattice is just [site].
**kwargs : Additional keyword arguments given to the Lattice. If order is specified in the form ('standard', snake_windingi, priority), the snake_winding and priority should only be specified for the spatial directions. Similarly, positions can be specified as a single vector.

Attributes

dim The dimension of the lattice.
nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., $x_{-}\{D-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, . ., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$.
mps2lat_values(self, A[, axes, u])	same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, \|***kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	rs.

Table 78 - continued from previous page

position(self, lat_idx)	return 'space' position of one or multiple sites.		
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.		
possible_multi_couplings(self,	u0,		Generalization of possible_couplings () to
:---			
other_us, dx)	\quad	couplings with more than 2 sites.	
:---	:---		

mps2lat_values (self, A, axes $=0, u=$ None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
property dim
The dimension of the lattice.
lat2mps_idx (self, lat_idx)
Translate lattice indices ($\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\mathrm{D}-1\}, \mathrm{u}$) to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.

mps2lat_idx (self, i)

Translate MPS index i to lattice indices ($\left.\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\operatorname{dim}-1\}, \mathrm{u}\right)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len $\operatorname{dim}^{`}+1$ and contains the lattice indices " $\left(x _0, \ldots, x_{-}\{d i m-1\}, u\right)$ ' corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps_idx_fix_u (self, u=None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None | int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site (i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).

```
multi_coupling_shape (self, dx)
```

Calculate correct shape of the strengths for a multi_coupling.

Parameters

dx [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.
ordering (self, order)
Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	($0,1, \ldots$, dim-1, dim)	(False, ..., False, False)
'default'		
'snake'	(0, 1, .., dim-1, dim)	(True, ..., True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, .., 1, 0, dim)	(False, ..., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False, False, False)

Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function, 'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape ($\mathrm{N}, \mathrm{D}+1$), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

$\mathbf{a x}$ [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, ..., u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs=\{\}, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.

For periodic boundary conditions (bc [a] == False) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls [a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x(\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

Square

- full name: tenpy.models.lattice.Square
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.Square (Lx, Ly, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice
A square lattice.

Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] The length in each direction.
site [Site] The local lattice site. The unit_cell of the Lattice is just [site].
**kwargs : Additional keyword arguments given to the Lattice. [[next_]next_]nearest_neighbors are set accordingly. If order is specified in the form ('standard', snake_windingi, priority), the snake_winding and priority should only be specified for the spatial directions. Similarly, positions can be specified as a single vector.

Attributes

nearest_neighbors

next_nearest_neighbors

next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices ($\mathrm{x} _0$,...,$x_{-}\{\mathrm{D}-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices ($\mathrm{x} _0$, . $\text { ., } \left.x_{-}\{\operatorname{dim}-1\}, u\right) \text {. }$
mps2lat_values(self, A[, axes, u])	same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, ***kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings () to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS in$\operatorname{dex} i$
test_sanity(self)	Sanity check.

## count_neighbors (self, $u=0$, key='nearest_neighbors')

Count e.g. the number of nearest neighbors for a site in the bulk.

## Parameters

$\mathbf{u}$ [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

## Returns

number [int] Number of nearest neighbors (or whatever key specified) for the $u$-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape ( $s e l f, d x$ )
Calculate correct shape of the strengths for a coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices $\left(\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\mathrm{D}-1\}, \mathrm{u}\right)$ to MPS index $i$.

## Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

## Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index $i$ to lattice indices ( $\left.x _0, \ldots, x_{-}\{\operatorname{dim}-1\}, u\right)$.

## Parameters

i [int I array_like of int] MPS index/indices.

## Returns

lat_idx [array] First dimensions like $i$, last dimension has len dim $^{`}+1$ and contains the lattice indices " $\left(x _0, \ldots, x _\{\text {dim- } 1\}\right.$, $u$ ) ' corresponding to $i$. For $i$ accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, $A$, axes=0, $u=$ None)
same as Lattice.mps2lat_values(), but ignore $u$, setting it to 0 .
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is $u$.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

## Parameters

$\mathbf{u}$ [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

## Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices $i$ for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row $j$ contains the lattice index (without $u$ ) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$ )
Calculate correct shape of the strengths for a multi_coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors() instead.

## property order

Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.
ordering (self, order)
Provide possible orderings of the $N$ lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(False, $\ldots$, False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(True, $\ldots$, True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $\ldots, 1,0, \operatorname{dim})$	(False, $\ldots$, False, False)
'snakeFstyle'	(dim-1, $, \ldots, 1,0, \operatorname{dim})$	(False,.., False, False)

## Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function, 'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

## Returns

order [array, shape (N, D+1), dtype np.intp] the order to be used for order.

## See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

## Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

## Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

## Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ( $i 0, i 1, \ldots$ ), we plot a connection from the site (i0, i1, ..., u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs=\{\}, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

## Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site $u$ in the unit cell is plotted with a marker markers [ $u$ \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot().

## position (self, lat_idx)

return 'space' position of one or multiple sites.

## Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

## Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$ )
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ( $\mathrm{bc}[\mathrm{a}]==$ False) the index $\mathrm{x} _\mathrm{a}$ is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=x _a<L s[a]$ and $0<=x _a+d x[a]<$ lat.Ls[a].

## Parameters

u1, $\mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

## Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$ )
Generalization of possible_couplings () to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

## Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling().
other_us [list of int] The $u$ of the other_ops in add_multi_coupling().
dx [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

## Returns

mps_ijkl [2D int array] Each row contains MPS indices $i, j, k, l, \ldots$. for each of the operators positions. The positions are defined by $d x$ ( $\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to $i$ ) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index $i$
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

## Triangular

- full name: tenpy.models.lattice.Triangular
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.Triangular(Lx,Ly, site, **kwargs)
Bases: tenpy.models.lattice.SimpleLattice
A triangular lattice.



## Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] The length in each direction.
site [Site] The local lattice site. The unit_cell of the Lattice is just [site].
**kwargs : Additional keyword arguments given to the Lattice. [[next_]next_]nearest_neighbors are set accordingly. If order is specified in the form ('standard', snake_windingi, priority), the snake_winding and priority should only be specified for the spatial directions. Similarly, positions can be specified as a single vector.

## Attributes

nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

## Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., $x _\{D-1\}$, u) to MPS index $i$.
mps2lat_idx(self, i)	Translate MPS index $i$ to lattice indices (x_0, . $\text { ., } \left.x_{-}\{\operatorname{dim}-1\}, u\right) .$
mps2lat_values(self, A[, axes, u])	same as Lattice.mps2lat_values(), but ignore $u$, setting it to 0 .
mps_idx_fix_u(self[,u])	return an index array of MPS indices for which the site within the unit cell is $u$.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the $N$ lattice sites.
plot_basis(self, ax, *1*kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index i
test_sanity(self)	Sanity check.

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
lat2mps_idx (self, lat_idx)
Translate lattice indices ($\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\mathrm{D}-1\}, \mathrm{u}$) to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

\mathbf{i} [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index i to lattice indices ($\left.x _0, \ldots, x_{-}\{\operatorname{dim}-1\}, u\right)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim +1 and contains the lattice indices ' $\left(x _0, \ldots, x_{-}\{\right.$dim- 1$\left.\}, u\right)$ ' corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, A, axes $=0, u=$ None)
same as Lattice.mps2lat_values(), but ignore u, setting it to 0 .
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.

property order

Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.

ordering (self, order)

Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(False, \ldots, False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(True,.., True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $\ldots, 1,0, \operatorname{dim})$	(False, \ldots, False, False)
'snakeFstyle'	(dim-1, $, \ldots, 1,0, \operatorname{dim})$	(False,.., False, False)

Parameters

order [str l ('standard', snake_winding, priority) I ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function,
'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape ($\mathrm{N}, \mathrm{D}+1$), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, ..., u1) to the site (i0 $+d x[0]$, $i 1+d x[1], \ldots, u 2$), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

$\mathbf{a x}$ [matplotlib. axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering (); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot().
position (self, lat_idx)
return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==\mathrm{False}$) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

u1, $\mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
$\mathbf{d x}$ [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, $u 0$, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The u of the other_ops in add_multi_coupling ().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x$ ($\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

TrivialLattice

- full name: tenpy.models.lattice.TrivialLattice
- parent module: tenpy.models.lattice
- type: class
class tenpy.models.lattice.TrivialLattice (mps_sites, **kwargs)
Bases: tenpy.models.lattice. Lattice
Trivial lattice consisting of a single (possibly large) unit cell in 1D.
This is usefull if you need a valid Lattice given just the mps_sites ().

Parameters

mps_sites [list of Site] The sites making up a unit cell of the lattice.
**kwargs : Further keyword arguments given to Lattice.

Attributes

dim The dimension of the lattice.
nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices (x_0, ..., $x _\{D-1\}$, u) to MPS index i.
mps2lat_idx(self, i)	Translate MPS index i to lattice indices (x_0, . $\text { ., } \left.x_{-}\{\operatorname{dim}-1\}, u\right) .$
mps2lat_values(self, A[, axes, u])	Reshape/reorder A to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is u.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[, u])	Deprecated.
ordering(self, order)	Provide possible orderings of the N lattice sites.
plot_basis(self, ax, *1*kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index $i$
test_sanity(self)	Sanity check.

count_neighbors (self, $u=0$, key='nearest_neighbors')
Count e.g. the number of nearest neighbors for a site in the bulk.

## Parameters

$\mathbf{u}$ [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

## Returns

number [int] Number of nearest neighbors (or whatever key specified) for the $u$-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.
coupling_shape (self, $d x$ )
Calculate correct shape of the strengths for a coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
property dim
The dimension of the lattice.
lat2mps_idx (self, lat_idx)
Translate lattice indices ( $\mathrm{x} _0, \ldots, \mathrm{x} _\{\mathrm{D}-1\}, \mathrm{u}$ ) to MPS index $i$.

## Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices ( $\mathrm{x} _0$, $\left.\ldots, x_{-}\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

## Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self, i)
Translate MPS index $i$ to lattice indices ( $\left.\mathrm{x} _0, \ldots, \mathrm{x}_{-}\{\operatorname{dim}-1\}, u\right)$.

## Parameters

i [int I array_like of int] MPS index/indices.

## Returns

lat_idx [array] First dimensions like $i$, last dimension has len dim +1 and contains the lattice indices " $\left(x _0, \ldots, x _\{\text {dim- } 1\}, u\right)$ ' corresponding to $i$. For $i$ accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, $A$, axes $=0, u=$ None)
Reshape/reorder $A$ to replace an MPS index by lattice indices.

## Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if $u$ is None, or A. shape[axes] = self. N_cells if $u$ is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of $A$, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of $u$.

## Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index $j$ is replaced by res_A[..., self.order, ...] = A[..., np.arange(self. N_sites), ...]

## Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array $A$, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function C [i, j], it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument $u$ of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is $u$.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

## Parameters

$\mathbf{u}$ [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

## Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

## Returns

mps_idx [array] MPS indices $i$ for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row $j$ contains the lattice index (without $u$ ) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$ )
Calculate correct shape of the strengths for a multi_coupling.

## Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

## Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$ )
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.
This order defines how an MPS/MPO winds through the lattice.

## ordering (self, order)

Provide possible orderings of the $N$ lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(False, $\ldots$, False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(True,.., True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $., 1,0, \operatorname{dim})$	(False,.., False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False,., False, False)

## Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function,
'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

## Returns

order [array, shape ( $\mathrm{N}, \mathrm{D}+1$ ), dtype np.intp] the order to be used for order.

## See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. Defaults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ( $i 0, i 1, \ldots$ ), we plot a connection from the site (i0, i1, ..., u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot ().
plot_order (self, ax, order=None, textkwargs $=\{ \}$, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

## Parameters

$\mathbf{a x}$ [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering (); by default (None) use order.
textkwargs: "None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

## Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site $u$ in the unit cell is plotted with a marker markers [ $u$ \% len (markers)].
**kwargs : Further keyword arguments given to ax.plot ().
position (self, lat_idx)
return 'space' position of one or multiple sites.

## Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

## Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$ )
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ( $\mathrm{bc}[\mathrm{a}]==\mathrm{False}$ ) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x_a is limited to $0<=$ x_a $<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

## Parameters

u1, $\mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
$\mathbf{d x}$ [array] Length dim. The translation in terms of basis vectors for the coupling.

## Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, u0, other_us, $d x$ )
Generalization of possible_couplings () to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

## Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling ().
other_us [list of int] The $u$ of the other_ops in add_multi_coupling().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

## Returns

mps_ijkl [2D int array] Each row contains MPS indices $i, j, k, l, \ldots$ ` for each of the operators positions. The positions are defined by $d x$ ( $\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to $i$ ) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index $i$

```
test_sanity (self)
```

Sanity check.
Raises ValueErrors, if something is wrong.

## Functions

get_lattice(lattice_name)	Given the name of a Lattice class, create an instance   of it with gi.
get_order(shape, snake_winding[, priority])	Built the Lattice.order in (Snake-) C-Style for a   given lattice shape.
get_order_grouped(shape, groups)	Variant of get_order(), grouping some sites of the   unit cell.

## get_lattice

- full name: tenpy.models.lattice.get_lattice
- parent module: tenpy.models.lattice
- type: function
tenpy.models.lattice.get_lattice (lattice_name)
Given the name of a Lattice class, create an instance of it with gi.


## Parameters

lattice_name [str] Name of a Lattice class defined in the module lattice, for example "Chain", "Square", "Honeycomb", ....
*args, **kwargs Arguments and keyword-arguments for the initialization of the specified lattice class.

## Returns

LatticeClass [(subclass of) Lattice] An instance of the lattice class specified by lattice_name.
get_order

- full name: tenpy.models.lattice.get_order
- parent module: tenpy.models.lattice
- type: function
tenpy.models.lattice.get_order (shape, snake_winding, priority=None)
Built the Lattice. order in (Snake-) C-Style for a given lattice shape.
In this function, the word 'direction' referst to a physical direction of the lattice or the index $u$ of the unit cell as an "artificial direction".


## Parameters

shape [tuple of int] The shape of the lattice, i.e., the length in each direction.
snake_winding [tuple of bool] For each direction one bool, whether we should wind as a "snake" (True) in that direction (i.e., going forth and back) or simply repeat ascending (False)
priority [None I tuple of float] If None (default), use C-Style ordering. Otherwise, this defines the priority along which direction to wind first; the direction with the highest priority increases fastest. For example, "C-Style" order is enforced by priority=(0, 1, 2, ...), and Fortrans F-style order is enforced by priority=(dim, $\operatorname{dim}-1, \ldots, 1$, 0 )
group [None I tuple of tuple] If None (default), ignore it. Otherwise, it specifies that we group the fastests changing dimension

## Returns

order [ndarray (np.prod(shape), len(shape))] An order of the sites for Lattice.order in the specified ordering.

## See also:

Lattice. ordering method in Lattice to obtain the order from parameters.
Lattice.plot_order visualizes the resulting order in a Lattice.
get_order_grouped a variant grouping sites of the unit cell.
get_order_grouped

- full name: tenpy.models.lattice.get_order_grouped
- parent module: tenpy.models.lattice
- type: function
tenpy.models.lattice.get_order_grouped (shape, groups)
Variant of get_order (), grouping some sites of the unit cell.
In this function, the word 'direction' referst to a physical direction of the lattice or the index $u$ of the unit cell as an "artificial direction". This function is usefull for lattices with a unit cell of more than 2 sites (e.g. Kagome). The argument group is a To explain the order, assume we have a 3 -site unit cell in a 2D lattice with shape (Lx, $\mathrm{Ly}, \mathrm{Lu})$. Calling this function with groups $=((1),,(2,0))$ returns an order of the following form:

```
columns: [x, y, u]
[0, 0, 1] # first for u = 1 along y
[0, 1, 1]
 :
[0, Ly-1, 1]
[0, 0, 2] # then for }u=2\mathrm{ and 0
[0, 0, 0]
[0, 1, 2]
[0, 1, 0]
 :
[0, Ly-1, 2]
[0, Ly-1, 0]
and then repeat the above for increasing `x`.
```


## Parameters

shape [tuple of int] The shape of the lattice, i.e., the length in each direction.
groups [tuple of tuple of int] A partition and reordering of range(shape[-1]) into smaller groups. The ordering goes first within a group, then along the last spatial dimensions, then changing between different groups and finally in Cstyle order along the remaining spatial dimensions.

## Returns

order [ndarray (np.prod(shape), len(shape))] An order of the sites for Lattice. order in the specified ordering.

## See also:

Lattice.ordering() method in Lattice to obtain the order from parameters.
Lattice.plot_order() visualizes the resulting order in a Lattice.

## Module description

Classes to define the lattice structure of a model.
The base class Lattice defines the general structure of a lattice, you can subclass this to define you own lattice. The SimpleLattice is a slight simplification for lattices with a single-site unit cell. Further, we have some predefined lattices, namely Chain, Ladder in 1D and Square, Triangular, Honeycomb, and Kagome in 2D.

See also the Introduction to models.
model

- full name: tenpy.models.model
- parent module: tenpy.models
- type: module


## Classes

CouplingMPOModel(model_params)	Combination of the CouplingModel and   MPOModel.
CouplingModel(lattice[, bc_coupling])	Base class for a general model of a Hamiltonian consist-   ing of two-site couplings.
MPOModel(lattice, H_MPO)	Base class for a model with an MPO representation of   the Hamiltonian.
Model(lattice)	Base class for all models.
MultiCouplingModel(lattice[, bc_coupling])	Generalizes CouplingModel to allow couplings in-   volving more than two sites.
NearestNeighborModel(lattice, H_bond)	Base class for a model of nearest neigbor interactions   w.r.t.

## CouplingMPOModel

- full name: tenpy.models.model.CouplingMPOModel
- parent module: tenpy.models.model
- type: class
class tenpy.models.model. CouplingMPOModel (model_params)
Bases: tenpy.models.model.CouplingModel, tenpy.models.model.MPOModel
Combination of the CouplingModel and MPOModel.
This class provides the interface for most of the model classes in tenpy. Examples based on this class are given in xxz_chain and tf_ising.

The __init__ of this function performs the standard initialization explained in Introduction to models, by calling the methods init_lattice () (step 1-4) to initialize a lattice (which in turn calls init_sites ()) and init_terms (). The latter should be overwritten by subclasses to add the desired terms.
As shown in $t f_{-}$ising, you can get a 1D version suitable for TEBD from a general-lattice model by subclassing it once more, only redefining the $\qquad$ init $\qquad$ as follows:

```
def __init__(self, model_params):
 CouplingMPOModel.__init__(self, model_params)
```


## Parameters

model_params [dict] A dictionary with all the model parameters. These parameters are given to the different init_...() methods, and should be read out using get_parameter(). This may happen in any of the init_...() methods. The parameter 'verbose' is read out in the __init__ of this function and specifies how much status information should be printed during initialization. The parameter 'sort_mpo_legs' specifies whether the virtual legs of the MPO should be sorted by charges (see sort_legcharges ()).

## Attributes

name [str] The name of the model, e.g. "XXZChain" or `'"SpinModel".
verbose [int] Level of verbosity (i.e. how much status information to print); higher=more output.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H_{-}$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPsfr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS=" finite" and "periodic" for bc_MPS =" infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to ___init__.

## Returns

lat [Lattice] An initialized lattice.
init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling $($ self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, ul), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p _$string $=$'Id', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self,tol_zero=1e-15)
calculate $H _b o n d$ from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays (self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux(self, strength,dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## CouplingModel

- full name: tenpy.models.model.CouplingModel
- parent module: tenpy.models.model
- type: class
class tenpy.models.model. CouplingModel (lattice, bc_coupling=None)
Bases: tenpy.models.model.Model
Base class for a general model of a Hamiltonian consisting of two-site couplings.
In this class, the terms of the Hamiltonian are specified explicitly as OnsiteTerms or CouplingTerms.
Deprecated since version 0.4.0: bc_coupling will be removed in 1.0.0. To specify the full geometry in the lattice, use the $b c$ parameter of the Lattice.


## Parameters

lattice [Lattice] The lattice defining the geometry and the local Hilbert space(s).
bc_coupling [(iterable of) \{'open' | 'periodic' | int \}] Boundary conditions of the couplings in each direction of the lattice. Defines how the couplings are added in add_coupling (). A single string holds for all directions. An integer shift means that we have periodic boundary conditions along this direction, but shift/tilt by -shift*lattice.basis[0] (~cylinder axis for bc_MPS='infinite') when going around the boundary along this direction.

## Attributes

onsite_terms [\{ 'category': OnsiteTerms\}] The OnsiteTerms ordered by category.
coupling_terms [\{'category’: CouplingTerms\}] The CouplingTerms ordered by category. In a MultiCouplingModel, values may also be MultiCouplingTerms.

## Methods

add_coupling(self, strength, u1, op1, u2,...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, $\mathrm{i}, \mathrm{j}, \ldots)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H$ H_bond from coupling_terms and   onsite_terms.
calc_H_onsite(self[, tol_zero])	Calculate $H _$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots)$.	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	

test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [ str ] Descriptive name used as key for onsite_terms. Defaults to $o p$.
all_onsite_terms (self)
Sum of all onsite_terms.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{d i m-1}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 := lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{d i m-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell[u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.-
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N_{_} s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{\mathrm{s}}$ sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\}$ _i $\{o p 2\} _j$ ".
all_coupling_terms (self)
Sum of all coupling_terms.
calc_H_onsite (self,tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays (self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
calc_H_bond (self,tol_zero=1e-15)
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]

```
calc_H_MPO (self, tol_zero=le-15)
```

Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, dx, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.

## MPOModel

- full name: tenpy.models.model.MPOModel
- parent module: tenpy.models.model
- type: class
class tenpy.models.model.MPOModel (lattice, $H_{-} M P O$ )
Bases: tenpy.models.model.Model
Base class for a model with an MPO representation of the Hamiltonian.
In this class, the Hamiltonian gets represented by an MPO. Thus, instances of this class are suitable for MPObased algorithms like DMRG dmrg and MPO time evolution.

Todo: implement MPO for time evolution...

## Parameters

H_MPO [MPO] The Hamiltonian rewritten as an MPO.
Attributes
H_MPO [tenpy.networks.mpo.MPO] MPO representation of the Hamiltonian.

## Methods

calc_H_bond_from_MPO(self[, tol_zero] $)$	Calculate the bond Hamiltonian from the MPO         Hroup_sites(self[, n, grouped_sites] $)$

## test_sanity

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [Nonellist of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm <tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]

## Model

- full name: tenpy.models.model.Model
- parent module: tenpy.models.model
- type: class
class tenpy.models.model.Model (lattice)
Bases: ob ject
Base class for all models.
The common base to all models is the underlying Hilbert space and geometry, specified by a Lattice.


## Parameters

lattice [Lattice] The lattice defining the geometry and the local Hilbert space(s).

## Attributes

lat [Lattice] The lattice defining the geometry and the local Hilbert space(s).

## Methods

group_sites(self[, n, grouped_sites]) $\quad$ Modify self in place to group sites.
group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.

## MultiCouplingModel

- full name: tenpy.models.model.MultiCouplingModel
- parent module: tenpy.models.model
- type: class

```
class tenpy.models.model.MultiCouplingModel(lattice, bc_coupling=None)
```

Bases: tenpy.models.model. CouplingModel
Generalizes CouplingModel to allow couplings involving more than two sites.
The corresponding couplings can be added with add_multi_coupling() and add_multi_coupling_term() and are saved in coupling_terms, which can now contain instances of MultiCouplingTerms.

## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
```add_multi_coupling(self, strength, u0, op0, ...)```	Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.
add_multi_coupling_term(self, strength, ...)	Add a general M-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_{-}bond from coupling_terms and onsite_terms.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
```coupling_strength_add_ext_flux(self, ...)```	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

add_multi_coupling (self, strength, $u 0$, op0, other_ops, op_string=None, category=None)
Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\operatorname{sum}_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 0 * O P 1 * \ldots * O P M$, where OP_0 : = lat.unit_cell[u0].get_op (op0) acts on the site ( $x _0, \ldots, x_{-}\{d i m-1\}, u 0$ ), and OP_m := lat.unit_cell[other_u[m]].get_op(other_op[m]), m=1...M, acts on the site (x_0+other_dx[m][0], ..., $x _\{d i m-1\}+o t h e r _d x[m][d i m-1]$, other_u[m]). For periodic boundary conditions along direction $a$ (lat.bc[a] == False) the index $x$ _a is taken modulo lat.Ls [a] and runs through range (lat.Ls [a]). For open boundary conditions, x_a is limited to $0<=x _a<L s[a]$ and $0<=x _a+o t h e r _d x[m, a]<$ lat.Ls[a]. The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing all the involved sites $\vec{x}, \vec{x}+$ other $_{d} x[m,:]$.

The necessary terms are just added to coupling_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially and is tiled to the required shape.
$\mathbf{u 0}$ [int] Picks the site lat. unit_cell[u0] for OP0.
op0 [str] Valid operator name of an onsite operator in lat. unit_cell [u0] for OPO.
other_ops [list of ( $u, o p _m, d x$ )] One tuple for each of the other operators OP1, OP2, ... OPM involved. $u$ picks the site lat.unit_cell[u], op_name is a valid operator acting on that site, and $d x$ gives the translation vector between OP 0 and the specified operator.
op_string [str I None] Name of an operator to be used inbetween the operators, excluding the sites on which the operators act. This operator should be defined on all sites in the unit cell.

Special case: If None, auto-determine whether a Jordan-Wigner string is needed (using op_needs_JW ()), for each of the segments inbetween the operators and also on the sites of the left operators. Note that in this case the ordering of the operators is important and handled in the usual convention that OPM acts first and OPO last on a physical state.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 0\}$ _i $\left\{o t h e r _o p s[0]\right\} _j$ \{other_ops[1]\}_k ...".
add_multi_coupling_term (self, strength, ijkl,ops_ijkl,op_string, category=None)
Add a general M-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i j k l}$ [list of int] The MPS indices of the sites on which the operators acts. With $i, j, k, \ldots$ $=i j k l$, we require that they are ordered ascending, $i<j<k<\ldots$ and that $0<=$ i < N_sites. Inidces >= N_sites indicate couplings between different unit cells of an infinite MPS.
ops_ijkl [list of str] Names of the involved operators on sites $i, j, k, \ldots$
op_string [list of str] Names of the operator to be inserted between the operators, e.g., op_string[0] is inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{0 \mathrm{p} 0\}$ _i $\{0$ other_ops [0]\}_j \{other_ops[1]\}_k ...".
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, ul), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.,
GCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p _i, o p _j, o p _s t r i n g=' I d '$ ', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}}$ strength $\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator $\mathrm{OP}=$ lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self,tol_zero=1e-15)
calculate $H _b o n d$ from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self,tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)

Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## NearestNeighborModel

- full name: tenpy.models.model.NearestNeighborModel
- parent module: tenpy.models.model
- type: class

```
class tenpy.models.model.NearestNeighborModel(lattice, H_bond)
```

Bases: tenpy.models.model.Model
Base class for a model of nearest neigbor interactions w.r.t. the MPS index.
In this class, the Hamiltonian $H=\sum_{i} H_{i, i+1}$ is represented by "bond terms" $H_{i, i+1}$ acting only on two neighboring sites $i$ and $i+1$, where $i$ is an integer. Instances of this class are suitable for tebd.
Note that the "nearest-neighbor" in the name referst to the MPS index, not the lattice. In short, this works only for 1-dimensional (1D) nearest-neighbor models: A 2D lattice is internally mapped to a 1D MPS "snake", and even a nearest-neighbor coupling in 2D becomes long-range in the MPS chain.

## Parameters

lattice [tenpy.model.lattice.Lattice] The lattice defining the geometry and the local Hilbert space(s).

H_bond [list of \{Array \| None\}] The Hamiltonian rewritten as sum_i H_bond [i] for MPS indices i. H_bond[i] acts on sites (i-1, i); we require len (H_bond) == lat. N_sites. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

## Attributes

H_bond [list of \{Array I None\}] The Hamiltonian rewritten as sum_i H_bond [i] for MPS indices i. H_bond[i] acts on sites (i-1, i), None represents 0. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

## Methods

bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond      Hamiltonian.
from_MPOModel(mpo_model)	Initialize a NearestNeighborModel from a model   class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
trivial_like_NNModel(self)	Return a NearestNeighborModel with same lattice,   but trivial (H=0) bonds.

## test_sanity

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOMOdel.group_sites ().

## Parameters

mpo_model [MPOMOdel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

## Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define $H_{-}$bond. However, we can initialize a NearestNeighborModel from the MPO:
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)

## trivial_like_NNModel (self)

Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

## Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

## Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond [i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, \quad i$.
group_sites (self, $n=2$, grouped_sites $=$ None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
calc_H_MPO_from_bond (self, tol_zero=le-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.

## Module description

This module contains some base classes for models.
A 'model' is supposed to represent a Hamiltonian in a generalized way. The Lattice specifies the geometry and underlying Hilbert space, and is thus common to all models. It is needed to intialize the common base class Model of all models.

Different algorithms require different representations of the Hamiltonian. For example for DMRG, the Hamiltonian needs to be given as an MPO, while TEBD needs the Hamiltonian to be represented by 'nearest neighbor' bond terms. This module contains the base classes defining these possible representations, namley the MPOMOdel and NearestNeighborModel.

A particular model like the XXZChain should then yet another class derived from these classes. In it's _init_, it needs to explicitly call the MPOModel.__init__(self, lattice, H_MPO), providing an MPO representation of H, and also the NearestNeighborModel.__init__(self, lattice, H_bond), providing a representation of H by bond terms $H_{-}$bond.
The CouplingModel is the attempt to generalize the representation of $H$ by explicitly specifying the couplings in a general way, and providing functionality for converting them into $H_{-} M P O$ and $H_{-} b o n d$. This allows to quickly generate new model classes for a very broad class of Hamiltonians.

For simplicity, the CouplingModel is limited to interactions involving only two sites. Yet, we also provide the MultiCouplingModel to generate Models for Hamiltonians involving couplings between multiple sites.

The CouplingMPOMOdel aims at structuring the initialization for most models and is used as base class in (most of) the predefined models in TeNPy.
See also the introduction in Introduction to models.

## Specific models

tf_ising	Prototypical example of a quantum model: the trans-   verse field Ising model.
xxz_chain	Prototypical example of a 1D quantum model: the spin-
	$1 / 2$ XXZ chain.
spins	Nearest-neighbour spin-S models.
spins_nnn	Next-Nearest-neighbour spin-S models.
fermions_spinless	Spinless fermions with hopping and interaction.
hubbard	Bosonic and fermionic Hubbard models.
hofstadter	Cold atomic (Harper-)Hofstadter model on a strip or
	cylinder.
haldane	Bosonic and fermionic Haldane models.
toric_code	Kitaev's exactly solvable toric code model.

tf_ising

- full name: tenpy.models.tf_ising
- parent module: tenpy.models
- type: module


## Classes

TFIChain(model_params)	The TFIModel on a Chain, suitable for TEBD.
TFIModel(model_params)	Transverse field Ising model on a general lattice.

## TFIChain

- full name: tenpy.models.tf_ising.TFIChain
- parent module: tenpy.models.tf_ising
- type: class
class tenpy.models.tf_ising.TFIChain (model_params)
Bases: tenpy.models.tfising.TFIModel, tenpy.models.model.
NearestNeighborModel
The TFIMOdel on a Chain, suitable for TEBD.
See the TFIModel for the documentation of parameters.


## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H_{-}$bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
from_MPOMOdel(mpo_model)	Initialize a NearestNeighborModel from a model class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel(self)	Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

add_coupling (self, strength, u1, op1, u2, op $2, \quad d x$, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1
:= lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p _$string $=$'Id', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

## all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

## Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

## Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite be E_bond [i] is the energy of bond $i-1, i$.
calc_H_MPO (self, tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, dx, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
$\mathbf{d x}$ [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi $]$ souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```


## classmethod from_MPOModel (mpo_model)

Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

## Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

## Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define $H_{_}$bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" \| "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS="finite" and "periodic" for bc_MPS   aware of the consequences, you should probably not use "pinite. If you are not   (The MPS is still "open", so this will introduce long-range couplings between conditions.   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ -.

## Returns

lat [Lattice] An initialized lattice.

## init_sites (self, model_params)

Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve
model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to __init__.

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

## TFIModel

- full name: tenpy.models.tf_ising.TFIModel
- parent module: tenpy.models.tf_ising
- type: class
class tenpy.models.tf_ising.TFIModel (model_params)
Bases: tenpy.models.model. CouplingMPOModel
Transverse field Ising model on a general lattice.
The Hamiltonian reads:

$$
H=-\sum_{\langle i, j\rangle, i<j} \mathrm{~J} \sigma_{i}^{x} \sigma_{j}^{x}-\sum_{i} \mathrm{~g} \sigma_{i}^{z}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs, each pair appearing exactly once. All parameters are collected in a single dictionary model_params and read out with get_parameter().

## Parameters

conserve [Nonel'parity'] What should be conserved. See SpinHalfSite.
$\mathbf{J}, \mathbf{g}$ [float I array] Couplings as defined for the Hamiltonian above.
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb", ....
bc_MPS [\{'finite' । 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
$\mathbf{L}$ [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
Lx, Ly [int] Length of the lattice in $x$ - and y-direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder'। 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, $\mathrm{i}, \mathrm{j}, \ldots$. $)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[,...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$   onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO   Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H$ H_onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots)$.	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters.
init_lattice(self, model_params)	Define the local Hilbert space and operators; needs   to be implemented in subclasses.
init_sites(self, model_params)	Add the onsite and coupling terms to the model; sub-   classes should implement this.
init_terms(self, model_params)	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ init
$\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.

Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, ul), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p _$string $=$'Id', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self,tol_zero=1e-15)
calculate $H _b o n d$ from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays (self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux(self, strength,dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSSr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MP S="finite" and "periodic" for bc_MPS="infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to __init__.

## Returns

lat [Lattice] An initialized lattice.

## test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.

## Module description

Prototypical example of a quantum model: the transverse field Ising model.
Like the XXZChain, the transverse field ising chain TFIChain is contained in the more general SpinChain; the idea is more to serve as a pedagogical example for a 'model'.
We choose the field along $z$ to allow to conserve the parity, if desired.

## xxz_chain

- full name: tenpy.models.xxz_chain
- parent module: tenpy.models
- type: module


## Classes

XXZChain(model_params)	Spin- $1 / 2$ XXZ chain with Sz conservation.
XXZChain2(model_params)	Another implementation of the Spin- $1 / 2$ XXZ chain   with Sz conservation.

## XXZChain

- full name: tenpy.models.xxz_chain.XXZChain
- parent module: tenpy.models.xxz_chain
- type: class

```
class tenpy.models.xxz_chain.XXZChain(model_params)
 Bases: tenpy.models.model.CouplingModel, tenpy.models.model.
 NearestNeighborModel, tenpy.models.model.MPOModel
```

Spin-1/2 XXZ chain with Sz conservation.
The Hamiltonian reads:

$$
\begin{aligned}
H=\sum_{i} \mathrm{Jxx} / 2\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right) & +\mathrm{Jz} S_{i}^{z} S_{i+1}^{z} \\
& -\sum_{i} \mathrm{hz} S_{i}^{z}
\end{aligned}
$$

All parameters are collected in a single dictionary model_params and read out with get_parameter().

## Parameters

$\mathbf{L}$ [int] Length of the chain.
$\mathbf{J x x}, \mathbf{J z}, \mathbf{h z}$ [float I array] Couplings as defined for the Hamiltonian above.
bc_MPS [\{ ‘finite' | 'infinte'\}] MPS boundary conditions. Coupling boundary conditions are chosen appropriately.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilil_bondlpsi>.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
Calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H_{\text {_onsite }}$ from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
from_MPOMOdel(mpo_model)	Initialize a NearestNeighborModel from a model class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel(self)	Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

add_coupling (self, strength, u1, op1, u2, op $2, \quad d x$, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $\left.x_{-}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1], u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{$dim-1\} are determined from the boundary conditions in possible_couplings ().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
u1 [int] Picks the site lat.unit_cell [u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell[u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction $-d x$, complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.,
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\left\{\right.$ op1\}_i $\{o p 2\} _j "$.
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{d i m-1}}$ strength $\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator $\mathrm{OP}=1 \mathrm{lat}$. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., x_\{dim-1\}, u), to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i, o p$, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

## Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

## Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, i$.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=le-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm <tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.

Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi $]$ souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```


## classmethod from_MPOModel (mpo_model)

Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

## Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

## Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define H_bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial ( $\mathrm{H}=0$ ) bonds.

## XXZChain2

- full name: tenpy.models.xxz_chain.XXZChain2
- parent module: tenpy.models.xxz_chain
- type: class
class tenpy.models.xxz_chain.xxzChain2 (model_params)
Bases: tenpy.models.model.CouplingMPOModel, tenpy.models.model.
NearestNeighborModel
Another implementation of the Spin-1/2 XXZ chain with Sz conservation.
This implementation takes the same parameters as the XXZChain, but is implemented based on the CouplingMPOModel.


## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to ons ite_terms.
add_onsite_term(self, strength, i, op[, $\ldots$ ])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond   Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$   onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO   Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H _$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots$..)	Initialize a NearestNeighborModel from a model   class defining an MPO.
from_MPOModel(mpo_model)	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters.   Define the local Hilbert space and operators; needs   to be implemented in subclasses.
init_lattice(self, model_params)	Add the onsite and coupling terms to the model; sub-   classes should implement this.
init_terms(self, model_params)	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	Return a NearestNeighborModel with same lattice,   but trivial (H=0) bonds.
trivial_like_NNModel(self)	

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to __init__.

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{d i m-1}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., $\left.x_{-}\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{-}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, u2). Possible combinations $x_{_} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of op1 or op2 acts first
on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', ul, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p _$string $=' I d^{\prime}$, category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{0 \mathrm{p} 1\} _$_ $\{o p 2\} _j$ ".
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat. unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
i [int] The MPS index of the site on which the operator acts. We require $0<=i<L$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

```
all_coupling_terms (self)
```

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

## Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

## Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, i$.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=le-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero=1e-15)
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self,tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays (self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.

When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'cd', u1, 'C', -dx)
```


## classmethod from_MPOModel (mpo_model)

Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

## Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

## Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define $H_{_}$bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPsfr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS=" finite" and "periodic" for bc_MPS =" infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to __init__
$\qquad$

## Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial ( $\mathrm{H}=0$ ) bonds.

## Module description

Prototypical example of a 1D quantum model: the spin-1/2 XXZ chain.
The XXZ chain is contained in the more general SpinChain; the idea of this module is more to serve as a pedagogical example for a model.

## spins

- full name: tenpy.models.spins
- parent module: tenpy.models
- type: module


## Classes

SpinChain(model_params)	The SpinModel on a Chain, suitable for TEBD.
SpinModel(model_params)	Spin-S sites coupled by nearest neighbour interactions.

## SpinChain

- full name: tenpy.models.spins.SpinChain
- parent module: tenpy.models.spins
- type: class
class tenpy.models.spins.SpinChain (model_params)
Bases: tenpy.models.spins.SpinModel, tenpy.models.model.NearestNeighborModel
The SpinModel on a Chain, suitable for TEBD.
See the SpinModel for the documentation of parameters.


## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, $\mathrm{i}, \mathrm{j}, \ldots$.	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H$ _bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
```coupling_strength_add_ext_flux(self, ...)```	Add an external flux to the coupling strength.
from_MPOModel(mpo_model)	Initialize a NearestNeighborModel from a model class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

Table 98 - continued from previous page
trivial_like_NNModel(self) Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ...,
 from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the $o p_{-}$string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, ul, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', ul, 'Cu', -dx) # h.c.s
Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{_} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies $<$ psilH_bondlpsi>.

Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, i$.
calc_H_MPO (self, tol_zero $=1 e-15$)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self,tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling(), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define H_{-}bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSr	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
LX, Ly	int	The length in x- and y-direction. For "inf inite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder " " ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite" and "periodic" for bc_MPS=" infinite. If you are not aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to \qquad init \qquad —.

Returns

lat [Lattice] An initialized lattice.

init_sites (self, model_params)

Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init \qquad _.

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

```
init_terms(self, model_params)
```

Add the onsite and coupling terms to the model; subclasses should implement this.

```
test_sanity(self)
```

Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

SpinModel

- full name: tenpy.models.spins.SpinModel
- parent module: tenpy.models.spins
- type: class
class tenpy.models.spins.SpinModel (model_params)
Bases: tenpy.models.model. CouplingMPOModel
Spin-S sites coupled by nearest neighbour interactions.
The Hamiltonian reads:

$$
\begin{array}{r}
H=\sum_{\langle i, j\rangle, i<j}\left(\mathrm{Jx} S_{i}^{x} S_{j}^{x}+\mathrm{Jy} S_{i}^{y} S_{j}^{y}+\mathrm{Jz} S_{i}^{z} S_{j}^{z}+\mathrm{muJ} i / 2\left(S_{i}^{-} S_{j}^{+}-S_{i}^{+} S_{j}^{-}\right)\right) \\
\\
-\sum_{i}\left(\mathrm{hx} S_{i}^{x}+\mathrm{hy} S_{i}^{y}+\mathrm{hz} S_{i}^{z}\right) \\
+\sum_{i}\left(\mathrm{D}\left(S_{i}^{z}\right)^{2}+\mathrm{E}\left(\left(S_{i}^{x}\right)^{2}-\left(S_{i}^{y}\right)^{2}\right)\right)
\end{array}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs. All parameters are collected in a single dictionary model_params and read out with get_parameter().

Parameters

$\mathbf{S}[\{0.5,1,1.5,2, \ldots\}]$ The $2 \mathrm{~S}+1$ local states range from $\mathrm{m}=-\mathrm{S},-\mathrm{S}+1, \ldots+\mathrm{S}$.
conserve ['best'। 'Sz' | 'parity' | None] What should be conserved. See SpinSite. For 'best ', we check the parameters what can be preserved.
$\mathbf{J x}, \mathbf{J y}, \mathbf{J z}, \mathbf{h x}, \mathbf{h y}, \mathbf{h z}, \mathbf{m u J}, \mathbf{D}$, E: float I array Couplings as defined for the Hamiltonian above.
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb",
bc_MPS [\{ 'finite' | 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
\mathbf{L} [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
Lx, Ly [int] Length of the lattice in x - and y -direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder' | 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
Calc_H_onsite(self[, tol_zero])	Calculate $H_{\text {_onsite }}$ from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

```
init_sites(self,model_params)
```

Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to ___init__.

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., $\left.x _\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\left\{\right.$dim-1\} + dx[dim-1], u2). Possible combinations $x _0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat. unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction $-d x$, complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\rightarrow \text { Cdagger_down C_up}
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{i} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat. unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]

```
calc_H_bond_from_MPO (self, tol_zero=le-15)
```

Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self,tol_zero=1e-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [Nonellist of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.

init_lattice (self, model_params)

Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPsir	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MP S=" finite" and "periodic" for bc_MP S=" infinite. If you are not aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to __init__
\qquad
\qquad .

Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

Module description

Nearest-neighbour spin-S models.
Uniform lattice of spin-S sites, coupled by nearest-neighbour interactions.

spins_nnn

- full name: tenpy.models.spins_nnn
- parent module: tenpy.models
- type: module

Classes

SpinChainNNN(model_params)	Spin-S sites coupled by (next-)nearest neighbour inter- actions on a GroupedSite.
SpinChainNNN2(model_params)	Spin-S sites coupled by next-nearest neighbour interac- tions.

SpinChainNNN

- full name: tenpy.models.spins_nnn.SpinChainNNN
- parent module: tenpy.models.spins_nnn
- type: class
class tenpy.models.spins_nnn. SpinChainNNN (model_params)
Bases: tenpy.models.model.CouplingMPOModel, tenpy.models.model.
NearestNeighborModel
Spin-S sites coupled by (next-)nearest neighbour interactions on a GroupedSite.
The Hamiltonian reads:

$$
\begin{array}{r}
H=\sum_{\langle i, j\rangle, i<j} \mathrm{Jx} S_{i}^{x} S_{j}^{x}+\mathrm{Jy} S_{i}^{y} S_{j}^{y}+\mathrm{Jz} S_{i}^{z} S_{j}^{z} \\
+\sum_{\langle\langle i, j\rangle\rangle, i<j} \mathrm{Jxp} S_{i}^{x} S_{j}^{x}+\mathrm{Jyp} S_{i}^{y} S_{j}^{y}+\mathrm{Jzp} S_{i}^{z} S_{j}^{z} \\
-\sum_{i} \mathrm{hx} S_{i}^{x}+\mathrm{hy} S_{i}^{y}+\mathrm{hz} S_{i}^{z}
\end{array}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbors and $\langle\langle i, j\rangle\rangle, i<j$ denotes next nearest neighbors. All parameters are collected in a single dictionary model_params and read out with get_parameter ().

Parameters

\mathbf{L} [int] Length of the chain in terms of GroupedSite, i.e. we have $2 * \mathrm{~L}$ spin sites.
$\mathbf{S}[\{0.5,1,1.5,2, \ldots\}]$ The $2 \mathrm{~S}+1$ local states range from $\mathrm{m}=-\mathrm{S},-\mathrm{S}+1, \ldots+\mathrm{S}$.
conserve ['best' I 'Sz' I 'parity' I None] What should be conserved. See SpinSite.
$\mathbf{J x , ~ J y , ~ J z , ~ J x p}, \mathbf{J y p}, \mathbf{J z p}, \mathbf{h x}, \mathbf{h y}, \mathbf{h z}$ [float I array] Couplings as defined for the Hamiltonian above.
bc_MPS [\{'finite'। 'infinte'\}] MPS boundary conditions. Coupling boundary conditions are chosen appropriately.

Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum- ming over lattice sites.
add_coupling_term(self, strength, $\mathbf{i}, \mathrm{j}, \ldots)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, \mathbf{u}, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, $\mathbf{i}, \mathrm{op}[, \ldots])$	Add an onsite term on a given MPS site.

Continued on next page

Table 101 - continued from previous page

all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self, $\ldots \text {... }$	Add an external flux to the coupling strength.
from_MPOMOdel(mpo_model)	Initialize a NearestNeighborModel from a model class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel(self)	Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init \qquad .

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op $2, \quad d x$, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., $\left.x_{-}\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ...,
$\left.x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1], u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat. unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
->Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p _i, o p _j, o p _s t r i n g=' I d '$ ', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., $o p_{-} i$ acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string $[\operatorname{str}]$ The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=i<L$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, \quad i$.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters

tol_zero [float] Arrays with norm <tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero=le-15)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self,tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm <tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
$\mathbf{d x}$ [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi $]$ souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define H_{-}bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSI	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" \| "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS=" finite" and "perioodic" for bc_MPS= infinite. If you are not aware of the consequences, you should probably not tuse "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to \qquad init \qquad _.

Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial ($\mathrm{H}=0$) bonds.

SpinChainNNN2

- full name: tenpy.models.spins_nnn.SpinChainNNN2
- parent module: tenpy.models.spins_nnn
- type: class
class tenpy.models.spins_nnn. SpinChainNNN2 (model_params)
Bases: tenpy.models.model. CouplingMPOModel
Spin-S sites coupled by next-nearest neighbour interactions.
The Hamiltonian reads:

$$
\begin{array}{r}
H=\sum_{\langle i, j\rangle, i<j} \mathrm{Jx} S_{i}^{x} S_{j}^{x}+\mathrm{Jy} S_{i}^{y} S_{j}^{y}+\mathrm{Jz} S_{i}^{z} S_{j}^{z} \\
+\sum_{\langle\langle i, j\rangle\rangle, i<j} \mathrm{Jxp} S_{i}^{x} S_{j}^{x}+\mathrm{Jyp} S_{i}^{y} S_{j}^{y}+\mathrm{Jzp} S_{i}^{z} S_{j}^{z} \\
-\sum_{i} \mathrm{hx} S_{i}^{x}+\mathrm{hy} S_{i}^{y}+\mathrm{hz} S_{i}^{z}
\end{array}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbors and $\langle\langle i, j\rangle\rangle, i<j$ denotes next nearest neighbors. All parameters are collected in a single dictionary model_params and read out with get_parameter ().

Parameters

$\mathbf{S}[\{0.5,1,1.5,2, \ldots\}]$ The $2 S+1$ local states range from $m=-S,-S+1, \ldots+S$.
conserve ['best' | 'Sz' | 'parity' | None] What should be conserved. See SpinSite. For 'best', we check the parameters what can be preserved.
$\mathbf{J x}, \mathbf{J y}, \mathbf{J z}, \mathbf{J x p}, \mathbf{J y p}, \mathbf{J z p}, \mathbf{h x}, \mathbf{h y}$, hz [float I array] Couplings as defined for the Hamiltonian above.
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb",
bc_MPS [\{'finite' | 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
\mathbf{L} [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
$\mathbf{L x}, \mathbf{L y}$ [int] Length of the lattice in x - and y -direction. Only used if lattice is the name of a 2 D Lattice.
bc_y ['ladder'। 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H_{\text {_onsite }}$ from self.onsite_terms.
```coupling_strength_add_ext_flux(self, ...)```	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites(self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

## init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{d i m-1}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., $\left.x_{-}\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ...,
$\left.x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1], u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat. unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
->Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p _i, o p _j, o p _s t r i n g=' I d '$ ', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., $o p_{-} i$ acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string $[\operatorname{str}]$ The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero $=1 e-15$ )
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux(self, strength,dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between op1 and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSfr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MP S=" finite" and "periodic" for bc_MP S="infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ .

## Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## Module description

Next-Nearest-neighbour spin-S models.
Uniform lattice of spin-S sites, coupled by next-nearest-neighbour interactions. We have two variants implementing the same hamiltonian. The SpinChainNNN uses the GroupedSite to keep it a NearestNeighborModel suitable for TEBD, while the SpinChainNNN2 just involves longer-range couplings in the MPO. The latter is preferable for pure DMRG calculations and avoids having to add each of the short range couplings twice for the grouped sites.

Note that you can also get a NearestNeighborModel for TEBD from the latter by using group_sites () and from_MPOModel(). An example for such a case is given in the file examples/c_tebd.py.

## fermions_spinless

- full name: tenpy.models.fermions_spinless
- parent module: tenpy.models
- type: module

Classes

FermionChain(model_params)	The FermionModel on a Chain, suitable for TEBD.
FermionModel(model_params)	Spinless fermions with particle number conservation.

## FermionChain

- full name: tenpy.models.fermions_spinless.FermionChain
- parent module: tenpy.models.fermions_spinless
- type: class

```
class tenpy.models.fermions_spinless.FermionChain(model_params)
 Bases: tenpy.models.fermions_spinless.FermionModel, tenpy.models.model.
 NearestNeighborModel
```

The FermionModel on a Chain, suitable for TEBD.
See the FermionModel for the documentation of parameters.

## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, $\mathbf{i}, \mathrm{j}, \ldots)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.

Table 104 - continued from previous page

calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond   Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$   onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO   Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H$ _onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots$.)	Initialize a NearestNeighborModel from a model   class defining an MPO.
from_MPOModel(mpo_model)	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters.
init_lattice(self, model_params)	Define the local Hilbert space and operators; needs   to be implemented in subclasses.
init_sites(self, model_params)	Add the onsite and coupling terms to the model; sub-   classes should implement this.
init_terms(self, model_params)	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	Return a NearestNeighborModel with same lattice,   but trivial (H=0) bonds.
trivial_like_NNModel(self)	

add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ...,
 from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should
be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}}$ strength $\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator $\mathrm{OP}=$ lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i, o p$, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

## Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

## Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, \quad i$.
calc_H_MPO (self, tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=le-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm <tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self,tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays (self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling(), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>>}\mathrm{ strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength__add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

## Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

## Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define H_bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)

Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPsfr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS=" finite" and "periodic" for bc_MPS =" infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to ___init__.

## Returns

lat [Lattice] An initialized lattice.
init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

## init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.

## test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial ( $\mathrm{H}=0$ ) bonds.

## FermionModel

- full name: tenpy.models.fermions_spinless.FermionModel
- parent module: tenpy.models.fermions_spinless
- type: class
class tenpy.models.fermions_spinless.FermionModel (model_params)
Bases: tenpy.models.model. CouplingMPOModel
Spinless fermions with particle number conservation.
The Hamiltonian reads:

$$
\begin{array}{r}
H=\sum_{\langle i, j\rangle, i<j}-\mathrm{J}\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+\mathrm{V} n_{i} n_{j} \\
-\sum_{i} \operatorname{mu} n_{i}
\end{array}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs. All parameters are collected in a single dictionary model_params and read out with get_parameter().

Warning: Using the Jordan-Wigner string (JW) is crucial to get correct results! See Fermions and the Jordan-Wigner transformation for details.

## Parameters

conserve ['best' I 'N' I 'parity' I None] What should be conserved. See FermionSite. For 'best', we check the parameters what can be preserved.
J, V, mu [float I array] Hopping, interaction and chemical potential as defined for the Hamiltonian above.
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb", ....
bc_MPS [\{'finite'। 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
$\mathbf{L}$ [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
$\mathbf{L x}, \mathbf{L y}$ [int] Length of the lattice in x - and y-direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder' I 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
```coupling_strength_add_ext_flux(self, ...)```	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init \qquad .

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling $($ self, strength, ul, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ...,
$\left.x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1], u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u} 2$ [int] Picks the site lat. unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.,
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{_}$string $=' I d$ ', category $\left.=N o n e\right)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=$ i $<\mathrm{L}$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero $=1 e-15$)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond $($ self, tol_zero $=1 e-15)$
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites $=$ None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSf	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MP S="finite" and "periodic" for bc_MPS aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to \qquad init \qquad .

Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

Module description

Spinless fermions with hopping and interaction.
Todo: -add further terms (e.g. c^{\wedge} dagger c^{\wedge} dagger + h.c.) to the Hamiltonian.

hubbard

- full name: tenpy.models.hubbard
- parent module: tenpy.models
- type: module

Classes

BoseHubbardChain(model_params)	The BoseHubbardModel on a Chain, suitable for
	TEBD.
BoseHubbardModel(model_params)	Spinless Bose-Hubbard model.
FermiHubbardChain(model_params)	The FermiHubbardModel on a Chain, suitable for
	TEBD.
FermiHubbardModel(model_params)	Spin-1/2 Fermi-Hubbard model.

BoseHubbardChain

- full name: tenpy.models.hubbard.BoseHubbardChain
- parent module: tenpy.models.hubbard
- type: class
class tenpy.models.hubbard. BoseHubbardChain (model_params)
Bases: tenpy.models.hubbard.BoseHubbardModel, tenpy.models.model.
NearestNeighborModel
The BoseHubbardModel on a Chain, suitable for TEBD.
See the BoseHubbardModel for the documentation of parameters.

Methods

add_coupling(self, strength, u1, op1, u2,...)	Add twosite coupling terms to the Hamiltonian, sum- ming over lattice sites.
add_coupling_term(self, strength, $\mathbf{i}, \mathrm{j}, \ldots)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.

Table 107 - continued from previous page

calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H _bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_{1} onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
\ldots)	Initialize a NearestNeighborModel from a model class defining an MPO.
from_MPOModel(mpo_model)	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters. Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_lattice(self, model_params)	Add the onsite and coupling terms to the model; sub- classes should implement this.
init_sites(self, model_params)	Sanity check, raises ValueErrors, if something is wrong.
test_sanity(self)	Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.
trivial_like_NNModel(self)	

add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{d i m-1}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 := lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{-}\{\operatorname{dim}-1\}+d x\left[\right.$ dim-1], u2). Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
u1 [int] Picks the site lat.unit_cell [u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat.unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell [u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat.unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should
be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p _i, o p_{-} j, o p _$string $=$'Id', category=None $)$
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=i<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies <psilH_bondlpsi>.

Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, i+1. (i.e. we omit bond 0 between sites L-1 and 0); for infinite bc E_bond [i] is the energy of bond $i-1, \quad i$.
calc_H_MPO (self, tol_zero $=1 e-15$)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=le-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters
tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength__with_flux = self.coupling_strength_add_eext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, ul, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'cd', ul, 'C', -dx)
```

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define $H_{_}$bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSSr	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to " open" for bc_MPS="finite" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to __init__.

Returns

lat [Lattice] An initialized lattice.
init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init \qquad .

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.

test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial ($\mathrm{H}=0$) bonds.

BoseHubbardModel

- full name: tenpy.models.hubbard.BoseHubbardModel
- parent module: tenpy.models.hubbard
- type: class
class tenpy.models.hubbard. BoseHubbardModel (model_params)
Bases: tenpy.models.model. CouplingMPOModel
Spinless Bose-Hubbard model.
The Hamiltonian is:

$$
H=-t \sum_{\langle i, j\rangle, i<j}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+V \sum_{\langle i, j\rangle, i<j} n_{i} n_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)-\mu \sum_{i} n_{i}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs. All parameters are collected in a single dictionary model_params and read out with get_parameter().

Parameters

n_max [int] Maximum number of bosons per site.
filling [float] Average filling.
conserve: \{'best'|'N'I 'parity' | None\} What should be conserved. See BosonSite.
$\mathbf{t}, \mathbf{U}, \mathbf{V}, \mathbf{m u}$ [float | array] Couplings as defined in the Hamiltonian above. Note the signs!
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb",
bc_MPS [\{ 'finite' | 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
\mathbf{L} [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
$\mathbf{L x}, \mathbf{L y}$ [int] Length of the lattice in x - and y -direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder' I 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum- ming over lattice sites.
add_coupling_term(self, strength, $\mathrm{i}, \mathrm{j}, \ldots$)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, \ldots])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.

Continued on next page

Table 108 - continued from previous page

Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite terms.
Calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
Calc_H_onsite(self[, tol_zero])	Calculate $H_{\text {_onsite }}$ from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites (self, model_params)

Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init \qquad .

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling(self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
    self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{\mathbf{\prime}}$ sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\left\{\right.$ op1\}_i $\{o p 2\} _j$ ".
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero $=1 e-15$)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self,tol_zero=le-15)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the Fermionsite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSr	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" \| "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS="finite" and "periodic" for bc_MPS="infinite. If you are not aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to __init__.
\qquad .

Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

FermiHubbardChain

- full name: tenpy.models.hubbard.FermiHubbardChain
- parent module: tenpy.models.hubbard
- type: class

```
class tenpy.models.hubbard.FermiHubbardChain(model_params)
    Bases: tenpy.models.hubbard.FermiHubbardModel, tenpy.models.model.
    NearestNeighborModel
```

The FermiHubbardModel on a Chain, suitable for TEBD.
See the FermiHubbardModel for the documentation of parameters.

Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum- ming over lattice sites.
add_coupling_term(self, strength, $\mathrm{i}, \mathrm{j}, \ldots)$	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[,..])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
bond_energies(self, psi)	Calculate bond energies <psilH_bondlpsi>.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_MPO_from_bond(self[, tol_zero])	Calculate the MPO Hamiltonian from the bond Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$ onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H _$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength. $\ldots)$.
from_MPOModel(mpo_model)	Initialize a NearestNeighborModel from a model class defining an MPO.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; sub- classes should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel(self)	Return a NearestNeighborModel with same lattice, but trivial (H=0) bonds.

add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 : = lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, u2). Possible combinations $x_{_} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
    self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{\mathbf{\prime}}$ sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator $O P=1$ at. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
bond_energies (self, psi)
Calculate bond energies $<$ psilH_bondlpsi>.

Parameters

psi [MPS] The MPS for which the bond energies should be calculated.

Returns

E_bond [1D ndarray] List of bond energies: for finite bc, E_Bond[i] is the energy of bond i, $\quad i+1$. (i.e. we omit bond 0 between sites $L-1$ and 0); for infinite be E_bond [i] is the energy of bond $i-1, i$.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_MPO_from_bond (self, tol_zero=1e-15)
Calculate the MPO Hamiltonian from the bond Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self,tol_zero=1e-15)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=1e-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of

 NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']
Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_{-}onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

classmethod from_MPOModel (mpo_model)
Initialize a NearestNeighborModel from a model class defining an MPO.
This is especially usefull in combination with MPOModel.group_sites ().

Parameters

mpo_model [MPOModel] A model instance implementing the MPO. Does not need to be a NearestNeighborModel, but should only have nearest-neighbor couplings.

Examples

The SpinChainNNN2 has next-nearest-neighbor couplings and thus only implements an MPO:

```
>>> from tenpy.models.spins_nnn import SpinChainNNN2
>>> nnn_chain = SpinChainNNN2({'L': 20})
parameter 'L'=20 for SpinChainNNN2
>>> print(isinstance(nnn_chain, NearestNeighborModel))
False
>>> print("range before grouping:", nnn_chain.H_MPO.max_range)
range before grouping: 2
```

By grouping each two neighboring sites, we can bring it down to nearest neighbors.

```
>>> nnn_chain.group_sites(2)
>>> print("range after grouping:", nnn_chain.H_MPO.max_range)
range after grouping: 1
```

Yet, TEBD will not yet work, as the model doesn't define H_{-}bond. However, we can initialize a NearestNeighborModel from the MPO:

```
>>> nnn_chain_for_tebd = NearestNeighborModel.from_MPOModel(nnn_chain)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSI	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" \| "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS=" finite" and "perioodic" for bc_MPS= infinite. If you are not aware of the consequences, you should probably not tuse "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to __init_.

Returns

lat [Lattice] An initialized lattice.
init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.
Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to \qquad init_ —.

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
trivial_like_NNModel (self)
Return a NearestNeighborModel with same lattice, but trivial $(\mathrm{H}=0)$ bonds.

FermiHubbardModel

- full name: tenpy.models.hubbard.FermiHubbardModel
- parent module: tenpy.models.hubbard
- type: class

class tenpy.models.hubbard.FermiHubbardModel (model_params)

Bases: tenpy.models.model. CouplingMPOModel
Spin-1/2 Fermi-Hubbard model.
The Hamiltonian reads:
$H=-\sum_{\langle i, j\rangle, i<j, \sigma} t\left(c_{\sigma, i}^{\dagger} c_{\sigma j}+h . c.\right)+\sum_{i} U n_{\uparrow, i} n_{\downarrow, i}-\sum_{i} \mu\left(n_{\uparrow, i}+n_{\downarrow, i}\right)+\sum_{\langle i, j\rangle, i<j, \sigma} V\left(n_{\uparrow, i}+n_{\downarrow, i}\right)\left(n_{\uparrow, j}+n_{\downarrow, j}\right)$
Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs. All parameters are collected in a single dictionary model_params and read out with get_parameter().

Warning: Using the Jordan-Wigner string (JW) is crucial to get correct results! See Fermions and the Jordan-Wigner transformation for details.

Parameters

cons_N [\{'N' | 'parity' | None\}] Whether particle number is conserved, see SpinHalfFermionSite for details.
cons_Sz [\{'Sz'। 'parity'। None\}] Whether spin is conserved, see SpinHalfFermionSite for details.
$\mathbf{t}, \mathbf{U}, \mathbf{m u}$ [float I array] Parameters as defined for the Hamiltonian above. Note the signs!
lattice [str I Lattice] Instance of a lattice class for the underlaying geometry. Alternatively a string being the name of one of the Lattices defined in lattice, e.g. "Chain", "Square", "HoneyComb",
bc_MPS [\{'finite'। 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
\mathbf{L} [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
$\mathbf{L x}, \mathbf{L y}$ [int] Length of the lattice in x - and y -direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder'। 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
Calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H_{\text {_onsite }}$ from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to __init__.

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{d i m-1}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 := lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat. unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add__coupling(t, ul, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', ul, 'Cu', -dx) # h.c.s
Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{_} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i, o p$, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero=1e-15)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self,tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
$\mathbf{d x}$ [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPsir	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MP S=" finite" and "periodic" for bc_MP S=" infinite. If you are not aware of the consequences, you should probably not use "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to \qquad _init \qquad _.

Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

Module description

Bosonic and fermionic Hubbard models.

hofstadter

- full name: tenpy.models.hofstadter
- parent module: tenpy.models
- type: module

Classes

HofstadterBosons(model_params)	Bosons on a square lattice with magnetic flux.
HofstadterFermions(model_params)	Fermions on a square lattice with magnetic flux.

HofstadterBosons

- full name: tenpy.models.hofstadter.HofstadterBosons
- parent module: tenpy.models.hofstadter
- type: class
class tenpy.models.hofstadter. HofstadterBosons (model_params)
Bases: tenpy.models.model. CouplingModel, tenpy.models.model.MPOModel
Bosons on a square lattice with magnetic flux.
For now, the Hamiltonian reads:

$$
\begin{aligned}
H=- & \sum_{x, y} \mathrm{Jx}\left(e^{i \mathrm{phi}_{x, y}} a_{x+1, y}^{\dagger} a_{x, y}+h . c .\right) \\
- & \sum_{x, y} \mathrm{Jy}\left(e^{i \mathrm{phi}_{x, y}} a_{x, y+1}^{\dagger} a_{x, y}+h . c .\right) \\
& +\sum_{x, y} \frac{\mathrm{U}}{2} n_{x, y}\left(n_{x, y}-1\right)-\operatorname{mu} n_{x, y}
\end{aligned}
$$

where $e^{i \mathrm{phi}_{x, y}}$ is a complex Aharonov-Bohm hopping phase, depending on lattice coordinates and gauge choice (see tenpy.models.hofstadter.gauge_hopping()).

All parameters are collected in a single dictionary model_params and read out with get_parameter().

Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] Size of the simulation unit cell in terms of lattice sites.
$\mathbf{m x}, \mathbf{m y}$ [int] Size of the magnetic unit cell in terms of lattice sites.
Nmax [int] Maximum number of bosons per site.
filling [tuple] Average number of fermions per site, defined as a fraction (numerator, denominator) Changes the definition of ' dN ' in the Bosonsite.
$\mathbf{J x}, \mathbf{J y}, \mathbf{m u}$, U: float Hamiltonian parameters as defined above.
bc_MPS [\{ 'finite' । 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly.
bc_x ['periodic'। 'open'] Boundary conditions in x-direction
bc_y ['ladder' I 'cylinder'] Boundary conditions in y-direction.
conserve [\{ 'N' I 'parity' I None \}] What quantum number to conserve.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering()
phi [tuple] Magnetic flux density, defined as a fraction (numerator, denominator)
phi_ext [float] External magnetic flux 'threaded' through the cylinder.
gauge ['landau_x'। 'landau_y'। 'symmetric'] Choice of the gauge used for the magnetic field. This changes the magnetic unit cell.

Methods

add_coupling(self, strength, u1, op1, u2,...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
```coupling_strength_add_ext_flux(self, ...)```	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.


init_lattice	
init_sites	
init_terms	

add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[ul].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{d i m-1\}+d x[\operatorname{dim}-1]$, $\left.u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().
The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell [u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat.unit_cell[u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op 2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
 self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l$ <-> $u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.s
Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\left\{\right.$ op1\}_i $\{o p 2\} _j "$.
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{d i m-1}}$ strength $\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator $\mathrm{OP}=1 \mathrm{lat}$. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., x_\{dim-1\}, u), to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

## all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero $=1 e-15$ )
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.

## test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.

## HofstadterFermions

- full name: tenpy.models.hofstadter.HofstadterFermions
- parent module: tenpy.models.hofstadter
- type: class
class tenpy.models.hofstadter. HofstadterFermions (model_params)
Bases: tenpy.models.model.CouplingMPOModel
Fermions on a square lattice with magnetic flux.
For now, the Hamiltonian reads:

$$
\begin{array}{r}
H=-\sum_{x, y} \mathrm{Jx}\left(e^{i \mathrm{phi}_{x, y}} c_{x, y}^{\dagger} c_{x+1, y}+h . c .\right) \\
-\sum_{x, y} \mathrm{Jy}\left(e^{i \mathrm{phi}_{x, y}} c_{x, y}^{\dagger} c_{x, y+1}+h . c .\right)+\sum_{x, y} \mathrm{v}\left(n_{x, y} n_{x, y+1}+n_{x, y} n_{x+1, y}-\sum_{x, y} \operatorname{mu} n_{x, y}\right.
\end{array}
$$

where $e^{i \mathrm{phi}_{x, y}}$ is a complex Aharonov-Bohm hopping phase, depending on lattice coordinates and gauge choice (see tenpy.models.hofstadter.gauge_hopping()).
All parameters are collected in a single dictionary model_params and read out with get_parameter().

## Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] Size of the simulation unit cell in terms of lattice sites.
$\mathbf{m x}, \mathbf{m y}$ [int] Size of the magnetic unit cell in terms of lattice sites.
filling [tuple] Average number of fermions per site, defined as a fraction (numerator, denominator) Changes the definition of ' dN ' in the FermionSite.
$\mathbf{J x}, \mathbf{J y}, \mathbf{m u}, \mathbf{v}$ : float Hamiltonian parameters as defined above.
bc_MPS [\{ ‘finite' । 'infinite' \}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly.
bc_x ['periodic' I 'open'] Lattice boundary conditions in x-direction
bc_y ['ladder' | 'cylinder'] Lattice boundary conditions in y-direction.
conserve [ ' $N$ ' I 'parity' I None \}] What quantum number to conserve.
order [string] Ordering of the sites in the MPS, e.g. 'default', ‘snake'; see ordering().
phi [tuple] Magnetic flux density, defined as a fraction (numerator, denominator)
phi_ext [float] External magnetic flux 'threaded' through the cylinder.
gauge ['landau_x'। 'landau_y'। 'symmetric'] Choice of the gauge used for the magnetic field. This changes the magnetic unit cell. See gauge_hopping () for details.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ init $\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

## init_lattice (self, model_params)

Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Latt ice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSSr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS=" finite" and "periodic" for bc_MP S="infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to ___init__.

## Returns

lat [Lattice] An initialized lattice.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op $1, \quad u 2, \quad o p 2, d x$, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $\left.x_{-}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1], u 2\right)$. Possible combinations $x_{-} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings ().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.
The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell[u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat.unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op 2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op 2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
 self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx, complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u l$ <-> $u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.s
Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, $u$, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., x_\{dim-1\}, u), to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat. unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i, o p$, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

## all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=1e-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$ )
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self,tol_zero=le-15)
Calculate $H_{-}$onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux (self, strength, dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.

## test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.

## Functions

## gauge_hopping

- full name: tenpy.models.hofstadter.gauge_hopping
- parent module: tenpy.models.hofstadter
- type: function
tenpy.models.hofstadter.gauge_hopping (model_params)
Compute hopping amplitudes for the Hofstadter models based on a gauge choice.
In the Hofstadter model, the magnetic field enters as an Aharonov-Bohm phase. This phase is dependent on a choice of gauge, which simultaneously defines a 'magnetic unit cell' (MUC).

The magnetic unit cell is the smallest set of lattice plaquettes that encloses an integer number of flux quanta. It can be user-defined by setting mx and my , but for common gauge choices is computed based on the flux density.
The gauge choices are:

- 'landau_x': Landau gauge along the $x$-axis. The magnetic unit cell will have shape :math $(m a t h t t\{\mathrm{mx}\}, 1)$. For flux densities $p / q, m x$ will default to q . Example: at a flux density $1 / 3$, the magnetic unit cell will have shape $(3,1)$, so it encloses exactly 1 flux quantum.
- 'landau_y': Landau gauge along the y-axis. The magnetic unit cell will have shape :math ${ }^{(1,}$ mathtt $\{\mathrm{my}\})^{\prime}$. For flux densities :math`p/q`, my will default to q. Example: at a flux density $3 / 7$, the magnetic unit cell will have shape $(1,7)$, so it encloses axactly 3 flux quanta.
- 'symmetric': symmetric gauge. The magnetic unit cell will have shape ( $\mathrm{mx}, \mathrm{my}$ ), with $m x=m y$. For flux densities $p / q, m x$ and $m y$ will default to $q$ Example: at a flux density 4/9, the magnetic unit cell will have shape $(9,9)$.


## Parameters

gauge ['landau_x' | 'landau_y' I 'symmetric'] Choice of the gauge, see table above.
$\mathbf{m x}, \mathbf{m y}$ [int I None] Dimensions of the magnetic unit cell in terms of lattice sites. None defaults to the minimal choice compatible with gauge and phi_pq.
$\mathbf{J x}$, Jy: float 'Bare' hopping amplitudes (without phase). Without any flux we have hop_x = $-J x$ and hop_y = -Jy.
phi_pq [tuple (int, int)] Magnetic flux as a fraction p/q, defined as (p, q)

## Returns

hop_x, hop_y [float I array] Hopping amplitudes to be used as prefactors for $c_{x, y}^{\dagger} c_{x+1, y}$ (hop_x) and $c_{x, y}^{\dagger} c_{x, y+1}$ (hop_x), respectively, with the necessary phases for the gauge.

## Module description

Cold atomic (Harper-)Hofstadter model on a strip or cylinder.
Todo: WARNING: These models are still under development and not yet tested for correctness. Use at your own risk! Replicate known results to confirm models work correctly. Long term: implement different lattices. Long term: implement variable hopping strengths Jx, Jy.

## haldane

- full name: tenpy.models.haldane
- parent module: tenpy.models
- type: module


## Classes

BosonicHaldaneModel(model_params)	Hardcore bosonic Haldane model.
FermionicHaldaneModel(model_params)	Spinless fermionic Haldane model.

## BosonicHaldaneModel

- full name: tenpy.models.haldane.BosonicHaldaneModel
- parent module: tenpy.models.haldane
- type: class

```
class tenpy.models.haldane.BosonicHaldaneModel (model_params)
 Bases: tenpy.models.model.CouplingMPOModel
```

Hardcore bosonic Haldane model.
The Hamiltonian reads:

$$
H=\sum_{i j} t_{i j} b_{i}^{\dagger} b_{j}+\sum_{i} \mu\left(n_{A, i}-n_{B, i}\right)+V \sum_{\langle i j\rangle, i<j} n_{A, i} n_{B, j}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs and $n_{A}, n_{B}$ are the number operators on the A and B sites. Hopping is allowed to nearest and next-nearest neighbor sites with amplitudes $t_{\langle i j\rangle}=t_{1} \in \mathbb{R}$ and $t_{\langle\langle i j\rangle}=$ $t_{2} e^{ \pm i \phi} \in \mathbb{C}$ respectively, where $\pm \phi$ is the phase acquired by a boson hopping between atoms in the same sublattice with a sign given by the direction of the hopping. This Hamiltonian is translated from [Grushin2015]. All parameters are collected in a single dictionary model_params and read out with get_parameter().

## Parameters

conserve ['best'। 'N' । 'parity' । None] What should be conserved. See BosonSite. For 'best ', we check the parameters that can be preserved.
$\mathbf{t 1 , ~ t 2 , ~ V , ~ m u ~ [ f l o a t ~ I ~ a r r a y ] ~ H o p p i n g , ~ i n t e r a c t i o n ~ a n d ~ c h e m i c a l ~ p o t e n t i a l ~ a s ~ d e f i n e d ~ f o r ~ t h e ~}$ Hamiltonian above. The default value for t 2 is chosen to achieve the optimal band flatness ratio.
bc_MPS [\{ 'finite'। 'infinte'\}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x-direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
$\mathbf{L}$ [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
Lx, Ly [int] Length of the lattice in $x$ - and y-direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder' I 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$   onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO   Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H _$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots$. $)$	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters.
init_lattice(self, model_params)	Define the local Hilbert space and operators; needs   to be implemented in subclasses.
init_sites(self, model_params)	Add the onsite and coupling terms to the model; sub-   classes should implement this.
init_terms(self, model_params)	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice() to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ -.

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.

## init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., x_\{dim-1\}, u1), and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, u2). Possible combinations $x_{_} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat. unit_cell [u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that $o p 2$ acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form "\{op1\}_i $\{o p 2\} _j "$.

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add__coupling(t, ul, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', ul, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', ul, 'Cu', -dx) # h.c.u
Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{_} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i, o p$, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=\mathrm{i}<\mathrm{L}$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.

## all_coupling_terms (self)

Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero=1e-15)
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.
coupling_strength_add_ext_flux (self, strength, $d x$, phase)
Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
$\mathbf{d x}$ [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phil)
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', ul, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.
The following model parameters get read out.

key	type	description			
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.			
bc_MPSfr	Boundary conditions for the MPS				
or-   der	str	The order of sites within the lattice for non-trivial lattices.			
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.			
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while $L y$ gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   $b c _y . ~ O n l y ~ r e a d ~ o u t ~ f o r ~ 2 D ~ l a t t i c e s . ~$	$	$	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out
:---					
for 2D lattices.					

## Parameters

model_params [dict] The model parameters given to ___init__.

## Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## FermionicHaldaneModel

- full name: tenpy.models.haldane.FermionicHaldaneModel
- parent module: tenpy.models.haldane
- type: class
class tenpy.models.haldane.FermionicHaldaneModel(model_params)
Bases: tenpy.models.model. CouplingMPOModel
Spinless fermionic Haldane model.
The Hamiltonian reads:

$$
H=\sum_{i j} t_{i j} c_{i}^{\dagger} c_{j}+\sum_{i} \mu\left(n_{A, i}-n_{B, i}\right)+V \sum_{\langle i j\rangle, i<j} n_{A, i} n_{B, j}
$$

Here, $\langle i, j\rangle, i<j$ denotes nearest neighbor pairs and $n_{A}, n_{B}$ are the number operators on the A and B sites. Hopping is allowed to nearest and next-nearest neighbor sites with amplitudes $t_{\langle i j\rangle}=t_{1} \in \mathbb{R}$ and $t_{\langle\langle i j\rangle\rangle}=$ $t_{2} e^{ \pm i \phi} \in \mathbb{C}$ respectively, where $\pm \phi$ is the phase acquired by an electron hopping between atoms in the same sublattice with a sign given by the direction of the hopping. This Hamiltonian is described in [Grushin2015]. All parameters are collected in a single dictionary model_params and read out with get_parameter ().

Warning: Using the Jordan-Wigner string (JW) is crucial to get correct results! See Fermions and the Jordan-Wigner transformation for details.

## Parameters

conserve ['best' I 'N' I 'parity' I None] What should be conserved. See FermionSite. For 'best', we check the parameters what can be preserved.
t1, t2, V, mu [float I array] Hopping, interaction and chemical potential as defined for the Hamiltonian above. The default value for t 2 is chosen to achieve the optimal band flatness ratio.
bc_MPS [\{ ‘finite' । 'infinte' \}] MPS boundary conditions along the x-direction. For 'infinite' boundary conditions, repeat the unit cell in x-direction. Coupling boundary conditions in x -direction are chosen accordingly. Only used if lattice is a string.
order [string] Ordering of the sites in the MPS, e.g. 'default', 'snake'; see ordering(). Only used if lattice is a string.
$\mathbf{L}$ [int] Lenght of the lattice. Only used if lattice is the name of a 1D Lattice.
Lx, Ly [int] Length of the lattice in x- and y-direction. Only used if lattice is the name of a 2D Lattice.
bc_y ['ladder' I 'cylinder'] Boundary conditions in y-direction. Only used if lattice is the name of a 2D Lattice.

## Methods

add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, sum-   ming over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate $H _b o n d ~ f r o m ~ c o u p l i n g _t e r m s ~ a n d ~$   onsite_terms.
calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO   Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate $H _$onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self,	Add an external flux to the coupling strength.
$\ldots$. $)$	Modify self in place to group sites.
group_sites(self[, n, grouped_sites])	Initialize a lattice for the given model parameters.
init_lattice(self, model_params)	Define the local Hilbert space and operators; needs   to be implemented in subclasses.
init_sites(self, model_params)	Add the onsite and coupling terms to the model; sub-   classes should implement this.
init_terms(self, model_params)	Sanity check, raises ValueErrors, if something is   wrong.
test_sanity(self)	

[^1]Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best " to indicate the optimal parameters.

## Parameters

model_params [dict] The model parameters given to $\qquad$ _init__
$\qquad$ .

## Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_terms (self, model_params)
Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left=False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP 1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., $\left.x _\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\left\{\right.$dim-1\} + dx[dim-1], u2). Possible combinations $x _0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites $\vec{x}$ and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

## Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat. unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell[u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the op_string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op 2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of op1 (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

## Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$ ). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, ul, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', ul, 'Cu', -dx) # h.c.,
->Cdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p_{-} i, o p_{-} j, o p_{-}$string $=$'Id', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 1\} _i \quad\{o p 2\} _j "$.
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{d i m-1}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.\mathrm{x} _\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.

The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

## Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u}$ [int] Picks a Site lat. unit_cell[u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat. unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, $i$, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(...).

## Parameters

strength [float] The strength of the term.
$\mathbf{i}$ [int] The MPS index of the site on which the operator acts. We require $0<=i<L$.
op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero=le-15)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

## Parameters

tol_zero [float] Prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero=le-15)
calculate $H$ _bond from coupling_terms and onsite_terms.

## Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]

```
calc_H_bond_from_MPO (self, tol_zero=le-15)
```

Calculate the bond Hamiltonian from the MPO Hamiltonian.

## Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

## Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

## Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

## Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

## Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux(self, strength,dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

## Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between opl and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

## Returns

strength [complex array] The strength array to be used as strength in add_coupling() with the given $d x$.

## Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the $x$-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).
This has to be done after finishing initialization and can not be reverted.

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [Nonellist of GroupedSite] The sites grouped together.

## Returns

grouped_sites [list of GroupedSite] The sites grouped together.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat-   tice	str I   Lat-   tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly   self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSSr	Boundary conditions for the MPS	
or-   der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out   for 1D lattices.
Lx,   Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in   x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives   the circumference around the cylinder or width of th the rung for a ladder (depending on   bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" I "ladder". The boundary conditions in y-direction. Only read out   for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice,   i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open"   for bc_MPS=" finite" and "periodic" for bc_MP S="infinite. If you are not   aware of the consequences, you should probably not use "periodic" boundary conditions.   (The MPS is still "open", so this will introduce long-range couplings between the first   and last sites of the MPS!)

## Parameters

model_params [dict] The model parameters given to __init__
$\qquad$
$\qquad$ .

## Returns

lat [Lattice] An initialized lattice.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## Module description

Bosonic and fermionic Haldane models.
toric_code

- full name: tenpy.models.toric_code
- parent module: tenpy.models
- type: module


## Classes

DualSquare(Lx, Ly, sites, ${ }^{* *}$ kwargs)	The dual lattice of the square lattice (again square).
ToricCode(model_params)	Toric code model.

## DualSquare

- full name: tenpy.models.toric_code.DualSquare
- parent module: tenpy.models.toric_code
- type: class
class tenpy.models.toric_code.DualSquare (Lx, Ly, sites, **kwargs)
Bases: tenpy.models.lattice.Lattice
The dual lattice of the square lattice (again square).
The sites in this lattice correspond to the vertical and horizontal (nearest neighbor) bonds of a common Square lattice with the same dimensions $L x, L y$.



## Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] Dimensions of the original lattice. This lattice has $2 * L x * L y$ sites.
sites [Site] The sites for the horizontal (first entry) and vertical (second entry) bonds.
**kwargs: Additional keyword arguments given to the Lattice. basis, pos and [[next_]next_]nearest_neighbors are set accordingly.

## Attributes

dim The dimension of the lattice.
nearest_neighbors
next_nearest_neighbors
next_next_nearest_neighbors
order Defines an ordering of the lattice sites, thus mapping the lattice to a 1D chain.

## Methods

count_neighbors(self[, u, key])	Count e.g.
coupling_shape(self, dx)	Calculate correct shape of the strengths for a coupling.
lat2mps_idx(self, lat_idx)	Translate lattice indices ( $x _0, \ldots, x_{-}\{D-1\}$, u) to MPS index $i$.
mps2lat_idx(self, i)	Translate MPS index $i$ to lattice indices ( $x _0$, . ., $\left.x_{-}\{\operatorname{dim}-1\}, \quad u\right)$.
mps2lat_values(self, A[, axes, u])	Reshape/reorder $A$ to replace an MPS index by lattice indices.
mps_idx_fix_u(self[, u])	return an index array of MPS indices for which the site within the unit cell is $u$.
mps_lat_idx_fix_u(self[, u])	Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.
mps_sites(self)	Return a list of sites for all MPS indices.
multi_coupling_shape(self, dx)	Calculate correct shape of the strengths for a multi_coupling.
number_nearest_neighbors(self[, u])	Deprecated.
number_next_nearest_neighbors(self[,   u])	Deprecated.
ordering(self, order)	Provide possible orderings of the $N$ lattice sites.
plot_basis(self, ax, **kwargs)	Plot arrows indicating the basis vectors of the lattice.
plot_bc_identified(self, ax[, direction, shift])	Mark two sites indified by periodic boundary conditions.
plot_coupling(self, ax[, coupling])	Plot lines connecting nearest neighbors of the lattice.
plot_order(self, ax[, order, textkwargs])	Plot a line connecting sites in the specified "order" and text labels enumerating them.
plot_sites(self, ax[, markers])	Plot the sites of the lattice with markers.
position(self, lat_idx)	return 'space' position of one or multiple sites.
possible_couplings(self, u1, u2, dx)	Find possible MPS indices for two-site couplings.
```possible_multi_couplings(self, u0, other_us, dx)```	Generalization of possible_couplings() to couplings with more than 2 sites.
site(self, i)	return Site instance corresponding to an MPS index i
test_sanity(self)	Sanity check.

count_neighbors (self, $u=0$, key='nearest_neighbors')

Count e.g. the number of nearest neighbors for a site in the bulk.

Parameters

\mathbf{u} [int] Specifies the site in the unit cell, for which we should count the number of neighbors (or whatever key specifies).
key [str] Key of pairs to select what to count.

Returns

number [int] Number of nearest neighbors (or whatever key specified) for the u-th site in the unit cell, somewhere in the bulk of the lattice. Note that it might not be the correct value at the edges of a lattice with open boundary conditions.

coupling_shape (self, $d x$)

Calculate correct shape of the strengths for a coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
property dim
The dimension of the lattice.
lat2mps_idx (self, lat_idx)
Translate lattice indices $\left(x_{_} 0, \ldots, x_{_}\{D-1\}, u\right)$ to MPS index i.

Parameters

lat_idx [array_like [..., dim+1]] The last dimension corresponds to lattice indices (x_0, ..., $\left.x _\{D-1\}, u\right)$. All lattice indices should be positive and smaller than the corresponding entry in self.shape. Exception: for "infinite" $b c_{-} M P S$, an $x_{-} 0$ outside indicates shifts accross the boundary.

Returns

i [array_like] MPS index/indices corresponding to lat_idx. Has the same shape as lat_idx without the last dimension.
mps2lat_idx (self,i)
Translate MPS index i to lattice indices ($x _0$, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$.

Parameters

i [int I array_like of int] MPS index/indices.

Returns

lat_idx [array] First dimensions like i, last dimension has len dim $^{`}+1$ and contains the lattice indices " $\left(x _0, \ldots, x_{_}\{\text {dim- } 1\}, u\right)^{\prime}$ corresponding to i. For i accross the MPS unit cell and "infinite" $b c_{-} M P S$, we shift $x_{-} 0$ accordingly.
mps2lat_values (self, A, axes $=0, u=$ None)
Reshape/reorder A to replace an MPS index by lattice indices.

Parameters

A [ndarray] Some values. Must have A.shape[axes] = self.N_sites if u is None, or A. shape[axes] = self. N_cells if u is an int.
axes [(iterable of) int] chooses the axis which should be replaced.
u [None lint] Optionally choose a subset of MPS indices present in the axes of A, namely the indices corresponding to self.unit_cell[u], as returned by mps_idx_fix_u(). The resulting array will not have the additional dimension(s) of u.

Returns

res_A [ndarray] Reshaped and reordered verions of A. Such that an MPS index j is replaced by res_A[..., self.order, ...] = A[..., np.arange(self. N_sites), ...]

Examples

Say you measure expection values of an onsite term for an MPS, which gives you an 1D array A, where $A[i]$ is the expectation value of the site given by self.mps2lat_idx(i). Then this function gives you the expectation values ordered by the lattice:

```
>>> print(lat.shape, A.shape)
(10, 3, 2) (60,)
>>> A_res = lat.mps2lat_values(A)
>>> A_res.shape
(10, 3, 2)
>>> A_res[lat.mps2lat_idx(5)] == A[5]
True
```

If you have a correlation function C [i, j], it gets just slightly more complicated:

```
>>> print(lat.shape, C.shape)
(10, 3, 2) (60, 60)
>>> lat.mps2lat_values(C, axes=[0, 1]).shape
(10, 3, 2, 10, 3, 2)
```

If the unit cell consists of different physical sites, an onsite operator might be defined only on one of the sites in the unit cell. Then you can use mps_idx_fix_u() to get the indices of sites it is defined on, measure the operator on these sites, and use the argument u of this function.

```
>>> u = 0
>>> idx_subset = lat.mps_idx_fix_u(u)
>>> A_u = A[idx_subset]
>>> A_u_res = lat.mps2lat_values(A_u, u=u)
>>> A_u_res.shape
(10, 3)
>>> np.all(A_res[:, :, u] == A_u_res[:, :])
True
```

Todo: make sure this function is used for expectation values...
mps_idx_fix_u (self, $u=$ None)
return an index array of MPS indices for which the site within the unit cell is u.
If you have multiple sites in your unit-cell, an onsite operator is in general not defined for all sites. This functions returns an index array of the mps indices which belong to sites given by self. unit_cell[u].

Parameters

\mathbf{u} [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices for which self.site(i) is self.unit_cell[u]. Ordered ascending.
mps_lat_idx_fix_u (self, $u=$ None)
Similar as mps_idx_fix_u(), but return also the corresponding lattice indices.

Parameters

u [None I int] Selects a site of the unit cell. None (default) means all sites.

Returns

mps_idx [array] MPS indices i for which self.site(i) is self.unit_cell[u].
lat_idx [2D array] The row j contains the lattice index (without u) corresponding to mps_idx[j].
mps_sites (self)
Return a list of sites for all MPS indices.
Equivalent to [self.site(i) for i in range(self.N_sites)].
This should be used for sites of 1D tensor networks (MPS, MPO,...).
multi_coupling_shape (self, $d x$)
Calculate correct shape of the strengths for a multi_coupling.

Parameters

$\mathbf{d x}$ [tuple of int] Translation vector in the lattice for a coupling of two operators.

Returns

coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
shift_lat_indices [array] Translation vector from lower left corner of box spanned by $d x$ to the origin.
number_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors () instead.
number_next_nearest_neighbors (self, $u=0$)
Deprecated.
Use count_neighbors() instead.
property order
Defines an ordering of the lattice sites, thus mapping the lattice to a 1 D chain.
This order defines how an MPS/MPO winds through the lattice.
ordering (self, order)
Provide possible orderings of the N lattice sites.
This function can be overwritten by derived lattices to define additional orderings. The following orders are defined in this method:

order	equivalent priority	equivalent snake_winding
'Cstyle'	$(0,1, \ldots$, dim-1, dim)	(False, \ldots, False, False)
'default'		
'snake'	$(0,1, \ldots, \operatorname{dim}-1, \operatorname{dim})$	(True, \ldots, True, True)
'snakeCstyle'		
'Fstyle'	(dim-1, $\ldots, 1,0, \operatorname{dim})$	(False, \ldots, False, False)
'snakeFstyle'	$(\operatorname{dim}-1, \ldots, 1,0, \operatorname{dim})$	(False,.., False, False)

Parameters

order [str l ('standard', snake_winding, priority) | ('grouped', groups)] Specifies the desired ordering using one of the strings of the above tables. Alternatively, an ordering is specified by a tuple with first entry specifying a function, 'standard' for get_order() and 'grouped' for get_order_grouped(), and other arguments in the tuple as specified in the documentation of these functions.

Returns

order [array, shape ($\mathrm{N}, \mathrm{D}+1$), dtype np.intp] the order to be used for order.

See also:

get_order generates the order from equivalent priority and snake_winding.
get_order_grouped variant of get_order.
plot_order visualizes the resulting order.
plot_basis (self, ax, **kwargs)
Plot arrows indicating the basis vectors of the lattice.

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
**kwargs : Keyword arguments specifying the "arrowprops" of ax. annotate.
plot_bc_identified (self, ax, direction=-1, shift=None, **kwargs)
Mark two sites indified by periodic boundary conditions.
Works only for lattice with a 2-dimensional basis.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
direction [int] The direction of the lattice along which we should mark the idenitified sites. If None, mark it along all directions with periodic boundary conditions.
shift [None I np.ndarray] The origin starting from where we mark the identified sites. De-
faults to the first entry of unit_cell_positions.
**kwargs : Keyword arguments for the used ax.plot.
plot_coupling (self, ax, coupling=None, **kwargs)
Plot lines connecting nearest neighbors of the lattice.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
coupling [list of (u1, u2, dx)] By default (None), use self. pairs['nearest_neighbors']. Specifies the connections to be plotted; iteating over lattice indices ($i 0, i 1, \ldots$), we plot a connection from the site (i0, i1, ..., u1) to the site (i0+dx[0], i1+dx[1], ..., u2), taking into account the boundary conditions.
**kwargs : Further keyword arguments given to ax.plot ().
plot_order (self, ax, order=None, textkwargs=\{\}, **kwargs)
Plot a line connecting sites in the specified "order" and text labels enumerating them.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
order [None I 2D array (self.N_sites, self.dim+1)] The order as returned by ordering(); by default (None) use order.
textkwargs: "'None" I dict If not None, we add text labels enumerating the sites in the plot. The dictionary can contain keyword arguments for ax.text ().
**kwargs : Further keyword arguments given to ax.plot ().
plot_sites (self, ax, markers=['o', '^', 's', 'p', 'h', 'D'], **kwargs)
Plot the sites of the lattice with markers.

Parameters

ax [matplotlib.axes.Axes] The axes on which we should plot.
markers [list] List of values for the keywork marker of ax.plot () to distinguish the different sites in the unit cell, a site u in the unit cell is plotted with a marker markers [u \% len(markers)].
**kwargs : Further keyword arguments given to ax.plot ().

position (self, lat_idx)

return 'space' position of one or multiple sites.

Parameters

lat_idx [ndarray, (. . . , dim+1)] Lattice indices.

Returns

pos [ndarray, (..., dim)] The position of the lattice sites specified by lat_idx in realspace.
possible_couplings (self, $u 1, u 2, d x$)
Find possible MPS indices for two-site couplings.
For periodic boundary conditions ($\mathrm{bc}[\mathrm{a}]==\mathrm{False}$) the index x _a is taken modulo Ls [a] and runs through range (Ls [a]). For open boundary conditions, x _a is limited to $0<=x_{\text {_ }}<$ Ls [a] and $0<=x _a+d x[a]<$ lat.Ls[a].

Parameters

$\mathbf{u 1 ,} \mathbf{u 2}$ [int] Indices within the unit cell; the $u 1$ and $u 2$ of add_coupling ()
dx [array] Length dim. The translation in terms of basis vectors for the coupling.

Returns

mps1, mps2 [array] For each possible two-site coupling the MPS indices for the $u 1$ and $u 2$.
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
possible_multi_couplings (self, u0, other_us, $d x$)
Generalization of possible_couplings() to couplings with more than 2 sites.
Given the arguments of add_coupling() determine the necessary shape of strength.

Parameters

$\mathbf{u 0}$ [int] Argument $u 0$ of add_multi_coupling().
other_us [list of int] The u of the other_ops in add_multi_coupling().
$\mathbf{d x}$ [array, shape (len(other_us), lat.dim+1)] The $d x$ specifying relative operator positions of the other_ops in add_multi_coupling().

Returns

mps_ijkl [2D int array] Each row contains MPS indices i, j, k, l, \ldots. for each of the operators positions. The positions are defined by $d x$ ($\mathrm{j}, \mathrm{k}, 1, \ldots$ relative to i) and boundary coundary conditions of self (how much the box for given $d x$ can be shifted around without hitting a boundary - these are the different rows).
lat_indices [2D int array] Rows of lat_indices correspond to rows of mps_ijkl and contain the lattice indices of the "lower left corner" of the box containing the coupling.
coupling_shape [tuple of int] Len dim. The correct shape for an array specifying the coupling strength. lat_indices has only rows within this shape.
site (self, i)
return Site instance corresponding to an MPS index i
test_sanity (self)
Sanity check.
Raises ValueErrors, if something is wrong.

ToricCode

- full name: tenpy.models.toric_code.ToricCode
- parent module: tenpy.models.toric_code
- type: class
class tenpy.models.toric_code.ToricCode (model_params)
Bases: tenpy.models.model.CouplingMPOModel, tenpy.models.model.
MultiCouplingModel
Toric code model.
The Hamiltonian reads:

$$
H=-\mathrm{Jv} \sum_{\text {verticesv }} \prod_{i \in v} \sigma_{i}^{x}-\mathrm{Jp} \sum_{\text {plaquettesp }} \prod_{i \in p} \sigma_{i}^{z}
$$

(Note that this are Pauli matrices, not spin-1/2 operators.) All parameters are collected in a single dictionary model_params and read out with get_parameter().

Parameters

$\mathbf{L x}, \mathbf{L y}$ [int] Dimension of the lattice, number of plaquettes around the cylinder.
conserve ['parity' I None] What should be conserved. See SpinHalfSite.
Jc, Jp: float | array Couplings as defined for the Hamiltonian above.
be_MPS [\{ 'finite' | 'infinte'\}] MPS boundary conditions. Coupling boundary conditions are chosen appropriately.
order [str] The order of the lattice sites in the lattice, see DualSquare.

Methods	
add_coupling(self, strength, u1, op1, u2, ...)	Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_multi_coupling(self, strength, u0, op0, ...)	Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.
add_multi_coupling_term(self, strength, ...)	Add a general M-site coupling term on given MPS sites.
add_onsite(self, strength, u, opname[, category])	Add onsite terms to onsite_terms.
add_onsite_term(self, strength, i, op[, ...])	Add an onsite term on a given MPS site.
all_coupling_terms(self)	Sum of all coupling_terms.
all_onsite_terms(self)	Sum of all onsite_terms.
Calc_H_MPO(self[, tol_zero])	Calculate MPO representation of the Hamiltonian.
calc_H_bond(self[, tol_zero])	calculate H_bond from coupling_terms and onsite_terms.
Calc_H_bond_from_MPO(self[, tol_zero])	Calculate the bond Hamiltonian from the MPO Hamiltonian.
calc_H_onsite(self[, tol_zero])	Calculate H_onsite from self.onsite_terms.
coupling_strength_add_ext_flux(self, ...)	Add an external flux to the coupling strength.
group_sites(self[, n, grouped_sites])	Modify self in place to group sites.
init_lattice(self, model_params)	Initialize a lattice for the given model parameters.
init_sites(self, model_params)	Define the local Hilbert space and operators; needs to be implemented in subclasses.
init_terms(self, model_params)	Add the onsite and coupling terms to the model; subclasses should implement this.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

init_sites (self, model_params)
Define the local Hilbert space and operators; needs to be implemented in subclasses.
This function gets called by init_lattice () to get the Site for the lattice unit cell.

Note: Initializing the sites requires to define the conserved quantum numbers. All pre-defined sites accept conserve=None to disable using quantum numbers. Many models in TeNPy read out the conserve model parameter, which can be set to "best" to indicate the optimal parameters.

Parameters

model_params [dict] The model parameters given to __init__.

Returns

sites [(tuple of) Site] The local sites of the lattice, defining the local basis states and operators.
init_lattice (self, model_params)
Initialize a lattice for the given model parameters.
This function reads out the model parameter lattice. This can be a full Lattice instance, in which case it is just returned without further action. Alternatively, the lattice parameter can be a string giving the name of one of the predefined lattices, which then gets initialized. Depending on the dimensionality of the lattice, this requires different model parameters.

The following model parameters get read out.

key	type	description
lat- tice	str I Lat- tice	The name of a lattice pre-defined in TeNPy to be initialized. Alternatively, a (possibly self-defined) Lattice instance. In the latter case, no further parameters are read out.
bc_MPSir	Boundary conditions for the MPS	
or- der	str	The order of sites within the lattice for non-trivial lattices.
L	int	The length in x-direction (or lenght of the unit cell for infinite systems). Only read out for 1D lattices.
Lx, Ly	int	The length in x- and y-direction. For "infinite" bc_MPS, the system is infinite in x-direction and $L x$ is the number of "rings" in the infinite MPS unit cell, while Ly gives the circumference around the cylinder or width of th the rung for a ladder (depending on bc_y. Only read out for 2D lattices.
bc_y	str	"cylinder" \| "ladder". The boundary conditions in y-direction. Only read out for 2D lattices.
bc_x	str	"open" I "periodic". Can be used to force "periodic" boundaries for the lattice, i.e., for the couplings in the Hamiltonian, even if the MPS is finite. Defaults to "open" for bc_MPS=" finite" and "periodic" for bc_MPS= "infinite. If you are not aware of the consequences, you should probably not tuse "periodic" boundary conditions. (The MPS is still "open", so this will introduce long-range couplings between the first and last sites of the MPS!)

Parameters

model_params [dict] The model parameters given to \qquad init \qquad -.

Returns

lat [Lattice] An initialized lattice.

init_terms (self, model_params)

Add the onsite and coupling terms to the model; subclasses should implement this.
add_coupling (self, strength, u1, op1, u2, op2, dx, op_string=None, str_on_first=True, raise_op2_left $=$ False, category=None)
Add twosite coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\sum_{x_{0}, \ldots, x_{\operatorname{dim-1}}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 1 * O P 2$, where OP1 : = lat.unit_cell[u1].get_op(op1) acts on the site (x_0, ..., $\left.x _\{d i m-1\}, u 1\right)$, and OP2 := lat.unit_cell[u2].get_op(op2) acts on the site (x_0+dx[0], ..., $x_{_}\{\operatorname{dim}-1\}+d x[\operatorname{dim}-1]$, u2). Possible combinations $x_{_} 0, \ldots, x_{-}\{d i m-1\}$ are determined from the boundary conditions in possible_couplings().

The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing the involved sites \vec{x} and $\vec{x}+\overrightarrow{d x}$.

The necessary terms are just added to coupling_terms; doesn't (re)build the MPO.
Deprecated since version 0.4.0: The arguments str_on_first and raise_op2_left will be removed in version 1.0.0.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially (see above). If an array of smaller size is provided, it gets tiled to the required shape.
$\mathbf{u 1}$ [int] Picks the site lat.unit_cell[u1] for OP1.
op1 [str] Valid operator name of an onsite operator in lat. unit_cell [u1] for OP1.
$\mathbf{u 2}$ [int] Picks the site lat.unit_cell[u2] for OP2.
op2 [str] Valid operator name of an onsite operator in lat. unit_cell [u2] for OP2.
dx [iterable of int] Translation vector (of the unit cell) between OP1 and OP2. For a 1D lattice, a single int is also fine.
op_string [str I None] Name of an operator to be used between the OP1 and OP2 sites. Typical use case is the phase for a Jordan-Wigner transformation. The operator should be defined on all sites in the unit cell. If None, auto-determine whether a Jordan-Wigner string is needed, using op_needs_JW ().
str_on_first [bool] Whether the provided op_string should also act on the first site. This option should be chosen as True for Jordan-Wigner strings. When handling JordanWigner strings we need to extend the $o p_{-}$string to also act on the 'left', first site (in the sense of the MPS ordering of the sites given by the lattice). In this case, there is a welldefined ordering of the operators in the physical sense (i.e. which of opl or op2 acts first on a given state). We follow the convention that op2 acts first (in the physical sense), independent of the MPS ordering. Deprecated.
raise_op2_left [bool] Raise an error when op2 appears left of opl (in the sense of the MPS ordering given by the lattice). Deprecated.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".

Examples

When initializing a model, you can add a term $J \sum_{<i, j>} S_{i}^{z} S_{j}^{z}$ on all nearest-neighbor bonds of the lattice like this:

```
>>> J = 1. # the strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
    self.add_coupling(J, u1, 'Sz', u2, 'Sz', dx)
```

The strength can be an array, which get's tiled to the correct shape. For example, in a 1D Chain with an even number of sites and periodic (or infinite) boundary conditions, you can add alternating strong and weak couplings with a line like:

```
>>> self.add_coupling([1.5, 1.], 0, 'Sz', 0, 'Sz', dx)
```

To add the hermitian conjugate, e.g. for a hopping term, you should add it in the opposite direction -dx , complex conjugate the strength, and take the hermitian conjugate of the operators in swapped order (including a swap of $u 1<->u 2$). For spin-less fermions (FermionSite), this would be

```
>>> t = 1. # hopping strength
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(t), u2, 'Cd', u1, 'C', -dx) # h.c.
```

With spin-full fermions (SpinHalfFermions), it could be:

```
>>> for u1, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(t, u1, 'Cdu', u2, 'Cd', dx) # Cdagger_up C_down
... self.add_coupling(np.conj(t), u2, 'Cdd', u1, 'Cu', -dx) # h.c.u
\hookrightarrowCdagger_down C_up
```

Note that the Jordan-Wigner strings are figured out automatically!
add_coupling_term (self, strength, $i, j, o p _i, o p _j, o p _s t r i n g=' I d '$ ', category=None)
Add a two-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{\mathrm{op} 1\} _i \quad\{o p 2\} _j$ ".
add_multi_coupling (self, strength, $u 0$, op0, other_ops, op_string=None, category=None)
Add multi-site coupling terms to the Hamiltonian, summing over lattice sites.
Represents couplings of the form $\operatorname{sum}_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}[\operatorname{loc}(\vec{x})] * O P 0 * O P 1 * \ldots * O P M$, where $O^{\circ} _0$: = lat.unit_cell[u0].get_op (op0) acts on the site (x_0, ..., $x_{-}\{\operatorname{dim}-1\}, u 0$), and OP_m := lat.unit_cell[other_u[m]].get_op (other_op[m]), m=1...M, acts on the site (x _0+other_dx[m][0], ..., $x _\{d i m-1\}+o t h e r _d x[m][d i m-1]$, other_u[m]). For periodic boundary conditions along direction a (lat.bc[a] == False) the index x _a is taken modulo lat. Ls [a] and runs through range (lat. Ls [a]). For open boundary conditions, x_a is limited to $0<=x _a<L s[a]$ and $0<=x _a+o t h e r _d x[m, a]<$ lat.Ls[a]. The coupling strength may vary spatially, $\operatorname{loc}(\vec{x})$ indicates the lower left corner of the hypercube containing all the involved sites $\vec{x}, \vec{x}+$ other $_{d} \vec{x}[m,:]$.

The necessary terms are just added to coupling_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the coupling. May vary spatially and is tiled to the required shape.
$\mathbf{u 0}$ [int] Picks the site lat. unit_cell[u0] for OP0.
op0 [str] Valid operator name of an onsite operator in lat. unit_cell [u0] for OP0.
other_ops [list of ($u, ~ o p _m, d x$)] One tuple for each of the other operators OP1, OP2, ... OPM involved. u picks the site lat. unit_cell[u], op_name is a valid operator acting on that site, and $d x$ gives the translation vector between OP 0 and the specified operator.
op_string [str I None] Name of an operator to be used inbetween the operators, excluding the sites on which the operators act. This operator should be defined on all sites in the unit cell.

Special case: If None, auto-determine whether a Jordan-Wigner string is needed (using op_needs_JW ()), for each of the segments inbetween the operators and also on the sites of the left operators. Note that in this case the ordering of the operators is important and handled in the usual convention that OPM acts first and OPO last on a physical state.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 0\}$ _i $\left\{o t h e r _o p s[0]\right\} _j$ \{other_ops[1]\}_k ...".
add_multi_coupling_term (self, strength, ijkl,ops_ijkl,op_string, category=None)
Add a general M-site coupling term on given MPS sites.
Wrapper for self.coupling_terms[category].add_multi_coupling_term(...).

Parameters

strength [float] The strength of the coupling term.
$\mathbf{i j k l}$ [list of int] The MPS indices of the sites on which the operators acts. With i, j, k, \ldots $=i j k l$, we require that they are ordered ascending, $i<j<k<\ldots$ and that $0<=$ i < N_sites. Inidces >= N_sites indicate couplings between different unit cells of an infinite MPS.
ops_ijkl [list of str] Names of the involved operators on sites i, j, k, \ldots
op_string [list of str] Names of the operator to be inserted between the operators, e.g., op_string[0] is inserted between i and j.
category [str] Descriptive name used as key for coupling_terms. Defaults to a string of the form " $\{o p 0\}$ _i $\left\{o t h e r _o p s[0]\right\} _j ~\left\{o t h e r _o p s[1]\right\} _k ~ . . . " . ~$
add_onsite (self, strength, u, opname, category=None)
Add onsite terms to onsite_terms.
Adds a term $\sum_{x_{0}, \ldots, x_{\text {dim-1 }}} \operatorname{strength}\left[x_{0}, \ldots, x_{\text {dim-1 }}\right] * O P$, where the operator OP=lat. unit_cell[u].get_op (opname) acts on the site given by a lattice index (x_0, ..., $\left.x_{-}\{\operatorname{dim}-1\}, u\right)$, to the represented Hamiltonian.
The necessary terms are just added to onsite_terms; doesn't rebuild the MPO.

Parameters

strength [scalar I array] Prefactor of the onsite term. May vary spatially. If an array of smaller size is provided, it gets tiled to the required shape.
\mathbf{u} [int] Picks a Site lat. unit_cell [u] out of the unit cell.
opname [str] valid operator name of an onsite operator in lat.unit_cell[u].
category [str] Descriptive name used as key for onsite_terms. Defaults to opname.
add_onsite_term (self, strength, i, op, category=None)
Add an onsite term on a given MPS site.
Wrapper for self.onsite_terms[category].add_onsite_term(....).

Parameters

strength [float] The strength of the term.
\mathbf{i} [int] The MPS index of the site on which the operator acts. We require $0<=i<L$. op [str] Name of the involved operator.
category [str] Descriptive name used as key for onsite_terms. Defaults to op.
all_coupling_terms (self)
Sum of all coupling_terms.
all_onsite_terms (self)
Sum of all onsite_terms.
calc_H_MPO (self, tol_zero $=1 e-15$)
Calculate MPO representation of the Hamiltonian.
Uses onsite_terms and coupling_terms to build an MPO graph (and then an MPO).

Parameters

tol_zero [float] Prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_MPO [MPO] MPO representation of the Hamiltonian.
calc_H_bond (self, tol_zero $=1 e-15$)
calculate H _bond from coupling_terms and onsite_terms.

Parameters

tol_zero [float] prefactors with abs(strength) < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_bond_from_MPO (self, tol_zero=le-15)
Calculate the bond Hamiltonian from the MPO Hamiltonian.

Parameters

tol_zero [float] Arrays with norm < tol_zero are considered to be zero.

Returns

H_bond [list of Array] Bond terms as required by the constructor of NearestNeighborModel. Legs are ['p0', 'p0*', 'p1', 'p1*']

Raises

ValueError [if the Hamiltonian contains longer-range terms.]
calc_H_onsite (self, tol_zero=le-15)
Calculate H_onsite from self.onsite_terms.
Deprecated since version 0.4.0: This function will be removed in 1.0.0. Replace calls to this function by self.all_onsite_terms().remove_zeros(tol_zero).to_Arrays(self. lat.mps_sites()).

Parameters

tol_zero [float] prefactors with abs (strength) < tol_zero are considered to be zero.

Returns

H_onsite [list of npc.Array] onsite terms of the Hamiltonian.

```
coupling_strength_add_ext_flux(self, strength,dx, phase)
```

Add an external flux to the coupling strength.
When performing DMRG on a "cylinder" geometry, it might be useful to put an "external flux" through the cylinder. This means that a particle hopping around the cylinder should pick up a phase given by the external flux [Resta1997]. This is also called "twisted boundary conditions" in literature. This function adds a complex phase to the strength array on some bonds, such that particles hopping in positive direction around the cylinder pick up $\exp (+i$ phase $)$.

Warning: For the sign of phase it is important that you consistently use the creation operator as opl and the annihilation operator as op2 in add_coupling().

Parameters

strength [scalar I array] The strength to be used in add_coupling (), when no external flux would be present.
dx [iterable of int] Translation vector (of the unit cell) between op1 and op2 in add_coupling().
phase [iterable of float] The phase of the external flux for hopping in each direction of the lattice. E.g., if you want flux through the cylinder on which you have an infinite MPS, you should give phase $=[0$, phi] souch that particles pick up a phase phi when hopping around the cylinder.

Returns

strength [complex array] The strength array to be used as strength in add_coupling () with the given $d x$.

Examples

Let's say you have an infinite MPS on a cylinder, and want to add nearest-neighbor hopping of fermions with the FermionSite. The cylinder axis is the x-direction of the lattice, so to put a flux through the cylinder, you want particles hopping around the cylinder to pick up a phase phi given by the external flux.

```
>>> strength = 1. # hopping strength without external flux
>>> phi = np.pi/4 # determines the external flux strength
>>> strength_with_flux = self.coupling_strength_add_ext_flux(strength, dx, [0,
@ phi])
>>> for ul, u2, dx in self.lat.pairs['nearest_neighbors']:
... self.add_coupling(strength_with_flux, u1, 'Cd', u2, 'C', dx)
... self.add_coupling(np.conj(strength_with_flux), u2, 'Cd', u1, 'C', -dx)
```

group_sites (self, $n=2$, grouped_sites=None)
Modify self in place to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

This has to be done after finishing initialization and can not be reverted.

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

Returns

grouped_sites [list of GroupedSite] The sites grouped together.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

Module description

Kitaev's exactly solvable toric code model.
As we put the model on a cylinder, the name "toric code" is a bit misleading, but it is the established name for this model...

7.2.4 networks

- full name: tenpy.networks
- parent module: tenpy
- type: module

Module description

Definitions of tensor networks like MPS and MPO.
Here, 'tensor network' refers just to the (parital) contraction of tensors. For example an MPS represents the contraction along the 'virtual' legs/bonds of its B.

Submodules

site	Defines a class describing the local physical Hilbert space.
mps	This module contains a base class for a Matrix Product State (MPS).
mpo	Matrix product operator (MPO).
terms	Classes to store a collection of operator names and sites they act on, together with prefactors.
purification_mps	This module contains an MPS class representing an den- sity matrix by purification.

site

- full name: tenpy.networks.site
- parent module: tenpy.networks
- type: module

Classes

BosonSite([Nmax, conserve, filling])	Create a Site for up to Nmax bosons.
FermionSite([conserve, filling])	Create a Site for spin-less fermions.
GroupedSite(sites[, labels, charges])	Group two or more Site into a larger one.
Site(leg[, state_labels])	Collects necessary information about a single local site of a lattice.
SpinHalfFermionSite([cons_N, cons_Sz, ing])	fill-
SpinHalfSite([conserve] a Site for spinful (spin-1/2) fermions.	
SpinSite([S, conserve])	Spin-1/2 site.

BosonSite

- full name: tenpy.networks.site.BosonSite
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site.BosonSite (Nmax=1, conserve $={ }^{\prime} N^{\prime}$, filling=0.0)
Bases: tenpy.networks.site.Site
Create a Site for up to Nmax bosons.
Local states are vac, 1, 2, ... , Nc. (Exception: for parity conservation, we sort as vac, 2, 4, ..., 1, 3, 5,)

operator	description
Id, JW	Identity \nVdash
B	Annihilation operator b
Bd	Creation operator b^{\dagger}
N	Number operator $n=b^{\dagger} b$
NN	n^{2}
dN	$\delta n:=n-$ filling
dNdN	$(\delta n)^{2}$
P	Parity $I d-2(n \bmod 2)$.

conserve	qmod	excluded onsite operators
'N'	$[1]$	-
'parity'	$[2]$	-
None	[]	-

Parameters

Nmax [int] Cutoff defining the maximum number of bosons per site. The default Nmax=1 describes hard-core bosons.
conserve [str] Defines what is conserved, see table above.
filling [float] Average filling. Used to define $d N$.

Attributes

conserve [str] Defines what is conserved, see table above.
filling [float] Average filling. Used to define dN .

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray I None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge = leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.
property dim
Dimension of the local Hilbert space.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.
state_indices (self, labels)
Same as state_index (), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

FermionSite

- full name: tenpy.networks.site.FermionSite
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site.FermionSite (conserve=' N^{\prime}, filling=0.5)
Bases: tenpy.networks.site. Site
Create a Site for spin-less fermions.
Local states are empty and full.

Warning: Using the Jordan-Wigner string (JW) is crucial to get correct results, otherwise you just describe hardcore bosons! Further details in Fermions and the Jordan-Wigner transformation.

operator	description
Id	Identity \nVdash
JW	Sign for the Jordan-Wigner string.
C	Annihilation operator c (up to 'JW'-string left of it)
Cd	Creation operator c^{\dagger} (up to ‘JW'-string left of it)
N	Number operator $n=c^{\dagger} c$
dN	$\delta n:=n-$ filling
dNdN	$(\delta n)^{2}$

Conserve	qmod	exluded onsite operators
'N'	$[1]$	-
'parity'	$[2]$	-
None	[]	-

Parameters

conserve [str] Defines what is conserved, see table above.
filling [float] Average filling. Used to define dN .

Attributes

conserve [str] Defines what is conserved, see table above.
filling [float] Average filling. Used to define dN .

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.
Change_charge(self[, new_leg_charge, per- mute])	Change the charges of the site (in place).
get_op(self, name)	Return operator of given name.
multiply_op_names(self, names)	Multiply operator names together.
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.
remove_op(self, name)	Remove an added operator.
rename_op(self, old_name, new_name)	Rename an added operator.
state_index(self, label)	Return index of a basis state from its label.
state_indices(self, labels)	Same as state_index (), but for multiple labels.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.

add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray | None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge = leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.
property dim
Dimension of the local Hilbert space.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.
state_indices (self, labels)
Same as state_index (), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

GroupedSite

- full name: tenpy.networks.site.GroupedSite
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site.GroupedSite (sites, labels=None, charges='same')
Bases: tenpy.networks.site. Site
Group two or more Site into a larger one.
A typical use-case is that you want a NearestNeighborModel for TEBD although you have next-nearest neighbor interactions: you just double your local Hilbertspace to consist of two original sites. Note that this is a 'hack' at the cost of other things (e.g., measurements of 'local' operators) getting more complicated/computationally expensive.

If the individual sites indicate fermionic operators (with entries in need_JW_string), we construct the new onsite oerators of sitel to include the JW string of site0, i.e., we use the Kronecker product of [JW, op] instead of [Id, op] if necessary (but always [op, Id]). In that way the onsite operators of this DoubleSite automatically fulfill the expected commutation relations. See also Fermions and the Jordan-Wigner transformation.

Parameters

sites [list of Site] The individual sites being grouped together. Copied before use if charges!='same'.
labels : Include the Kronecker product of the each onsite operator op on sites [i] and identities on other sites with the name opname+labels[i]. Similarly, set state labels for ' '.join(state[i]+'_'+labels[i]). Defaults to [str(i) for i in range (n_sites)], which for example grouping two SpinSites gives operators name like "SzO" and sites labels like 'up_0 down_1'.
charges ['same' | 'drop' | 'independent'] How to handle charges, defaults to 'same'. 'same' means that all sites have the same ChargeInfo, and the total charge is the sum of the charges on the individual sites. 'independent ' means that the sites have possibly different ChargeInfo, and the charges are conserved separately, i.e., we have n_{-}sites conserved charges. For 'drop', we drop any charges, such that the remaining legcharges are trivial.

Attributes

n_sites [int] The number of sites grouped together, i.e. len (sites).
sites [list of Site] The sites grouped together into self.
labels: list of str The labels using which the single-site operators are added during construction.

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
kroneckerproduct(self, ops)	Return the Kronecker product op0 \otimes op1 of local op- erators.			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

kroneckerproduct (self, ops)

Return the Kronecker product op $0 \otimes o p 1$ of local operators.

Parameters

ops [list of Array] One operator (or operator name) on each of the ungrouped sites. Each operator should have labels ['p', 'p*'].

Returns

prod [Array] Kronecker product ops $[0] \otimes o p s[1] \otimes \cdots$, with labels ['p', 'p*'].
add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray | None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge = leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.

property dim

Dimension of the local Hilbert space.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.

```
state_indices(self, labels)
```

Same as state_index (), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

Site

- full name: tenpy.networks.site.Site
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site.Site(leg, state_labels=None, **site_ops)
Bases: ob ject
Collects necessary information about a single local site of a lattice.
This class defines what the local basis states are: it provides the leg defining the charges of the physical leg for this site. Moreover, it stores (local) on-site operators, which are directly available as attribute, e.g., self. Sz is the Sz operator for the SpinSite. Alternatively, operators can be obained with get_op(). The operator names Id and JW are reserved for the identy and Jordan-Wigner strings.

Warning: The order of the local basis can change depending on the charge conservation! This is a necessary feature since we need to sort the basis by charges for efficiency. We use the state_labels and perm to keep track of these permutations.

Parameters

leg [LegCharge] Charges of the physical states, to be used for the physical leg of MPS.
state_labels [None I list of str] Optionally a label for each local basis states. None entries are ignored / not set.
**site_ops : Additional keyword arguments of the form name=op given to add_op (). The identity operator 'Id' is automatically included. If no 'JW' for the Jordan-Wigner string is given, ' JW' is set as an alias to 'Id'.

Examples

The following generates a site for spin- $1 / 2$ with $S z$ conservation. Note that $S x=(S p+S m) / 2$ violates $S z$ conservation and is thus not a valid on-site operator.

```
>>> chinfo = npc.ChargeInfo([1], ['Sz'])
>>> ch = npc.LegCharge.from_qflat(chinfo, [1, -1])
>>> Sp = [[0, 1.], [0, 0]]
>>> Sm=[[0, 0], [1., 0]]
>>> Sz = [[0.5, 0], [0, -0.5]]
>>> site = Site(ch, ['up', 'down'], Splus=Sp, Sminus=Sm, Sz=Sz)
>>> print(site.Splus.to_ndarray())
array([[ 0., 1.],
    [ 0., 0.]])
>>> print(site.get_op('Sminus').to_ndarray())
array([[ 0., 0.],
    [ 1., 0.]])
>>> print(site.get_op('Splus Sminus').to_ndarray())
array([[ 1., 0.],
    [ 0., 0.]])
```


Attributes

dim Dimension of the local Hilbert space.
onsite_ops Dictionary of on-site operators for iteration.
leg [LegCharge] Charges of the local basis states.
state_labels [\{str: int \}] (Optional) labels for the local basis states.
opnames [set] Labels of all onsite operators (i.e. self.op exists if 'op' in self. opnames). Note that get_op () allows arbitrary concatenations of them.
need_JW_string [set] Labels of all onsite operators that need a Jordan-Wigner string. Used in op_needs_JW () to determine whether an operator anticommutes or commutes with operators on other sites.
ops [Array] Onsite operators are added directly as attributes to self. For example after self. add_op ('Sz', Sz) you can use self. Sz for the $S z$ operator. All onsite operators have labels 'p', 'p*'.
perm [1D array] Index permutation of the physical leg compared to conserve=None, i.e. OP_conserved = OP_nonconserved[np.ix_(perm, perm)] and perm[state_labels_conserved["some_state"]] == state_labels_nonconserved["some_state"].

JW_exponent [1D array] Exponents of the 'JW' operator, such that self.JW. to_ndarray() = np.diag(np.exp(1.j*np.pi* JW_exponent))

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray I None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge $=$ leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.

test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.
property dim
Dimension of the local Hilbert space.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.

```
state_indices(self,labels)
```

Same as state_index (), but for multiple labels.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.

SpinHalfFermionSite

- full name: tenpy.networks.site.SpinHalfFermionSite
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site.SpinHalfFermionSite (cons_ $N={ }^{\prime} N^{\prime}$ ', cons_Sz='Sz', filling=1.0)
Bases: tenpy.networks.site. Site
Create a Site for spinful (spin- $1 / 2$) fermions.
Local states are: empty (vacuum), up (one spin-up electron), down (one spin-down electron), and full (both electrons)

Local operators can be built from creation operators.

Warning: Using the Jordan-Wigner string (JW) in the correct way is crucial to get correct results, otherwise you just describe hardcore bosons!

operator	description
Id	Identity \nVdash
JW	Sign for the Jordan-Wigner string $(-1)^{n_{\uparrow}+n_{\downarrow}}$
JWu	Partial sign for the Jordan-Wigner string $(-1)^{n_{\uparrow}}$
JWd	Partial sign for the Jordan-Wigner string $(-1)^{n} \downarrow$
Cu	Annihilation operator spin-up c_{\uparrow} (up to ‘JW's-string on sites left of it).
Cdu	Creation operator spin-up c_{\uparrow}^{\dagger} (up to 'JW'-string on sites left of it).
Cd	Annihilation operator spin-down $c_{\downarrow}($ up to 'JW'-string on sites left of it). Includes JWu such that it anti-commutes onsite with Cu, Cdu.
Cdd	Creation operator spin-down c_{\downarrow}^{\dagger} (up to 'JW'-string on sites left of it). Includes JWu such that it anti-commutes onsite with Cu, Cdu.
Nu	Number operator $n_{\uparrow}=c_{\uparrow}^{\dagger} c_{\uparrow}$

The spin operators are defined as $S^{\gamma}=\left(c_{\uparrow}^{\dagger}, c_{\downarrow}^{\dagger}\right) \sigma^{\gamma}\left(c_{\uparrow}, c_{\downarrow}\right)^{T}$, where σ^{γ} are spin- $1 / 2$ matrices (i.e. half the pauli matrices).

cons_N	Cons_Sz	qmod	excluded onsite operators
'N'	'Sz'	$[1,1]$	Sx, Sy
'N'	'parity'	$[1,2]$	-
$\mathrm{N}^{\prime} \mathrm{N}^{\prime}$	None	$[1]$	-
'parity'	'Sz'	$[2,1]$	Sx, Sy
'parity'	'parity'	$[2,2]$	-
'parity'	None	$[2]$	-
None	'Sz'	$[1]$	Sx, Sy
None	'parity'	$[2]$	-
None	None	[]	-

Todo: Check if Jordan-Wigner strings for 4 x 4 operators are correct.

Parameters

cons_N ['N' | 'parity' | None] Whether particle number is conserved, c.f. table above.
cons_Sz ['Sz' | 'parity' | None] Whether spin is conserved, c.f. table above.
filling [float] Average filling. Used to define $d N$.

Attributes

cons_N ['N' | 'parity' | None] Whether particle number is conserved, c.f. table above.
cons_Sz ['Sz' | 'parity' | None] Whether spin is conserved, c.f. table above.
filling [float] Average filling. Used to define $d N$.

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray I None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge $=$ leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.

```
property dim
```

Dimension of the local Hilbert space.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.
state_indices (self, labels)
Same as state_index (), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

SpinHalfSite

- full name: tenpy.networks.site.SpinHalfSite
- parent module: tenpy.networks.site
- type: class
class tenpy.networks.site. SpinHalfSite (conserve='Sz')
Bases: tenpy.networks.site.Site
Spin-1/2 site.
Local states are up (0) and down (1). Local operators are the usual spin- $1 / 2$ operators, e.g. $S z=[[0.5$, 0.], $[0 .,-0.5]], S x=0.5 *$ sigma_x for the Pauli matrix sigma_x.

operator	description
Id, JW	Identity \nVdash
Sx, Sy, Sz	Spin components $S^{x, y, z}$, equal to half the Pauli matrices.
Sigmax, Sigmay, Sigmaz	Pauli matrices $\sigma^{x, y, z}$
Sp, Sm	Spin flips $S^{ \pm}=S^{x} \pm i S^{y}$

conserve	qmod	excluded onsite operators	
'Sz'	$[1]$	Sx, Sy, Sigmax, Sigmay	
'parity'	$[2]$	-	
None	[]	-	

Parameters

conserve [str] Defines what is conserved, see table above.

Attributes

conserve [str] Defines what is conserved, see table above.

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self,new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray I None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the previous leg with perm_qind, new_leg_charge = leg.sort(), use leg. perm_flat_from_perm_qind (perm_qind). Ignored if None.

```
property dim
```

Dimension of the local Hilbert space.

```
get_op(self,name)
```

Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.
state_indices (self, labels)
Same as state_index (), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

SpinSite

- full name: tenpy.networks.site.SpinSite
- parent module: tenpy. networks.site
- type: class
class tenpy.networks.site. SpinSite ($S=0.5$, conserve $=$ 'Sz')
Bases: tenpy.networks.site.Site
General Spin S site.
There are $2 S+1$ local states range from down (0) to up ($2 \mathrm{~S}+1$), corresponding to $\mathrm{Sz}=-\mathrm{S},-\mathrm{S}+1, \ldots$, $S-1, S$ Local operators are the spin-S operators, e.g. $S z=[[0.5,0],.[0 .,-0.5]], S x=0$. $5 *$ sigma_x for the Pauli matrix sigma_x.

operator	description
Id, JW	Identity \nVdash
Sx, Sy, Sz	Spin components $S^{x, y, z}$, equal to half the Pauli matrices.
Sp, Sm	Spin flips $S^{ \pm}=S^{x} \pm i S^{y}$

conserve	qmod	excluded onsite operators
'Sz'	$[1]$	Sx, Sy
'parity'	$[2]$	-
None	[]	-

Parameters

conserve [str] Defines what is conserved, see table above.

Attributes

$\mathbf{S}[\{0.5,1,1.5,2, \ldots\}]$ The $2 S+1$ states range from $\mathrm{m}=-\mathrm{S},-\mathrm{S}+1, \ldots+\mathrm{S}$.
conserve [str] Defines what is conserved, see table above.

Methods

add_op(self, name, op[, need_JW])	Add one on-site operators.			
change_charge(self[, new_leg_charge, mute])	per-	Change the charges of the site (in place). \quad	get_op(self, name)	Return operator of given name.
:---	:---			
multiply_op_names(self, names)	Multiply operator names together.			
op_needs_JW(self, name)	Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.			
remove_op(self, name)	Remove an added operator.			
rename_op(self, old_name, new_name)	Rename an added operator.			
state_index(self, label)	Return index of a basis state from its label.			
state_indices(self, labels)	Same as state_index (), but for multiple labels.			
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.			
valid_opname(self, name)	Check whether 'name' labels a valid onsite-operator.			

add_op (self, name, op, need_JW=False)
Add one on-site operators.

Parameters

name [str] A valid python variable name, used to label the operator. The name under which $o p$ is added as attribute to self.
op [np.ndarray I Array] A matrix acting on the local hilbert space representing the local operator. Dense numpy arrays are automatically converted to Array. LegCharges have to be [leg, leg.conj()]. We set labels 'p', 'p*'.
need_JW [bool] Whether the operator needs a Jordan-Wigner string. If True, the function adds name to need_JW_string.
change_charge (self, new_leg_charge=None, permute=None)
Change the charges of the site (in place).

Parameters

new_leg_charge [LegCharge I None] The new charges to be used. If None, use trivial charges.
permute [ndarray I None] The permuation applied to the physical leg, which gets used to adjust state_labels and perm. If you sorted the pre-
vious leg with perm_qind, new_leg_charge = leg.sort(), use leg. perm_flat_from_perm_qind(perm_qind). Ignored if None.
property dim
Dimension of the local Hilbert space.
get_op (self, name)
Return operator of given name.

Parameters

name [str] The name of the operator to be returned. In case of multiple operator names separated by whitespace, we multiply them together to a single on-site operator (with the one on the right acting first).

Returns

op [np_conserved] The operator given by name, with labels 'p', 'p*'. If name already was an npc Array, it's directly returned.
multiply_op_names (self, names)
Multiply operator names together.
Join the operator names in names such that get_op returns the product of the corresponding operators.

Parameters

names [list of str] List of valid operator labels.

Returns

combined_opname [str] A valid operator name Operatorname representing the product of operators in names.
property onsite_ops
Dictionary of on-site operators for iteration.
Single operators are accessible as attributes.
op_needs_JW (self, name)
Whether an (composite) onsite operator is fermionic and needs a Jordan-Wigner string.

Parameters

name [str] The name of the operator, as in get_op ().

Returns

needs_JW [bool] Whether the operator needs a Jordan-Wigner string, judging from need_JW_string.
remove_op (self, name)
Remove an added operator.

Parameters

name [str] The name of the operator to be removed.
rename_op (self, old_name, new_name)
Rename an added operator.

Parameters

old_name [str] The old name of the operator.
new_name [str] The new name of the operator.
state_index (self, label)
Return index of a basis state from its label.

Parameters

label [int I string] eather the index directly or a label (string) set before.

Returns

state_index [int] the index of the basis state associated with the label.
state_indices (self, labels)
Same as state_index(), but for multiple labels.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
valid_opname (self, name)
Check whether 'name' labels a valid onsite-operator.

Parameters

name [str] Label for the operator. Can be multiple operator(labels) separated by whitespace, indicating that they should be multiplied together.

Returns

valid [bool] True if name is a valid argument to get_op ().

Functions

group_sites(sites[, n, labels, charges])	Given a list of sites, group each n sites together.
multi_sites_combine_charges(sites[,..])	Adjust the charges of the given sites (in place) such that they can be used together.

group_sites

- full name: tenpy.networks.site.group_sites
- parent module: tenpy. networks.site
- type: function

```
tenpy.networks.site.group_sites (sites, n=2, labels=None, charges='same')
```

Given a list of sites, group each n sites together.

Parameters

sites [list of Site] The sites to be grouped together.
\mathbf{n} [int] We group each n consecutive sites from sites together in a GroupedSite.
labels, charges : See GroupedSites.

Returns

grouped_sites [list of GroupedSite] The grouped sites. Has length (len(sites)-1) / /
$\mathrm{n}+1$.

multi_sites_combine_charges

- full name: tenpy.networks.site.multi_sites_combine_charges
- parent module: tenpy. networks.site
- type: function
tenpy.networks.site.multi_sites_combine_charges (sites, same_charges=[])
Adjust the charges of the given sites (in place) such that they can be used together.
When we want to contract tensors corresponding to different Site instances, these sites need to share a single ChargeInfo. This function adjusts the charges of these sites such that they can be used together.

Parameters

sites [list of Site] The sites to be combined. Modified in place.
same_charges [[[(int, int|str), (int, int|str), ...], ...]] Defines which charges actually are the same, i.e. their quantum numbers are added up. Each charge is specified by a tuple (s, i) $=$ (int, int $\mid s t r$), where s gives the index of the site within sites and i the index or name of the charge in the ChargeInfo of this site.

Returns

perms [list of ndarray] For each site the permutation performed on the physical leg to sort by charges.

Examples

```
>>> ferm = SpinHalfFermionSite(cons_N='N', cons_Sz='Sz')
>>> spin = SpinSite(1.0, 'Sz')
>>> ferm.leg.chinfo is spin.leg.chinfo
False
>>> print(spin.leg)
+1
0 [[-1]
[ [ 1]]
2
>>> multi_sites_combine_charges([ferm, spin], same_charges=[[(0, 'Sz'), (1, 0)]])
[array([0, 1, 2, 3]), array([0, 1])]
>>> # no permutations where needed
>>> ferm.leg.chinfo is spin.leg.chinfo
True
>> ferm.leg.chinfo.names
['N', 'Sz']
>>> print(spin.leg)
+1
0 [[ [ 0 - 1]
1 [ [ 0 1]]
2
```


Module description

Defines a class describing the local physical Hilbert space.
The site is the prototype, read it's docstring.
mps

- full name: tenpy.networks.mps
- parent module: tenpy. networks
- type: module

Classes

MPS(sites, Bs, SVs[, bc, form, norm])	A Matrix Product State, finite (MPS) or infinite (iMPS).
MPSEnvironment(bra, ket[, init_LP, init_RP, \ldots])	Stores partial contractions of $<$ bra \mid Op \mid ket $>$ for local operators $O p$.
TransferMatrix(bra, ket[, shift_bra, ...])	Transfer matrix of two MPS (bra \& ket).

MPS

- full name: tenpy.networks.mps.MPS
- parent module: tenpy.networks.mps
- type: class
class tenpy.networks.mps.MPS (sites, $B s, S V s, b c=$ 'finite', form $={ }^{\prime} B^{\prime}$, $n o r m=1.0$)
Bases: ob ject
A Matrix Product State, finite (MPS) or infinite (iMPS).

Parameters

sites [list of Site] Defines the local Hilbert space for each site.
Bs [list of Array] The 'matrices' of the MPS. Labels are vL, vR, p (in any order).
SVs [list of 1D array] The singular values on each bond. Should always have length $L+1$. Entries out of nontrivial_bonds are ignored.
bc ['finite' | 'segment' | 'infinite']Boundary conditions as described in the tabel of the module doc-string.
form [(list of) \{'B' | 'A' | 'C' | 'G' | 'Th' | None Ituple(float, float) \}] The form of the stored 'matrices', see table in module doc-string. A single choice holds for all of the entries.

Attributes

L Number of physical sites; for an iMPS the len of the MPS unit cell.
chi Dimensions of the (nontrivial) virtual bonds.
finite Distinguish MPS vs iMPS.
nontrivial_bonds Slice of the non-trivial bond indices, depending on self.bc.
sites [list of Site] Defines the local Hilbert space for each site.
bc [\{ 'finite', 'segment', 'infinite' \}] Boundary conditions as described in above table.
form [list of $\{$ None | tuple(float, float) $\}$] Describes the canonical form on each site. None means non-canonical form. For form $=$ (nuL, nuR), the stored _B[i] are s**form[0] -- Gamma -- $s * * f o r m[1]$ (in Vidal's notation).
chinfo [ChargeInfo] The nature of the charge.
dtype [type] The data type of the _B.
norm [float] The norm of the state, i.e. sqrt(<psi|psi>). Ignored for (normalized) expectation_value(), but important for overlap().
grouped [int] Number of sites grouped together, see group_sites ().
_B [list of npc.Array] The 'matrices' of the MPS. Labels are vL, vR, p (in any order). We recommend using get_B() and set_B(), which will take care of the different canonical forms.
_S [list of (None I 1D array)] The singular values on each virtual bond, length L+1. May be None if the MPS is not in canonical form. Otherwise, _S [i] is to the left of _B [i]. We recommend using get_SL(), get_SR(), set_SL(), set_SR(), which takes proper care of the boundary conditions.
_valid_forms [dict] Mapping for canonical forms to a tuple (nuL, nuR) indicating that self._Bs[i] = s[i]**nuL -- Gamma[i] -- s[i]**nuR is saved.
_valid_bc [tuple of str] Valid boundary conditions.
_transfermatrix_keep [int] How many states to keep at least when diagonalizing a TransferMatrix. Important if the state develops a near-degeneracy.

Methods

| add(self, other, alpha, beta[, cutoff]) | Return an MPS which represents alpha\|self> + beta |others>. |
| :---: | :---: |
| apply_local_op(self, i, op[, unitary, ...]) | Apply a local (one or multi-site) operator to self. |
| average_charge(self[, bond]) | Return the average charge for the block on the left of a given bond. |
| canonical_form(self[, renormalize]) | Bring self into canonical ' B ' form, (re-)calculate singular values. |
| ```canonical_form_finite(self[, renormalize, ...])``` | Bring a finite (or segment) MPS into canonical form (in place). |
| ```canonical_form_infinite(self[, renormal- ize,...])``` | Bring an infinite MPS into canonical form (in place). |
| charge_variance(self[, bond]) | Return the charge variance on the left of a given bond. |
| compute_K(self, perm[, swap_op, trunc_par, ...]) | Compute the momentum quantum numbers of the entanglement spectrum for 2D states. |
| convert_form(self[, new_form]) | Tranform self into different canonical form (by scaling the legs with singular values). |
| copy (self) | Returns a copy of self. |
| ```correlation_function(self, ops1, ops2[, ...])``` | Correlation function op2_j\|psi>/<psi|psi> of single site op- erators. |

Continued on next page

Table 132 - continued from previous page

correlation_length(self[, target, tol_ev0, ...])	Calculate the correlation length by diagonalizing the transfer matrix.		
entanglement_entropy(self[, n , bonds, ...])	Calculate the (half-chain) entanglement entropy for all nontrivial bonds.		
entanglement_entropy_segment(self[, ...])	Calculate entanglement entropy for general geometry of the bipartition.		
entanglement_spectrum(self[, by_charge])	return entanglement energy spectrum.		
expectation_value(self, ops[, sites, axes])	Expectation value <psi\|ops	psi>/ <psi	psi> of (n-site) operator(s).
expectation_value_multi_sites(self, ...)	Expectation value $<$ psilop0_\{i0\}op1_\{i0+1\}. . .opN_\{i0+N\}\|psi>/<psi	psi>.	
expectation_value_term(self, term[, autoJW])	$\begin{aligned} & \text { Expectation value <psi\|op_\{i0\}op_\{i1\}... } \\ & \text { op_\{iN\}\|psi>/<psi\|psi>. } \end{aligned}$		
expectation_value_terms_sum(self, term_list)	Calculate expectation values for a bunch of terms and sum them up.		
from_Bflat(sites, Bflat[, SVs, bc, dtype, ...])	Construct a matrix product state from a set of numpy arrays $B f l a t$ and singular vals.		
from_full(sites, psi[, form, cutoff, ...])	Construct an MPS from a single tensor $p s i$ with one leg per physical site.		
from_product_state(sites, p_state[, bc, ...])	Construct a matrix product state from a given product state.		
from_singlets(site, L, pairs[, up, down, ...])	Create an MPS of entangled singlets.		
gauge_total_charge(self[, qtotal, vL_leg, ...])	Gauge the legcharges of the virtual bonds such that the MPS has a total qtotal.		
get_B(self, i[, form, copy, cutoff, label_p])	Return (view of) B at site i in canonical form.		
get_SL(self, i)	Return singular values on the left of site i		
get_SR(self, i)	Return singular values on the right of site i		
get_grouped_mps(self, blocklen)	contract blocklen subsequent tensors into a single one and return result as a new MPS.		
get_op(self, op_list, i)	Given a list of operators, select the one corresponding to site i.		
get_rho_segment(self, segment)	Return reduced density matrix for a segment.		
get_theta(self, i[, n, cutoff, formL, formR])	Calculates the n-site wavefunction on sites[i:i+n].		
get_total_charge(self[, only_physical_legs])	Calculate and return the qtotal of the whole MPS (when contracted).		
group_sites(self[, n, grouped_sites])	Modify self inplace to group sites.		
group_split(self[, trunc_par])	Modify self inplace to split previously grouped sites.		
increase_L(self[, new_L])	Modify self inplace to enlarge the unit cell.		
mutinf_two_site(self[, max_range, n])	Calculate the two-site mutual information $I(i: j)$.		
norm_test(self)	Check that self is in canonical form.		
overlap(self, other[, charge_sector, ...])	Compute overlap <self \|other>.		
permute_sites(self, perm[, swap_op, ...])	Applies the permutation perm to the state (inplace).		
probability_per_charge(self[, bond])	Return probabilites of charge value on the left of a given bond.		
set_B(self, i, B[, form])	Set B at site i.		
set_SL(self, i, S)	Set singular values on the left of site i		
set_SR(self, i, S)	Set singular values on the right of site i		
swap_sites(self, i[, swap_op, trunc_par])	Swap the two neighboring sites i and $i+1$ (inplace).		
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.		

test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.
classmethod from_product_state (sites, p_state, $b c=$ 'finite', dtype $=<$ class 'numpy.float64'>, permute $=$ True, form $=$ ' B ', charge $L=$ None)
Construct a matrix product state from a given product state.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
p_state [iterable of \{int | str | 1D array\}] Defines the product state to be represented. If p_state[i] is str, then site i is in state self.sites[i]. state_labels(p_state[i]). If p_state[i] is int, then site i is in state p_state[i]. If p_state [i] is an array, then site i wavefunction is p_state [i].
bc [\{ 'infinite', 'finite', ‘segmemt'\}] MPS boundary conditions. See docstring of MPS.
dtype [type or string] The data type of the array entries.
permute [bool] The Site might permute the local basis states if charge conservation gets enabled. If permute is True (default), we permute the given p_{-}state locally according to each site's perm. The p_{-}state argument should then always be given as if conserve=None in the Site.
form [(list of) \{'B' | 'A' | 'C' | 'G' | None Ituple(float, float)\}] Defines the canonical form. See module doc-string. A single choice holds for all of the entries.
chargeL [charges] Leg charge at bond 0 , which are purely conventional.

Returns

product_mps $[M P S]$ An MPS representing the specified product state.

Examples

Example to get a Neel state for a TIChain:

```
>>> M = TFIChain({'L': 10})
>>> p_state = ["up", "down"] * (L//2) # repeats entries L/2 times
>>> psi = MPS.from_product_state(M.lat.mps_sites(), p_state, bc=M.lat.bc_MPS)
```

The meaning of the labels "up", "down" is defined by the Site, in this example a SpinHalfSite.
Extending the example, we can replace the spin in the center with one with arbitrary angles theta, phi in the bloch sphere:

```
>>> M = TFIChain({'L': 8, 'conserve': None})
>>> p_state = ["up", "down"] * (L//2) # repeats entries L/2 times
>>> bloch_sphere_state = np.array([np.cos(theta/2), np.exp(1.j*phi)*np.
\hookrightarrowsin(theta/2)])
>>> p_state[L//2] = bloch_sphere_state # replace one spin in center
>>> psi = MPS.from_product_state(M.lat.mps_sites(), p_state, bc=M.lat.bc_MPS, u
\hookrightarrowdtype=np.complex)
```

Note that for the more general SpinChain, the order of the two entries for the bloch_sphere_state would be exactly the opposite (when we keep the the north-pole of the bloch sphere being the up-state). The reason is that the SpinChain uses the general SpinSite, where the states are orderd ascending from 'down' to 'up'. The SpinHalfSite on the other hand uses the order 'up', 'down' where that the Pauli matrices look as usual.

Moreover, note that you can not write this bloch state (for theta $!=0, \mathrm{pi}$) when conserving symmetries, as the two physical basis states correspond to different symmetry sectors.
classmethod from_Bflat (sites, Bflat, $S V s=$ None, $b c=$ 'finite', dtype $=$ None, permute $=$ True, form $=$ ' B ', leg $L=$ None)
Construct a matrix product state from a set of numpy arrays Bflat and singular vals.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
Bflat [iterable of numpy ndarrays] The matrix defining the MPS on each site, with legs 'p', 'vL', 'vR' (physical, virtual left/right).
SVs [list of 1D array I None] The singular values on each bond. Should always have length $L+1$. By default (None), set all singular values to the same value. Entries out of nontrivial_bonds are ignored.
bc [\{ 'infinite', 'finite', 'segmemt'\}] MPS boundary conditions. See docstring of MPS.
dtype [type or string] The data type of the array entries. Defaults to the common dtype of Bflat.
permute [bool] The Site might permute the local basis states if charge conservation gets enabled. If permute is True (default), we permute the given Bflat locally according to each site's perm. The p_{-}state argument should then always be given as if conserve=None in the Site.
form [(list of) \{'B' | 'A' | 'C' | 'G' | None Ituple(float, float) \}] Defines the canonical form of Bflat. See module doc-string. A single choice holds for all of the entries.
leg_L [LegCharge I None] Leg charges at bond 0, which are purely conventional. If None, use trivial charges.

Returns

mps [MPS] An MPS with the matrices Bflat converted to npc arrays.
classmethod from_full(sites, psi, form=None, cutoff=1e-16, normalize=True, bc='finite', outer_S=None)
Construct an MPS from a single tensor $p s i$ with one leg per physical site.
Performs a sequence of SVDs of psi to split off the B matrices and obtain the singular values, the result will be in canonical form. Obviously, this is only well-defined for finite or segment boundary conditions.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
psi [Array] The full wave function to be represented as an MPS. Should have labels 'p0', 'p1', ..., 'p\{L-1\}'. Additionally, it may have (or must have for 'segment' $b c$) the legs 'vL', 'vR', which are trivial for 'finite' $b c$.
form ['B' | 'A' | 'C' | 'G' | None] The canonical form of the resulting MPS, see module doc-string. None defaults to ' A ' form on the first site and ' B ' form on all following sites.
cutoff [float] Cutoff of singular values used in the SVDs.
normalize [bool] Whether the resulting MPS should have 'norm' 1.
be ['finite'। 'segment'] Boundary conditions.
outer_S [None I (array, array)] For 'semgent' $b c$ the singular values on the left and right of the considered segment, None for 'finite' boundary conditions.

Returns

psi_mps [MPS] MPS representation of psi, in canonical form and possibly normalized.
classmethod from_singlets (site, L, pairs, up='up', down='down', lonely=[], lonely_state='up', $b c=$ 'finite')
Create an MPS of entangled singlets.

Parameters

site [Site] The site defining the local Hilbert space, taken uniformly for all sites.
\mathbf{L} [int] The number of sites.
pairs [list of (int, int)] Pairs of sites to be entangled; the returned MPS will have a singlet for each pair in pairs.
up, down [int $\mid \operatorname{str}$] A singlet is defined as (lup down> - | down up>) $/ 2 \star * 0.5$, up and down give state indices or labels defined on the corresponding site.
lonely [list of int] Sites which are not included into a singlet pair.
lonely_state [int I str] The state for the lonely sites.
bc [\{ 'infinite', 'finite’, 'segmemt' \}] MPS boundary conditions. See docstring of MPS.

Returns

singlet_mps [MPS] An MPS representing singlets on the specified pairs of sites.

copy (self)

Returns a copy of self.
The copy still shares the sites, chinfo, and LegCharges of the B tensors, but the values of B and S are deeply copied.

property L

Number of physical sites; for an iMPS the len of the MPS unit cell.

property dim

List of local physical dimensions.

property finite

Distinguish MPS vs iMPS.
True for an MPS ($\mathrm{bc}=$ 'finite', 'segment'), False for an iMPS (bc='infinite').
property chi
Dimensions of the (nontrivial) virtual bonds.
property nontrivial_bonds
Slice of the non-trivial bond indices, depending on self.bc.
get_B (self, i, form $=$ ' B^{\prime}, copy $=$ False, cutoff $=1 e-16$, label_p=None)
Return (view of) B at site i in canonical form.

Parameters

i [int] Index choosing the site.
form ['B' | 'A' | 'C' | 'G' | 'Th' | None Ituple(float, float)] The (canonical) form of the returned B. For None, return the matrix in whatever form it is. If any of the tuple entry is None, also don't scale on the corresponding axis.
copy [bool] Whether to return a copy even if form matches the current form.
cutoff [float] During DMRG with a mixer, S may be a matrix for which we need the inverse. This is calculated as the Penrose pseudo-inverse, which uses a cutoff for the singular values.
label_p [None | str] Ignored by default (None). Otherwise replace the physical label 'p ' with 'p'+label_p'. (For derived classes with more than one "physical" leg, replace all the physical leg labels accordingly.)

Returns

B [Array] The MPS 'matrix' B at site i with leg labels 'vL', 'p', 'vR'. May be a view of the matrix (if copy=False), or a copy (if the form changed or copy=True).

Raises

ValueError [if self is not in canoncial form and form is not None.]
set_B (self, i, B, form $=$ ' B ')
Set B at site i.

Parameters

i [int] Index choosing the site.
B [Array] The 'matrix' at site i. No copy is made! Should have leg labels 'vL', 'p', 'vR' (not necessarily in that order).
form ['B' | 'A' | 'C' | 'G' | 'Th' | Noneltuple(float, float)] The (canonical) form of the B to set. None stands for non-canonical form.

```
get_SL(self,i)
```

Return singular values on the left of site i

get_SR (self, i)

Return singular values on the right of site i
set_SL (self, i, S)
Set singular values on the left of site i

```
set_SR(self,i,S)
```

Set singular values on the right of site i
get_op (self,op_list,i)
Given a list of operators, select the one corresponding to site i.

Parameters

op_list [(list of) \{str I npc.array\}] List of operators from which we choose. We assume that op_list [j] acts on site j. If the length is shorter than L, we repeat it periodically. Strings are translated using get_op () of site i.
i [int] Index of the site on which the operator acts.

Returns

op [npc.array] One of the entries in op_list, not copied.
get_theta (self, $i, n=2$, cutoff $=1 e-16$, form $L=1.0$, form $R=1.0$)
Calculates the n-site wavefunction on sites $[i: i+n]$.

Parameters

\mathbf{i} [int] Site index.
n [int] Number of sites. The result lives on sites [i:i+n].
cutoff [float] During DMRG with a mixer, S may be a matrix for which we need the inverse. This is calculated as the Penrose pseudo-inverse, which uses a cutoff for the singular values.
formL [float] Exponent for the singular values to the left.
formR [float] Exponent for the singular values to the right.

Returns

theta [Array] The n-site wave function with leg labels $v L, p 0, p 1, \ldots p\{n-1\}$, vR. In Vidal's notation (with $s=l a m b d a, G=G a m m a$): theta $=s * *$ form_L G_i s G_\{i+1\} s ... G_\{i+n-1\} $s * * f o r m _R$.
convert_form (self, new_form='B')
Tranform self into different canonical form (by scaling the legs with singular values).

Parameters

new_form [(list of) \{'B' | 'A' | 'C' | 'G' | 'Th' | None | tuple(float, float) \}] The form the stored 'matrices'. The table in module doc-string. A single choice holds for all of the entries.

Raises

ValueError [if trying to convert from a None form. Use canonical_form() instead!]
increase_L (self, new_L=None)
Modify self inplace to enlarge the unit cell.
For an infinite MPS, we have unit cells.

Parameters

new_L [int] New number of sites. Defaults to twice the number of current sites.
group_sites (self, $n=2$, grouped_sites=None)
Modify self inplace to group sites.
Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

See also:

group_split Reverts the grouping.
group_split (self, trunc_par=None)
Modify self inplace to split previously grouped sites.

Parameters

trunc_par [dict] Parameters for truncation, see truncate (). Defaults to \{'chi_max' : max (self.chi) \}.

Returns

trunc_err [TruncationError] The error introduced by the truncation for the splitting.

See also:

group_sites Should have been used before to combine sites.
get_grouped_mps (self, blocklen)
contract blocklen subsequent tensors into a single one and return result as a new MPS.
blocklen $=$ number of subsequent sites to be combined.

Returns

new MPS object with bunched sites.

get_total_charge (self, only_physical_legs=False)
Calculate and return the qtotal of the whole MPS (when contracted).

Parameters

only_physical_legs [bool] For 'finite' boundary conditions, the total charge can be gauged away by changing the LegCharge of the trivial legs on the left and right of the MPS. This option allows to project out the trivial legs to get the actual "physical" total charge.

Returns

qtotal [charges] The sum of the qtotal of the individual B tensors.
gauge_total_charge (self, qtotal=None, vL_leg=None, vR_leg=None)
Gauge the legcharges of the virtual bonds such that the MPS has a total qtotal.

Parameters

qtotal [(list of) charges] If a single set of charges is given, it is the desired total charge of the MPS (which get_total_charge () will return afterwards). By default (None), use 0 charges, unless vL_leg and vR_leg are specified, in which case we adjust the total charge to match these legs.
vL_leg [None I LegCharge] Desired new virtual leg on the very left. Needs to have the same block strucuture as current leg, but can have shifted charge entries.
vR_leg [None I LegCharge] Desired new virtual leg on the very right. Needs to have the same block strucuture as current leg, but can have shifted charge entries. Should be $v L _l e g . c o n j()$ for infinite MPS, if qtotal is not given.
entanglement_entropy (self, $n=1$, bonds $=$ None, for_matrix_S $=$ False)
Calculate the (half-chain) entanglement entropy for all nontrivial bonds.
Consider a bipartition of the sytem into $A=\left\{j: j<=i_{b}\right\}$ and $B=\left\{j: j>i_{b}\right\}$ and the reduced density matrix $\rho_{A}=\operatorname{tr}_{B}(\rho)$. The von-Neumann entanglement entropy is defined as $S(A, n=$ $1)=-\operatorname{tr}\left(\rho_{A} \log \left(\rho_{A}\right)\right)=S(B, n=1)$. The generalization for $\mathrm{n}!=1, \mathrm{n}>0$ are the Renyi entropies: $S(A, n)=\frac{1}{1-n} \log \left(\operatorname{tr}\left(\rho_{A}^{2}\right)\right)=S(B, n=1)$
This function calculates the entropy for a cut at different bonds i, for which the the eigenvalues of the reduced density matrix ρ_{A} and ρ_{B} is given by the squared schmidt values S of the bond.

Parameters

\mathbf{n} [int/float] Selects which entropy to calculate; $n=1$ (default) is the ususal von-Neumann entanglement entropy.
bonds [None I (iterable of) int] Selects the bonds at which the entropy should be calculated.
None defaults to range ($0, \mathrm{~L}+1$) [self.nontrivial_bonds].
for_matrix_S [bool] Switch calculate the entanglement entropy even if the $\quad S$ are matrices. Since $O\left(\chi^{3}\right)$ is expensive compared to the ususal $O(\chi)$, we raise an error by default.

Returns

entropies [1D ndarray] Entanglement entropies for half-cuts. entropies $[j]$ contains the entropy for a cut at bond bonds [j] (i.e. left to site bonds [j]).
entanglement_entropy_segment (self, segment=[0], first_site=None, $n=1$)
Calculate entanglement entropy for general geometry of the bipartition.
This function is similar as entanglement_entropy (), but for more general geometry of the region A to be a segment of a few sites.

This is acchieved by explicitly calculating the reduced density matrix of A and thus works only for small segments.

Parameters

segment [list of int] Given a first site i, the region $A_{-} i$ is defined to be $[i+j$ for j in segment].
first_site [None I (iterable of) int] Calculate the entropy for segments starting at these sites. None defaults to range (L-segment [-1]) for finite or range (L) for infinite boundary conditions.
n [int | float] Selects which entropy to calculate; $n=1$ (default) is the ususal von-Neumann entanglement entropy, otherwise the n-th Renyi entropy.

Returns

entropies [1D ndarray] entropies [i] contains the entropy for the the region A_i defined above.
entanglement_spectrum (self, by_charge=False)
return entanglement energy spectrum.

Parameters

by_charge [bool] Wheter we should sort the spectrum on each bond by the possible charges.

Returns

ent_spectrum [list] For each (non-trivial) bond the entanglement spectrum. If by_charge is False, return (for each bond) a sorted 1D ndarray with the convention $S_{i}^{2}=e^{-\xi_{i}}$, where S_{i} labels a Schmidt value and ξ_{i} labels the entanglement 'energy' in the returned spectrum. If by_charge is True, return a a list of tuples (charge, sub_spectrum) for each possible charge on that bond.
get_rho_segment (self, segment)
Return reduced density matrix for a segment.
Note that the dimension of rho_A scales exponentially in the length of the segment.

Parameters

segment [iterable of int] Sites for which the reduced density matrix is to be calculated. Assumed to be sorted.

Returns

rho [Array] Reduced density matrix of the segment sites. Labels 'p0', 'p1', ..., 'pk', 'p0*', 'p1*',, 'pk*' with k=len (segment).
probability_per_charge (self, bond=0)
Return probabilites of charge value on the left of a given bond.

For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. This function returns the possible values of $N _b$ as rows of charge_values, and for each row the probabilty that this combination occurs in the given state.

Parameters

bond [int] The bond to be considered. The returned charges are summed on the left of this bond.

Returns

charge_values [2D array] Columns correspond to the different charges in self.chinfo. Rows are the different charge fluctuations at this bond
probabilities [1D array] For each row of charge_values the probablity for these values of charge fluctuations.
average_charge (self, bond=0)
Return the average charge for the block on the left of a given bond.
For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. Then this function returns $\langle\psi| N_{b} \mid \psi>$.

Parameters

bond [int] The bond to be considered. The returned charges are summed over the sites left of bond.

Returns

average_charge [1D array] For each type of charge in chinfo the average value when summing the charge values over sites left of the given bond.
charge_variance (self, bond=0)
Return the charge variance on the left of a given bond.
For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. Then this function returns $<\psi\left|N_{b}^{2}\right| \psi>-\left(<\psi\left|N_{b}\right| \psi>\right)^{2}$.

Parameters

bond [int] The bond to be considered. The returned charges are summed over the sites left of bond.

Returns

average_charge [1D array] For each type of charge in chinfo the variance of of the charge values left of the given bond.
mutinf_two_site (self, max_range=None, $n=1$)
Calculate the two-site mutual information $I(i: j)$.
Calculates $I(i: j)=S(i)+S(j)-S(i, j)$, where $S(i)$ is the single site entropy on site i and $S(i, j)$ the two-site entropy on sites i, j.

Parameters

max_range [int] Maximal distance $|i-j|$ for which the mutual information should be calculated. None defaults to $L-1$.
n [float] Selects the entropy to use, see entropy ().

Returns

coords [2D array] Coordinates for the mutinf array.
mutinf [1D array] mutinf [k] is the mutual information $I(i: j)$ between the sites i, j
$=$ coords $[\mathrm{k}]$.
overlap (self, other, charge_sector=0, ignore_form=False, **kwargs) Compute overlap <self|other>.

Parameters

other $[M P S]$ An MPS with the same physical sites.
charge_sector [None I charges I 0] Selects the charge sector in which the dominant eigenvector of the TransferMatrix is. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0 .
ignore_form [bool] If False (default), take into account the canonical form form at each site. If True, we ignore the canonical form (i.e., whether the MPS is in left, right, mixed or no canonical form) and just contract all the $_B$ as they are. (This can give different results!)
**kwargs : Further keyword arguments given to TransferMatrix. eigenvectors (); only used for infinite boundary conditions.

Returns

overlap [dtype.type] The contraction <self|other> * self.norm * other. norm (i.e., taking into account the norm of both MPS). For an infinite MPS, <self|other> is the overlap per unit cell, i.e., the largest eigenvalue of the TransferMatrix.

expectation_value (self, ops, sites=None, axes=None)

Expectation value <psi|ops|psi>/<psi|psi>of(n-site) operator(s).
Given the MPS in canonical form, it calculates n-site expectation values. For example the contraction for a two-site ($n=2$) operator on site i would look like:

Parameters

ops [(list of) \{ Array l str \}] The operators, for wich the expectation value should be taken, All operators should all have the same number of legs (namely $2 n$). If less than self. L operators are given, we repeat them periodically. Strings (like 'Id', 'Sz') are translated into single-site operators defined by sites.
sites [None I list of int] List of site indices. Expectation values are evaluated there. If None (default), the entire chain is taken (clipping for finite b.c.)
axes [None I (list of str, list of str)] Two lists of each n leg labels giving the physical legs of the operator used for contraction. The first n legs are contracted with conjugated B, the second n legs with the non-conjugated B. None defaults to (['p'], ['p*']) for single site operators $(n=1)$, or (['p0', 'p1', ... 'p\{n-1\}'], ['p0*', 'p1*', 'p\{n-1\}*']) for $n>1$.

Returns

exp_vals [1D ndarray] Expectation values, exp_vals[i] = <psi|ops[i]|psi>, where ops[i] acts on site(s) $j, j+1, \ldots, j+\{n-1\}$ with $j=s i t e s[i]$.

Examples

One site examples ($\mathrm{n}=1$):

```
>>> psi.expectation_value('Sz')
[Sz0, Sz1, ..., Sz{L-1}]
>>> psi.expectation_value(['Sz', 'Sx'])
[Sz0, Sx1, Sz2, Sx3, ... ]
>>> psi.expectation_value('Sz', sites=[0, 3, 4])
[Sz0, Sz3, Sz4]
```

Two site example ($\mathrm{n}=2$), assuming homogeneous sites:

```
>>> SzSx = npc.outer(psi.sites[0].Sz.replace_labels(['p', 'p*'], ['p0', 'p0*
G']),
    psi.sites[1].Sx.replace_labels(['p', 'p*'], ['p1', 'p1*
@']))
>>> psi.expectation_value(SzSx)
[Sz0Sx1, Sz1Sx2, Sz2Sx3, ... ] # with len L-1 for finite bc, or L foru
\hookrightarrowinfinite
```

Example measuring $<$ psilSzSx|psi2> on each second site, for inhomogeneous sites:

```
>>> SzSx_list = [npc.outer(psi.sites[i].Sz.replace_labels(['p', 'p*'], ['p0',
@'p0*']),
    psi.sites[i+1].Sx.replace_labels(['p', 'p*'], ['p1
@', 'p1*']))
    for i in range(0, psi.L-1, 2)]
>>> psi.expectation_value(SzSx_list, range(0, psi.L-1, 2))
[Sz0Sx1, Sz2Sx3, Sz4Sx5, ...]
```

expectation_value_term (self, term, autoJW=True)
Expectation value <psi|op_\{i0\}op_\{i1\}...op_\{iN\}|psi>/<psi|psi>.

Calculates the expectation value of a tensor product of single-site operators acting on different sites $i 0, i 1$, \ldots (not necessarily next to each other). In other words, evaluate the expectation value of a term op0_i0 op1_i1 op2_i2
For example the contraction of three one-site operators on sites $i 0, i 1=i 0+1, i 2=i 0+3$ would look like:

	- --S--B[i0]---B[i0+1]--B[i0+2]--B[i0+3]--.		
\|	\|	\|	\|
\|	\| op1	op2	op3
I			
	--S--B*	$-\mathrm{B} *$	-B*

Parameters

term [list of (str, int)] List of tuples op, i where i is the MPS index of the site the operator named op acts on. The order inside term determines the order in which they act (in the mathematical convention: the last operator in term is right-most, so it acts first on a Ket).
autoJW [bool] If True (default), automatically insert Jordan Wigner strings for Fermions as needed.

Returns

exp_val [float/complex] The expectation value of the tensorproduct of the given onsite operators, <psi|op_i0 op_i1 ... op_iN |psi>/<psi|psi>, where |psi> is the represented MPS.

See also:

correlation_function efficient way to evaluate many correlation functions.

Examples

```
>>> a = psi.expectation_value_term([('Sx', 2), ('Sz', 4)])
>>> b = psi.expectation_value_term([('Sz', 4), ('Sx', 2)])
>>> c = psi.expectation_value_multi__sites(['Sz', 'Id', 'Sz'], i0=2)
>>> assert a == b == c
```

expectation_value_multi_sites (self, operators, $i 0$)
Expectation value <psi|op0_\{i0\}op1_\{i0+1\}...opN_\{i0+N\}|psi>/<psi|psi>.

Calculates the expectation value of a tensor product of single-site operators acting on different sites next to each other. In other words, evaluate the expectation value of a term op $0 _i 0$ op $1 _\{i 0+1\}$ op2_\{i0+2\}

Parameters

operators [List of $\{$ Array | str \}] List of one-site operators. This method calculates the expectation value of the n-sites operator given by their tensor product.
$\mathbf{i 0}$ [int] The left most index on which an operator acts, i.e., operators [i] acts on site i $+i 0$.

Returns

exp_val [float/complex] The expectation value of the tensorproduct of the given onsite operators, <psiloperators[0]_\{i0\} operators[1]_\{i0+1\} ... |psi>/<psi|psi>, where |psi> is the represented MPS.
expectation_value_terms_sum (self, term_list, prefactors=None)
Calculate expectation values for a bunch of terms and sum them up.
This is equivalent to the following expression:

```
sum([self.expectation_value_term(term)*strength for term, strength in term_
->list])
```

However, for effiency, the term_list is converted to an MPO and the expectation value of the MPO is evaluated.

Note: Due to the way MPO expectation values are evaluated for infinite systems, it works only if all terms in the term_list start within the MPS unit cell.

Deprecated since version 0.4.0: prefactor will be removed in version 1.0.0. Instead, directly give just TermList(term_list, prefactors) as argument.

Parameters

term_list [TermList] The terms and prefactors (strength) to be summed up.
prefactors : Instead of specifying a TermList, one can also specify the term_list and strength separately. This is deprecated.

Returns

terms_sum [list of (complex) float] Equivalent to the expression sum ([self. expectation_value_term(term)*strength for term, strength in term_list]).
_mpo : Intermediate results: the generated MPO. For a finite MPS, terms_sum = _mpo.expectation_value (self), for an infinite MPS terms_sum = _mpo. expectation_value(self) * self.L

See also:

expectation_value_term evaluates a single term.
tenpy.networks.mpo.MPO. expectation_value expectation value density of an MPO.
correlation_function (self, ops1, ops2, sites $1=$ None, sites $2=$ None, opstr=None, str_on_first=True, hermitian=False)
Correlation function <psi|op1_i op2_j|psi>/<psi|psi>of single site operators.
Given the MPS in canonical form, it calculates 2-site correlation functions. For examples the contraction for a two-site operator on site i would look like:

```
|
```

Onsite terms are taken in the order <psi | op1 op2 | psi>.
If opstr is given and str_on_first=True, it calculates:

\|	for i < j			for i > j				
\|								
\|	. --S--B[i] ---B[i+1]--...-B[j]--- .			.--S--B[j]---B[j+1]--...-				
$\rightarrow B[i]---$								
\|	1 l	।	I	1	।	1		
\hookrightarrow								
\|	I opstr opstr	op2			op2	1		
\rightarrow								
\|	1 l	I	I	I	1	1		
\hookrightarrow								
\|	\| op1		1			opstr	opstr	
\rightarrow op1 \|								
\|	1 l	I	।	I	I	1		
\hookrightarrow								
\|	. - S $--B *[i]--B *[i+1]$	B* [$]$			$-B *[j]$	-B* [j+1]		
$\rightarrow B *[i]--$								

For $i==j$, no opstr is included. For str_on_first=False, the opstr on site min(i, j) is always left out.

Strings (like 'Id', 'Sz') in the arguments are translated into single-site operators defined by the Site on which they act. Each operator should have the two legs ' p ', ' $p *$ '.

Parameters

ops1 [(list of) \{ Array | str \}] First operator of the correlation function (acting after ops2). ops1[x] acts on site sites1[x]. If less than len(sites1) operators are given, we repeat them periodically.
ops2 [(list of) \{ Array I str \}] Second operator of the correlation function (acting before ops1). ops2[y] acts on site sites2[y]. If less than len (sites2) operators are given, we repeat them periodically.
sites1 [None I int I list of int] List of site indices; a single int is translated to range (0 , sites1). None defaults to all sites range ($0, \mathrm{~L}$). Is sorted before use, i.e. the order is ignored.
sites2 [None I int I list of int] List of site indices; a single int is translated to range (0 , sites2). None defaults to all sites range ($0, \mathrm{~L}$). Is sorted before use, i.e. the order is ignored.
opstr [None I (list of) \{ Array | str \}] Ignored by default (None). Operator(s) to be inserted between ops1 and ops2. If less than L operators are given, we repeat them periodically. If given as a list, opstr$[r]$ is inserted at site r (independent of sites 1 and sites2).
str_on_first [bool] Whether the opstr is included on the site min (i, j). Note the order, which is chosen that way to handle fermionic Jordan-Wigner strings correctly. (In other words: choose str_on_first=True for fermions!)
hermitian [bool] Optimization flag: if sites1 == sites2 and Ops1[i]^\dagger $==$ Ops2[i] (which is not checked explicitly!), the resulting C [x, y] will be hermitian. We can use that to avoid calculations, so hermitian=True will run faster.

Returns

\mathbf{C} [2D ndarray] The correlation function $C[x, y]=\langle p s i| o p s 1[i]$ ops2[j]|psi>, where ops1[i] acts on site i=sites1[x] and ops2[j] on site $j=$ sites $2[y]$. If opstr is given, it gives (for str_on_first=True):

- For $i<j: C[x, y]=<p s i \mid o p s 1[i] \operatorname{prod}\{i<=r<j\}$ opstr[r] ops2[j]|psi>.
- For i > j: C[x, y] = <psi|prod_\{j <= r < i\} opstr[r] ops1[i] ops2[j]|psi>.
- For $i=j: C[x, y]=$ ppsi|ops1[i] ops2[j]|psi>.

The condition <=r is replaced by a strict $<r$, if str_on_first=False.

norm_test (self)

Check that self is in canonical form.

Returns

norm_error: array, shape ($\mathbf{L}, \mathbf{2}$) For each site the norm error to the left and right. The error norm_error $[i, 0]$ is defined as the norm-difference between the following networks:

Similarly, norm_errror [i, 1] is the norm-difference of:

\mid	.-- theta[i] ---		
\mid	i	\mid	vs $[i+1]--$
\mid	$.--t h e t a *[i]--$		

canonical_form (self, renormalize=True)
Bring self into canonical ' B ' form, (re-)calculate singular values.
Simply calls canonical_form_finite() or canonical_form_infinite().
canonical_form_finite (self, renormalize=True, cutoff=0.0)
Bring a finite (or segment) MPS into canonical form (in place).
If any site is in form None, it does not use any of the singular values S (for 'finite' boundary conditions, or only the very left S for 'segment' b.c.). If all sites have a form, it respects the form to ensure that one S is included per bond. The final state is always in right-canonical ' B ' form.

Performs one sweep left to right doing QR decompositions, and one sweep right to left doing SVDs calculating the singular values.

Parameters

renormalize: bool Whether a change in the norm should be discarded or used to update norm.
cutoff [float I None] Cutoff of singular values used in the SVDs.

Returns

$\mathbf{U} _\mathbf{L}, \mathbf{V} _\mathbf{R}$ [Array] Only returned for 'segment' boundary conditions. The unitaries defining the new left and right Schmidt states in terms of the old ones, with legs 'vL', 'vR'.
canonical_form_infinite (self, renormalize=True, tol_xi=1000000.0)
Bring an infinite MPS into canonical form (in place).
If any site is in form None, it does not use any of the singular values S. If all sites have a form, it respects the form to ensure that one S is included per bond. The final state is always in right-canonical 'B' form.
Proceeds in three steps, namely 1) diagonalize right and left transfermatrix on a given bond to bring that bond into canonical form, and then 2) sweep right to left, and 3) left to right to bringing other bonds into canonical form.

Parameters

renormalize: bool Whether a change in the norm should be discarded or used to update norm.
tol_xi [float] Raise an error if the correlation length is larger than that (which indicates a degenerate "cat" state, e.g., for spontaneous symmetry breaking).
correlation_length (self, target $=1$, tol_ev $0=1 e-08$, charge_sector $=0$)
Calculate the correlation length by diagonalizing the transfer matrix.
Assumes that self is in canonical form.
Works only for infinite MPS, where the transfer matrix is a useful concept. Assuming a single-site unit cell, any correlation function splits into $C\left(A_{i}, B_{j}\right)=A_{i}^{\prime} T^{j-i-1} B_{j}^{\prime}$ with some parts left and right and the $j-i-1$-th power of the transfer matrix in between. The largest eigenvalue is 1 (if self is properly normalized) and gives the dominant contribution of $A_{i}^{\prime} E_{1} * 1^{j-i-1} * E_{1}^{T} B_{j}^{\prime}=<A>$, and the second largest one gives a contribution $\propto \lambda_{2}^{j-i-1}$. Thus $\lambda_{2}=\exp \left(-\frac{1}{\xi}\right)$.
More general for a L-site unit cell we get $\lambda_{2}=\exp \left(-\frac{L}{\xi}\right)$, where the $x i$ is given in units of 1 lattice spacing in the MPS.

Warning: For a higher-dimensional lattice (which the MPS class doesn't know about), the correct unit is the lattice spacing in x-direction, and the correct formula is $\lambda_{2}=\exp \left(-\frac{L_{x}}{\xi}\right)$, where $L_{-} x$ is the number of lattice spacings in the infinite direction within the MPS unit cell, e.g. the number of "rings" of a cylinder in the MPS unit cell. To get to these units, divide the returned xi by the number of sites within a "ring", for a lattice given in N_sites_per_ring.

Parameters

target [int] We look for the target +1 largest eigenvalues.
tol_ev0 [float] Print warning if largest eigenvalue deviates from 1 by more than tol_ev0.
charge_sector [None I charges I 0] Selects the charge sector in which the dominant eigenvector of the TransferMatrix is. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0 .

Returns

xi [float I 1D array] If target $=1$, return just the correlation length, otherwise an array of the 'target largest correlation lengths. It is measured in units of a single lattice spacing in the MPS language, see the warning above.
add (self, other, alpha, beta, cutoff=1e-15)
Return an MPS which represents alpha|self> + beta |others>.
Works only for 'finite', 'segment' boundary conditions. For 'segment' boundary conditions, the virtual legs on the very left/right are assumed to correspond to each other (i.e. self and other have the same state outside of the considered segment). Takes into account norm.

Parameters

other [MPS] Another MPS of the same length to be added with self.
alpha, beta [complex float] Prefactors for self and other. We calculate alpha * |self> + beta * lother>
cutoff [float I None] Cutoff of singular values used in the SVDs.

Returns

sum [MPS] An MPS representing alpha|self> + beta |other>. Has same total charge as self.
$\mathbf{U} _\mathbf{L}, \mathbf{V} _\mathbf{R}$ [Array] Only returned for 'segment' boundary conditions. The unitaries defining the new left and right Schmidt states in terms of the old ones, with legs 'vL', 'vR'.
apply_local_op (self, $i, o p$, unitary $=$ None, renormalize $=$ False, cutoff=1e-13)
Apply a local (one or multi-site) operator to self.
Note that this destroys the canonical form if the local operator is non-unitary. Therefore, this function calls canonical_form() if necessary.

Parameters

i [int] (Left-most) index of the site(s) on which the operator should act.
op [str Inpc.Array] A physical operator acting on site i, with legs ' p ', ' $\mathrm{p} *$ ' for a singlesite operator or with legs ['p0', 'p1', ...], ['p0*', 'p1*', ...] for an operator acting on $n>=2$ sites. Strings (like 'Id', 'Sz') are translated into single-site operators defined by sites.
unitary [None I bool] Whether op is unitary, i.e., whether the canonical form is preserved (True) or whether we should call canonical_form() (False). None checks whether norm(op dagger(op) - identity) is smaller than cutoff.
renormalize [bool] Whether the final state should keep track of the norm (False, default) or be renormalized to have norm 1 (True).
cutoff [float] Cutoff for singular values if $o p$ acts on more than one site (see from_full ()). (And used as cutoff for a unspecified unitary.)
swap_sites (self, i, swap_op='auto', trunc_par=\{\})
Swap the two neighboring sites i and $i+l$ (inplace).
Exchange two neighboring sites: form theta, 'swap' the physical legs and split with an svd. While the 'swap' is just a transposition/relabeling for bosons, one needs to be careful about the sign for fermions.

Parameters

\mathbf{i} [int] Swap the two sites at positions i and $i+1$.
swap_op [None | 'auto'|Array] The operator used to swap the phyiscal legs of the twosite wave function theta. For None, just transpose/relabel the legs, for 'auto' also take care of fermionic signs. Alternative give an npc Array which represents the full operator used for the swap. Should have legs ['p0', 'p1', 'p0*', 'p1*'] whith 'p0', 'p1*' contractible.
trunc_par [dict] Parameters for truncation, see truncate(). chi_max defaults to max(self.chi).

Returns

trunc_err [TruncationError] The error of the represented state introduced by the truncation after the swap.
permute_sites (self, perm, swap_op='auto', trunc_par $=\{ \}$, verbose $=0$)
Applies the permutation perm to the state (inplace).

Parameters

perm [ndarray[ndim=1, int]] The applied permutation, such that psi. permute_sites(perm)[i] = psi[perm[i]] (where [i] indicates the i-th site).
swap_op [None|'auto' | Array] The operator used to swap the phyiscal legs of a twosite wave function theta, see swap_sites().
trunc_par [dict] Parameters for truncation, see truncate (). chi_max defaults to max (self.chi).
verbose [float] Level of verbosity, print status messages if verbose >0.

Returns

trunc_err [TruncationError] The error of the represented state introduced by the truncation after the swaps.
compute_K (self, perm, swap_op='auto', trunc_par=None, canonicalize $=1 e-06$, verbose $=0$)
Compute the momentum quantum numbers of the entanglement spectrum for 2D states.
Works for an infinite MPS living on a cylinder, infinitely long in x direction and with periodic boundary conditions in y directions. If the state is invariant under 'rotations' around the cylinder axis, one can find the momentum quantum numbers of it. (The rotation is nothing more than a translation in y.) This function permutes some sites (on a copy of self) to enact the rotation, and then finds the dominant eigenvector of
the mixed transfer matrix to get the quantum numbers, along the lines of [PollmannTurner2012], see also (the appendix and Fig. 11 in the arXiv version of) [CincioVidal2013].

Parameters

perm [1D ndarray 1 Lattice] Permuation to be applied to the physical indices, see permute_sites (). If a lattice is given, we use it to read out the lattice structure and shift each site by one lattice-vector in y-direction (assuming periodic boundary conditions). (If you have a CouplingModel, give its lat attribute for this argument)
swap_op [None | 'auto' | Array] The operator used to swap the phyiscal legs of a twosite wave function theta, see swap_sites().
trunc_par [dict] Parameters for truncation, see truncate (). If not set, chi_max defaults to max (self.chi).
canonicalize [float] Check that self is in canonical form; call canonical_form() if norm_test() yields np.linalg.norm(self.norm_test()) > canonicalize.
verbose [float] Level of verbosity, print status messages if verbose >0.

Returns

\mathbf{U} [Array] Unitary representation of the applied permutation on left Schmidt states.
\mathbf{W} [ndarray] 1D array of the form $S * * 2 \exp (i \operatorname{K})$, where S are the Schmidt values on the left bond. You can use np.abs () and np.angle () to extract the Schmidt values S and momenta K from W.
q [LegCharge] LegCharge corresponding to W.
ov [complex] The eigenvalue of the mixed transfer matrix $<p s i l T \mid p s i>$ per L sites. An absolute value different smaller than 1 indicates that the state is not invariant under the permutation or that the truncation error trunc_err was too large!
trunc_err [TruncationError] The error of the represented state introduced by the truncation after swaps when performing the truncation.

MPSEnvironment

- full name: tenpy.networks.mps.MPSEnvironment
- parent module: tenpy.networks.mps
- type: class
class tenpy.networks.mps.MPSEnvironment (bra, ket, init_LP=None, init_RP=None, age_LP=0,age_RP=0)
Bases: ob ject
Stores partial contractions of $<b r a|O p| k e t>$ for local operators $O p$.
The network for a contraction $<b r a|O p| k e t>$ of a local operator $O p$, say exemplary at sites $i, i+l$ looks like:

Of course, we can also calculate the overlap <bralket> by using the special case Op =Id.
We use the following label convention (where arrows indicate qconj):
\square
To avoid recalculations of the whole network e.g. in the DMRG sweeps, we store the contractions up to some site index in this class. For bc='finite', 'segment ', the very left and right part LP [0] and RP [-1] are trivial and don't change, but for $b c=$ 'infinite' they are might be updated (by inserting another unit cell to the left/right).
The MPS bra and ket have to be in canonical form. All the environments are constructed without the singular values on the open bond. In other words, we contract left-canonical A to the left parts $L P$ and right-canonical B to the right parts $R P$. Thus, the special case ket=bra should yield identity matrices for $L P$ and $R P$.

Parameters

bra [MPS] The MPS to project on. Should be given in usual 'ket' form; we call conj() on the matrices directly. Stored in place, without making copies. If necessary to match charges, we call gauge_total_charge ().
ket [MPO I None] The MPS on which the local operator acts. Stored in place, without making copies. If None, use bra.
init_LP [Nonel Array] Initial very left part LP. If None, build trivial one with init_LP ().
init_RP [None I Array] Initial very right part RP. If None, build trivial one with init_RP().
age_LP [int] The number of physical sites involved into the contraction yielding first $L P$.
age_RP [int] The number of physical sites involved into the contraction yielding lastRP.

Attributes

\mathbf{L} [int] Number of physical sites involved into the Environment, i.e. the least common multiple of bra.L and ket.L.
bra, ket [MPS] The two MPS for the contraction.
dtype [type] The data type.
_finite [bool] Whether the boundary conditions of the MPS are finite.
_LP [list of \{None I Array\}] Left parts of the environment, len L. LP [i] contains the contraction strictly left of site i (or None, if we don't have it calculated).
_RP [list of \{None I Array\}] Right parts of the environment, len L. RP [i] contains the contraction strictly right of site i (or None, if we don't have it calculated).
_LP_age [list of int I None] Used for book-keeping, how large the DMRG system grew: _LP_age [i] stores the number of physical sites invovled into the contraction network which yields self._LP[i].
_RP_age [list of int I None] Used for book-keeping, how large the DMRG system grew: _RP_age [i] stores the number of physical sites invovled into the contraction network which yields self._RP[i].

Methods

del_LP(self, i)	Delete stored part strictly to the left of site i.
del_RP(self, i)	Delete storde part scrictly to the right of site i.
expectation_value(self, ops[, sites, axes])	Expectation value <bralops \mid ket $>$ of (n-site) op- erator(s).
full_contraction(self, i0)	Calculate the overlap by a full contraction of the net- work.
get_LP(self, i[, store])	Calculate LP at given site from nearest available one (including $i)$.
get_LP_age(self, i)	Return number of physical sites in the contractions of get_LP(i).
get_RP(self, i[, store])	Calculate RP at given site from nearest available one (including i).
get_RP_age(self, i)	Return number of physical sites in the contractions of get_RP(i).
init_LP(self, i)	Build initial left part LP.
init_RP(self, i)	Build initial right part RP for MPS/MPOEnvironment.
set_LP(self, i, LP, age)	Store part to the left of site i.

test_sanity (self)

Sanity check, raises ValueErrors, if something is wrong.
init_LP (self,i)
Build initial left part LP.

Parameters

i [int] Build LP left of site i.

Returns

init_LP [Array] Identity contractible with the $v L$ leg of ket.get_B (i), labels 'vR*', 'vR'.
init_RP (self,i)
Build initial right part RP for an MPS/MPOEnvironment.

Parameters

i [int] Build RP right of site i.

Returns

init_RP [Array] Identity contractible with the $v R$ leg of ket.get_B (i), labels 'vL*', 'vL'.
get_LP (self, i, store=True)
Calculate LP at given site from nearest available one (including i).
The returned LP_i corresponds to the following contraction, where the M's and the N's are in the ' A ' form:

Parameters

\mathbf{i} [int] The returned $L P$ will contain the contraction strictly left of site i.
store [bool] Wheter to store the calculated LP in self (True) or discard them (False).

Returns

LP_i [Array] Contraction of everything left of site i, with labels 'vR*', 'vR' for bra, ket.
get_RP (self, i, store=True $)$
Calculate RP at given site from nearest available one (including i).
The returned RP_i corresponds to the following contraction, where the M's and the N's are in the ' B ' form:

```
||
```


Parameters

\mathbf{i} [int] The returned $R P$ will contain the contraction strictly right of site i.
store [bool] Wheter to store the calculated $R P$ in self (True) or discard them (False).

Returns

$\mathbf{R P}$ _i [Array] Contraction of everything left of site i, with labels 'vL*', 'vL' for $b r a$, ket.
get_LP_age (self, i)
Return number of physical sites in the contractions of get_LP(i).
Might be None.
get_RP_age (self, i)
Return number of physical sites in the contractions of get_RP(i).
Might be None.
set_LP (self, $i, L P$, age $)$
Store part to the left of site i.
set_RP (self, i, RP, age)
Store part to the right of site i.
del_LP (self,i)
Delete stored part strictly to the left of site i.
del_RP (self,i)
Delete storde part scrictly to the right of site i.
full_contraction (self, i0)
Calculate the overlap by a full contraction of the network.
The full contraction of the environments gives the overlap <bra| ket>, taking into account MPS. norm of both bra and ket. For this purpose, this function contracts get_LP (i0+1, store=False) and get_RP (i0, store=False) with appropriate singular values in between.

Parameters

i0 [int] Site index.
expectation_value (self, ops, sites=None, axes=None)
Expectation value <bra|ops | ket> of (n-site) operator(s).
Calculates n-site expectation values of operators sandwiched between bra and ket. For examples the contraction for a two-site operator on site i would look like:

```
|
```

Here, the B are taken from ket, the B^{*} from bra. The call structure is the same as for MPS. expectation_value().

Parameters

ops [(list of) \{ Array \| str \}] The operators, for wich the expectation value should be taken, All operators should all have the same number of legs (namely $2 n$). If less than len(sites) operators are given, we repeat them periodically. Strings (like 'Id', ' Sz ') are translated into single-site operators defined by sites.
sites [list] List of site indices. Expectation values are evaluated there. If None (default), the entire chain is taken (clipping for finite b.c.)
axes [None I (list of str, list of str)] Two lists of each n leg labels giving the physical legs of the operator used for contraction. The first n legs are contracted with conjugated B, the second n legs with the non-conjugated B. None defaults to ($[\mathrm{p}$ '], ['p*']) for single site ($n=1$), or (['p0', 'p1', ... 'p\{n-1\}'], ['p0*', 'p1*', 'p\{n-1\}*']) for $n>1$.

Returns

exp_vals [1D ndarray] Expectation values, exp_vals[i] = <bra|ops[i]|ket>, where ops[i] acts on site(s) $j, j+1, \ldots, j+\{n-1\}$ with $j=$ sites[i].

Examples

One site examples ($\mathrm{n}=1$):

```
>>> env.expectation_value('Sz')
[Sz0, Sz1, ..., Sz{L-1}]
>>> env.expectation_value(['Sz', 'Sx'])
[Sz0, Sx1, Sz2, Sx3, ... ]
>>> env.expectation_value('Sz', sites=[0, 3, 4])
[Sz0, Sz3, Sz4]
```

Two site example ($\mathrm{n}=2$), assuming homogeneous sites:

```
>>> SzSx = npc.outer(psi.sites[0].Sz.replace_labels(['p', 'p*'], ['p0', 'p0*
G']),
    psi.sites[1].Sx.replace_labels(['p', 'p*'], ['p1', 'p1*
G']))
>>> env.expectation_value(SzSx)
[Sz0Sx1, Sz1Sx2, Sz2Sx3, ... ] # with len L-1 for finite bc, or L for,
\hookrightarrowinfinite
```

Example measuring <bralSzSx|ket> on each second site, for inhomogeneous sites:

```
>>> SzSx_list = [npc.outer(psi.sites[i].Sz.replace_labels(['p', 'p*'], ['p0',
@'p0*']),
    psi.sites[i+1].Sx.replace_labels(['p', 'p*'], ['p1
G', 'p1*']))
    for i in range(0, psi.L-1, 2)]
>>> env.expectation_value(SzSx_list, range(0, psi.L-1, 2))
[Sz0Sx1, Sz2Sx3, Sz4Sx5, ...]
```


TransferMatrix

- full name: tenpy.networks.mps.TransferMatrix
- parent module: tenpy.networks.mps
- type: class
class tenpy.networks.mps.TransferMatrix (bra, ket, shift_bra=0, shift_ket=None, transpose $=$ False, charge_sector $=0$, form $=$ ' B ')
Bases: tenpy.linalg.sparse.NpcLinearOperator
Transfer matrix of two MPS (bra \& ket).
For an iMPS in the thermodynamic limit, we often need to find the 'dominant $R P$ ' (and $L P$). This mean nothing else than to take the transfer matrix of the unit cell and find the (right/left) eigenvector with the largest (magnitude) eigenvalue, since it will dominate $(T M)^{n} R P$ (or $\left.L P(T M)^{n}\right)$ in the limit $n \rightarrow \infty$ - whatever the initial $R P$ is. This class provides exactly that functionality with eigenvectors ().

Given two MPS, we define the transfer matrix as:

```
---M[i]---M[i+1]- ... --M[i+L]---
| ---N[j]*--N[j+1]* ... --N[j+L]*--
```

Here the M denotes the matrices of the bra and N the ones of the ket, respectively. To view it as a matrix, we combine the left and right indices to pipes:

$$
(v L \cdot v L *)->-T M->-(v R \cdot v R *) \text { acting on }(v L \cdot v L *) \quad->-R P
$$

Note that we keep all M and N as copies.

Parameters

bra [MPS] The MPS which is to be (complex) conjugated.
ket [MPS] The MPS which is not (complex) conjugated.
shift_bra [int] We start the N of the bra at site shift_bra (i.e. the j in the above network).
shift_ket [int I None] We start the M of the ket at site shift_ket (i.e. the i in the above network). None defaults to shift_bra.
transpose [bool] Wheter self.matvec acts on $R P$ (False) or $L P$ (True).
charge_sector [None I charges I 0] Selects the charge sector of the vector onto which the Linear operator acts. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0 , i.e., assumes the dominant eigenvector is in charge sector 0 .
form ['B' | 'A' | 'C' | 'G' | 'Th' | Noneltuple(float, float)] In which canonical form we take the M and N matrices.

Attributes

\mathbf{L} [int] Number of physical sites involved in the transfer matrix, i.e. the least common multiple of bra.L and ket.L.
shift_bra [int] We start the N of the bra at site shift_bra.
shift_ket [int I None] We start the M of the ket at site shift_ket. None defaults to shift_bra.
transpose [bool] Wheter self.matvec acts on $R P$ (True) or $L P$ (False).
qtotal [charges] Total charge of the transfer matrix (which is gauged away in matvec).
form [tuple(float, float) I None] In which canonical form (all of) the M and N matrices are.
flat_linop [FlatLinearOperator] Class lifting matvec () to ndarrays in order to use speigs().
pipe [LegPipe] Pipe corresponding to '(vL.vL*)' for transpose=False or to '(vR. vR*)' for transpose=True.
label_split: ['vL', 'vL*'] if tranpose=False or ['vR', 'vR*'] if transpose=True.
_bra_N [list of npc.Array] Complex conjugated matrices of the bra, transposed for fast matvec.
_ket_M [list of npc.Array] The matrices of the ket, transposed for fast matvec.
_contract_legs [int] Number of physical legs per site +1 .

Methods

eigenvectors(self[, num_ev, max_num_ev, $\ldots])$.	Find (dominant) eigenvector(s) of self using scipy.sparse.
initial_guess(self[, diag])	Return a diagonal matrix as initial guess for the eigenvector.
matvec(self, vec)	Given vec as an npc.Array, apply the transfer matrix.

matvec (self, vec)
Given vec as an npc.Array, apply the transfer matrix.

Parameters

vec [Array] Vector to act on with the transfermatrix. If not transposed, vec is the right part $R P$ of an environment, with legs ' (vL.vL*)' in a pipe or splitted. If transposed, the left part $L P$ of an environment with legs ${ }^{\prime}(v R \star . v R)^{\prime}$.

Returns

mat_vec [Array] The tranfer matrix acted on vec, in the same form as given.
initial_guess (self, diag=1.0)
Return a diagonal matrix as initial guess for the eigenvector.

Parameters

diag [float I 1D ndarray] Should be 1 . for the identity or some singular values squared.

Returns

mat [Array] A 2D array with diag on the diagonal such that matvec () can act on it.
eigenvectors (self, num_ev=1, max_num_ev=None, max_tol=1e-12, which='LM', v0=None, **kwargs)
Find (dominant) eigenvector(s) of self using scipy. sparse.
If no charge_sector was selected, we look in all charge sectors.

Parameters

num_ev [int] Number of eigenvalues/vectors to look for.
max_num_ev [int] scipy.sparse.linalg.speigs () somtimes raises a NoConvergenceError for small num_ev, which might be avoided by increasing num_ev. As a workaround, we try it again in the case of an error, just with larger num_ev up to max_num_ev. None defaults to num_ev +2 .
max_tol [float] After the first NoConvergenceError we increase the tol argument to that value.
which [str] Which eigenvalues to look for, see scipy.sparse.linalg.speigs.
**kwargs : Further keyword arguments are given to speigs ().

Returns

eta [1D ndarray] The eigenvalues, sorted according to which.
\mathbf{w} [list of Array] The eigenvectors corresponding to eta, as npc.Array with LegPipe.

Functions

build_initial_state(size, states, filling[,...]) Build an "initial state" list.
build_initial_state

- full name: tenpy.networks.mps.build_initial_state
- parent module: tenpy.networks.mps
- type: function

```
tenpy.networks.mps.build_initial_state (size, states, filling, mode='random', seed=None)
```

Build an "initial state" list.
Uses two iterables ('states' and 'filling') to determine how to fill the state. The two lists should have the same length as every element in 'filling' gives the filling fraction for the corresponding state in 'states'.

Example: size $=6$, states $=[0,1,2]$, filling $=[1 . / 3,2 . / 3,0$.$] n_states =$ size $*$ filling $=[2,4,0]==>$ Two sites will get state 0,4 sites will get state 1,0 sites will get state 2 .

Todo: Make more general: it should be possible to specify states as strings.

Parameters

size [int] length of state
states [iterable] Containing the possible local states
filling [iterable] Fraction of the total number of sites to get a certain state. If infinite fractions
(e.g. $1 / 3$) are needed, one should supply a fraction (1./3.)
mode [str I None] State filling pattern. Only 'random' is implemented
seed [int I None] Seed for random number generators

Returns

initial_state (list) [the initial state]

Raises

ValueError If fractonal fillings are incommensurate with system size.
AssertionError If the total filling is not equal to 1, or the length of filling does not equal the length of states.

Module description

This module contains a base class for a Matrix Product State (MPS).
An MPS looks roughly like this:

```
| -- B[0] -- B[1] -- B[2] -- ...
```

We use the following label convention for the B (where arrows indicate qconj):

```
vL ->- B ->- vR
|
|
```

We store one 3-leg tensor_B[i] with labels 'vL', 'vR', 'p' for each of the L sites $0<=i<L$. Additionally, we store $L+1$ singular value arrays _S[ib] on each bond $0<=i b<=L$, independent of the boundary conditions. _S [ib] gives the singlur values on the bond i-1, i. However, be aware that e.g. chi returns only the dimensions of the nontrivial_bonds depending on the boundary conditions.

The matrices and singular values always represent a normalized state (i.e. np.linalg.norm(psi._S[ib]) == 1 up to roundoff errors), but (for finite MPS) we keep track of the norm in norm (which is respected by overlap (), ...).

Valid MPS boundary conditions (not to confuse with bc_coupling of tenpy.models.model. CouplingModel) are the following:

$b c$	description
$\begin{aligned} & \text { 'fi- } \\ & \text { nite' } \end{aligned}$	Finite MPS, G0 s1 G1 ... s $\{\mathrm{L}-1\}$ G $\{1-1\}$. This is acchieved by using a trivial left and right bond $s[0]=s[-1]=n p . a r r a y([1]$.$) .$
$\begin{aligned} & \text { 'seg- } \\ & \text { ment } \end{aligned}$	Generalization of 'finite', describes an MPS embedded in left and right environments. The left environment is described by chi[0] orthonormal states which are weighted by the singular values s[0]. Similar, $s[L]$ weight some right orthonormal states. You can think of the left and right states to be generated by additional MPS, such that the overall structure is something like... s L s L [s0 G0 s1 G1 ... $\mathrm{s}\{\mathrm{L}-1\} \mathrm{G}\{\mathrm{L}-1\} \mathrm{s}\{\mathrm{L}\}] \mathrm{R} \mathrm{s} R \mathrm{~s} R \ldots$ (where we save the part in the brackets [...]).
$\begin{aligned} & \hline \text { 'in- } \\ & \text { fi- } \\ & \text { nite } \end{aligned}$	infinite MPS (iMPS): we save a 'MPS unit cell’ [s0 G0 s1 G1 ... s\{L-1\} G\{L-1\}] which is repeated periodically, identifying all indices modulo self.L. In particular, the last bond L is identified with 0 . (The MPS unit cell can differ from a lattice unit cell). bond is identified with the first one.

An MPS can be in different 'canonical forms' (see [Vidal2004], [Schollwoeck2011]). To take care of the different canonical forms, algorithms should use functions like get_theta(), get_B() and set_B() instead of accessing them directly, as they return the B in the desired form (which can be chosen as an argument). The values of the tuples for the form correspond to the exponent of the singular values on the left and right. To keep track of a "mixed" canonical form A A A S B B, we save the tuples for each site of the MPS in MPS. form.

form	tuple	description
'B'	$(0,1)$	right canonical: _B[i] = -- Gamma [i] -- s[i+1]-- The default form, which algorithms asssume.
'C'	$\begin{aligned} & (0.5, \\ & 0.5) \\ & \hline \end{aligned}$	symmetric form:_B[i] = -- s[i]**0.5 -- Gamma[i] -- s[i+1]**0.5--
'A'	(1, 0)	left canonical: _B[i] = -- s[i] -- Gamma[i] --.
'G'	(0, 0)	Save only _B [i] = -- Gamma [i] --.
'Th	$(1,1)$	Form of a local wave function theta with singular value on both sides. psi.get_B (i, 'Th') is equivalent to "'psi.get_theta(i, n=1).
None	None	General non-canoncial form. Valid form for initialization, but you need to call canonical_form() (or similar) before using algorithms.

mpo

- full name: tenpy.networks.mpo
- parent module: tenpy.networks
- type: module

Classes

MPO(sites, Ws[, bc, IdL, IdR, max_range])	Matrix product operator, finite (MPO) or infinite (iMPO).
MPOEnvironment(bra, H, ket[, init_LP, \ldots])	Stores partial contractions of $<b r a\|H\| k e t>$ for an MPO H.
MPOGraph(sites[, bc, max_range])	Representation of an MPO by a graph, based on a 'finite state machine'.

MPO

- full name: tenpy.networks.mpo.MPO
- parent module: tenpy. networks.mpo
- type: class
class tenpy.networks.mpo.MPO (sites, $W s, b c=$ 'finite', $I d L=N o n e, I d R=N o n e$, max_range $=$ None $)$ Bases: ob ject
Matrix product operator, finite (MPO) or infinite (iMPO).

Parameters

sites [list of Site] Defines the local Hilbert space for each site.
Ws [list of Array] The matrices of the MPO. Should have labels wL, wR, p, p*.
bc [\{'finite'। 'segment' । 'infinite'\}] Boundary conditions as described in mps. 'finite' requires Ws[0].get_leg('wL').ind_len = 1.

IdL [(iterable of) \{int I None\}] Indices on the bonds, which correpond to 'only identities to the left'. A single entry holds for all bonds.

IdR [(iterable of) \{int I None $\}]$ Indices on the bonds, which correpond to 'only identities to the right'.
max_range [int I np.inf I None] Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.

Attributes

L [int] Number of physical sites; for an iMPO the len of the MPO unit cell.
chinfo [ChargeInfo] The nature of the charge.
sites [list of Site] Defines the local Hilbert space for each site.
dtype [type] The data type of the _W.
bc [\{'finite'। 'segment'। 'infinite'\}] Boundary conditions as described in mps. 'finite' requires Ws[0].get_leg('wL').ind_len = 1 .
IdL [list of $\{$ int I None $\}]$ Indices on the bonds (length $L `+1$), which correpond to 'only identities to the left'. 'None` for bonds where it is not set. In standard form, this is 0 (except for unset bonds in finite case)

IdR [list of $\{$ int I None $\}]$ Indices on the bonds (length L `+1), which correpond to 'only identities to the right'. ' \(N o n e`\) for bonds where it is not set. In standard form, this is the last index on the bond (except for unset bonds in finite case).
max_range [int I np.inf I None] Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.
grouped [int] Number of sites grouped together, see group_sites ().
_W [list of Array] The matrices of the MPO. Labels are 'wL', 'wR', 'p', 'p*'.
_valid_bc [tuple of str] Valid boundary conditions. The same as for an MPS.

Methods

dagger(self)	Return hermition conjugate copy of self.
```expectation_value(self, psi[, max_range])```	tol, Calculate <psilself\|psi>/<psilpsi>.
from_grids(sites, grids[, bc, IdL, IdR, ...])	Initialize an MPO from grids.
get_IdI(self, i)	Return index of $I d L$ at bond to the left of site $i$.
get_IdR(self, i)	Return index of $I d R$ at bond to the right of site $i$.
get_W(self, i[, copy])	Return $W$ at site $i$.
get_full_hamiltonian(self[, maxsize])	extract the full Hamiltonian as a d** $\mathrm{L} \mathrm{x} \mathrm{d} * * \mathrm{~L}$ matrix.
get_grouped_mpo(self, blocklen)	Contract blocklen subsequent tensors into a single one and return result as a new MPO object.
group_sites(self[, n, grouped_sites])	Modify self inplace to group sites.
is_equal(self, other[, eps, max_range])	Check if self and other represent the same MPO to precision eps.
is_hermitian(self[, eps, max_range])	Check if self is a hermitian MPO.
set_W(self, i, W)	Set $W$ at site $i$.
sort_legcharges(self)	Sort virtual legs by charges.
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

classmethod from_grids (sites, grids, bc='finite', IdL=None, IdR=None, Ws_qtotal=None, leg $0=$ None, max_range $=$ None )
Initialize an MPO from grids.

## Parameters

sites [list of Site] Defines the local Hilbert space for each site.
grids [list of list of list of entries] For each site (outer-most list) a matrix-grid (corresponding to $w L, w R$ ) with entries being or representing (see grid_insert_ops ()) onsiteoperators.
bc [\{ 'finite' | 'segment' | 'infinite' \}] Boundary conditions as described in mps.
IdL [(iterable of) \{int I None\}] Indices on the bonds, which correpond to 'only identities to the left'. A single entry holds for all bonds.

IdR [(iterable of) \{int I None\}] Indices on the bonds, which correpond to 'only identities to the right'.

Ws_qtotal [(list of) total charge] The qtotal to be used for each grid. Defaults to zero charges.
leg0 [LegCharge] LegCharge for 'wL' of the left-most $W$. By default, construct it.
max_range [int I np.inf I None] Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.

## See also:

grid_insert_ops used to plug in entries of the grid.
tenpy.linalg.np_conserved.grid_outer used for final conversion.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## property L

Number of physical sites; for an iMPO the len of the MPO unit cell.
property dim
List of local physical dimensions.
property finite
Distinguish MPO vs iMPO.
True for an MPO (bc='finite', 'segment'), False for an iMPO (bc='infinite').
property chi
Dimensions of the virtual bonds.
get_W (self, i, copy=False)
Return $W$ at site $i$.
set_W(self, $i, W$ )
Set $W$ at site $i$.
get_IdL (self, i)
Return index of $I d L$ at bond to the left of site $i$.
May be None.
get_IdR (self, $i$ )
Return index of $I d R$ at bond to the right of site $i$.
May be None.
group_sites (self, $n=2$, grouped_sites=None)
Modify self inplace to group sites.
Group each $n$ sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

## Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

```
sort_legcharges (self)
```

Sort virtual legs by charges. In place.
The MPO seen as matrix of the $w L$, $w R$ legs is usually very sparse. This sparsity is captured by the LegCharges for these bonds not being sorted and bunched. This requires a tensordot to do more blockmultiplications with smaller blocks. This is in general faster for large blocks, but might lead to a larger overhead for small blocks. Therefore, this function allows to sort the virtual legs by charges.
expectation_value (self, psi, tol=1e-10, max_range=100)
Calculate <psi|self|psi>/<psi|psi>.
For a finite MPS, simply contract the network <psi|self|psi>. For an infinite MPS, it assumes that self is the a of terms, with $I d L$ and $I d R$ defined on each site. Under this assumption, it calculates the expectation value of terms with the left-most non-trivial operator inside the MPO unit cell and returns the average value per site.

## Parameters

psi [MPS] State for which the expectation value should be taken.
tol [float] Ignored for finite psi. For infinite MPO containing exponentially decaying longrange terms, stop evaluating further terms if the terms in $L P$ have norm $<t o l$.
max_range [int] Ignored for finite psi. Contract at most self.L * max_range sites, even if tol is not reached. In that case, issue a warning.

## Returns

exp_val [float/complex] The expectation value of self with respect to the state psi. For an infinite MPS: the density per site.
dagger (self)
Return hermition conjugate copy of self.
is_hermitian (self, eps=1e-10, max_range=None)
Check if self is a hermitian MPO.
Shorthand for self.is_equal(self.dagger(), eps, max_range).
is_equal (self, other, eps $=1 e-10$, max_range $=$ None $)$
Check if self and other represent the same MPO to precision eps.
To compare them efficiently we view self and other as MPS and compare the overlaps abs(<self|self> + <other|other> - $2 \operatorname{Re}(\langle$ self|other>)) < eps*(<self|self>+<other|other>)

## Parameters

other [MPO] The MPO to compare to.
eps [float] Precision threshold what counts as zero.
max_range [None I int] Ignored for finite MPS; for finite MPS we consider only the terms contained in the sites with indices range (self.L + max_range). None defaults to max_range (or $L$ in case this is infinite or None).

## Returns

equal [bool] Whether self equals other to the desired precision.
get_grouped_mpo (self, blocklen)
Contract blocklen subsequent tensors into a single one and return result as a new MPO object.
get_full_hamiltonian (self, maxsize=1000000.0)
extract the full Hamiltonian as a $\mathrm{d}^{* *} \mathrm{~L} \mathrm{x} \mathrm{d}^{* *} \mathrm{~L}$ matrix.

## MPOEnvironment

- full name: tenpy.networks.mpo.MPOEnvironment
- parent module: tenpy. networks.mpo
- type: class

```
class tenpy.networks.mpo.MPOEnvironment (bra, H, ket, init_LP=None, init_RP=None,
 age_LP=0,age_RP=0)
Bases: tenpy.networks.mps.MPSEnvironment
```

Stores partial contractions of $<b r a|H| k e t>$ for an MPO $H$.
The network for a contraction $<b r a|H| k e t>$ of an MPO $H$ bewteen two MPS looks like:



We use the following label convention (where arrows indicate qconj):
$\square$
To avoid recalculations of the whole network e.g. in the DMRG sweeps, we store the contractions up to some site index in this class. For $b c=$ 'finite', 'segment ', the very left and right part LP [0] and RP [-1] are trivial and don't change in the DMRG algorithm, but for iDMRG ( $\mathrm{bc}=$ 'infinite') they are also updated (by inserting another unit cell to the left/right).

The MPS bra and ket have to be in canonical form. All the environments are constructed without the singular values on the open bond. In other words, we contract left-canonical $A$ to the left parts $L P$ and right-canonical $B$ to the right parts $R P$.

## Parameters

bra [MPS] The MPS to project on. Should be given in usual 'ket' form; we call conj() on the matrices directly.
H [MPO] The MPO sandwiched between bra and ket. Should have 'IdL' and 'IdR' set on the first and last bond.
ket [MPS] The MPS on which $H$ acts. May be identical with bra.
init_LP [None I Array] Initial very left part LP. If None, build trivial one with :meth`init_LP`.
init_RP [None I Array] Initial very right part RP. If None, build trivial one with init_RP().
age_LP [int] The number of physical sites involved into the contraction yielding first $L P$.
age_RP [int] The number of physical sites involved into the contraction yielding lastRP.

## Attributes

H [MPO] The MPO sandwiched between bra and ket.

## Methods

del_LP(self, i)	Delete stored part strictly to the left of site $i$.
del_RP(self, i)	Delete storde part scrictly to the right of site $i$.
expectation_value(self, ops[, sites, axes])	Expectation value <bralops \| ket> of (n-site) op-   erator(s).
full_contraction(self, i0)	Calculate the energy by a full contraction of the net-   work.
get_LP(self, i[, store])	Calculate LP at given site from nearest available one   (including $i)$.

Continued on next page

Table 138 - continued from previous page

$g e t _L P _a g e($ self, i)	Return number of physical sites in the contractions   of get_LP(i).
$g e t _R P($ self, i[, store $\left.]\right)$	Calculate RP at given site from nearest available one   (including $i$ ).
$g e t _R P _a g e($ self, i)	Return number of physical sites in the contractions   of get_RP(i).
init_LP(self, i)	Build initial left part LP.

test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.

## init_LP (self, i)

Build initial left part LP.

## Parameters

i [int] Build LP left of site $i$.

## Returns

init_LP [Array] Identity contractible with the $v L$ leg of .ket.get_B(i), multiplied with a unit vector nonzero in H . IdL [i], with labels 'vR*', 'wR', 'vR'.

## init_RP (self,i)

Build initial right part RP for an MPS/MPOEnvironment.

## Parameters

i [int] Build RP right of site $i$.

## Returns

init_RP [Array] Identity contractible with the $v R$ leg of self.get_B(i), multiplied with a unit vector nonzero in H . IdR [i], with labels 'vL*', 'wL', 'vL'.
get_LP $($ self, $i$, store $=$ True $)$
Calculate LP at given site from nearest available one (including $i$ ).
The returned LP_i corresponds to the following contraction, where the M's and the N's are in the ' A ' form:

I	. -------M[0]---	--M[i-1]--->-	'vR'	
\|	\|		\|	
\|	LP [0]---W[0]---	... --W[i-1]--->-	'wR'	
\|	\|		\|	
\|	.--------N[0]*--	... --N[i-1]*--<-	'VR*'	

## Parameters

$\mathbf{i}$ [int] The returned $L P$ will contain the contraction strictly left of site $i$.
store [bool] Wheter to store the calculated $L P$ in self (True) or discard them (False).

## Returns

LP_i [Array] Contraction of everything left of site $i$, with labels 'vR*', 'wR', 'vR' for $b r a, H$, ket.
get_RP $($ self, $i$, store $=$ True $)$
Calculate RP at given site from nearest available one (including $i$ ).
The returned RP_i corresponds to the following contraction, where the M's and the N's are in the 'B' form:

```
|: 'vL'
```


## Parameters

$\mathbf{i}$ [int] The returned $R P$ will contain the contraction strictly rigth of site $i$.
store [bool] Wheter to store the calculated $R P$ in self (True) or discard them (False).

## Returns

RP_i [Array] Contraction of everything right of site $i$, with labels 'vL*', 'wL', 'vL' for bra, H, ket.

## full_contraction (self, i0)

Calculate the energy by a full contraction of the network.
The full contraction of the environments gives the value <bra|H|ket> / ( $\operatorname{norm}(\mid$ bra>) $) \star \operatorname{norm}(\mid$ ket $>)$ ), i.e. if bra is ket and normalized, the total energy. For this purpose, this function contracts get_LP (i0+1, store=False) and get_RP(i0, store=False).

## Parameters

i0 [int] Site index.
del_LP (self, i)
Delete stored part strictly to the left of site $i$.
del_RP (self, i)
Delete storde part scrictly to the right of site $i$.
expectation_value (self, ops, sites=None, axes=None)
Expectation value <bra|ops|ket>of (n-site) operator(s).
Calculates n-site expectation values of operators sandwiched between bra and ket. For examples the contraction for a two-site operator on site $i$ would look like:
$\square$
Here, the $B$ are taken from ket, the $B^{*}$ from bra. The call structure is the same as for MPS. expectation_value().

## Parameters

ops [(list of) \{ Array \| str \}] The operators, for wich the expectation value should be taken, All operators should all have the same number of legs (namely $2 n$ ). If less than len(sites) operators are given, we repeat them periodically. Strings (like 'Id', ' Sz ') are translated into single-site operators defined by sites.
sites [list] List of site indices. Expectation values are evaluated there. If None (default), the entire chain is taken (clipping for finite b.c.)
axes [None I (list of str, list of str)] Two lists of each $n$ leg labels giving the physical legs of the operator used for contraction. The first $n$ legs are contracted with conjugated $B$, the second $n$ legs with the non-conjugated $B$. None defaults to ( ${ }^{\prime} p$ '], ['p*']) for single site ( $n=1$ ), or (['p0', 'p1', ... 'p\{n-1\}'], ['p0*', 'p1*', .. .. 'p $\{\mathrm{n}-1\} * ']$ ) for $n>1$.

## Returns

exp_vals [1D ndarray] Expectation values, exp_vals[i] = <bra|ops[i]|ket>, where ops [i] acts on site(s) $j, j+1, \ldots, j+\{n-1\}$ with $j=$ sites[i].

## Examples

One site examples ( $\mathrm{n}=1$ ):

```
>>> env.expectation_value('Sz')
[Sz0, Sz1, ..., Sz{L-1}]
>>> env.expectation_value(['Sz', 'Sx'])
[Sz0, Sx1, Sz2, Sx3, ...]
>>> env.expectation_value('Sz', sites=[0, 3, 4])
[Sz0, Sz3, Sz4]
```

Two site example ( $\mathrm{n}=2$ ), assuming homogeneous sites:

```
>>> SzSx = npc.outer(psi.sites[0].Sz.replace_labels(['p', 'p*'], ['p0', 'p0*
\hookrightarrow']),
 psi.sites[1].Sx.replace_labels(['p', 'p*'], ['p1', 'p1*
G']))
>>> env.expectation_value(SzSx)
[Sz0Sx1, Sz1Sx2, Sz2Sx3, ...] # with len L-1 for finite bc, or L form
\hookrightarrowinfinite
```

Example measuring <bralSzSx|ket> on each second site, for inhomogeneous sites:

```
>>> SzSx_list = [npc.outer(psi.sites[i].Sz.replace_labels(['p', 'p*'], ['p0',
\hookrightarrow'p0*']),
 psi.sites[i+1].Sx.replace_labels(['p', 'p*'], ['p1
G', 'p1*']))
 for i in range(0, psi.L-1, 2)]
>>> env.expectation_value(SzSx_list, range(0, psi.L-1, 2))
[Sz0Sx1, Sz2Sx3, Sz4Sx5, ...]
```

get_LP_age (self, i)

Return number of physical sites in the contractions of get_LP(i).
Might be None.
get_RP_age (self, i)
Return number of physical sites in the contractions of get_RP(i).
Might be None.
set_LP (self, $i, L P$, age $)$
Store part to the left of site $i$.
set_RP (self, $i, R P$, age)
Store part to the right of site $i$.

## MPOGraph

- full name: tenpy.networks.mpo.MPOGraph
- parent module: tenpy.networks.mpo
- type: class
class tenpy.networks.mpo.MPOGraph (sites, $b c=$ 'finite', max_range=None)
Bases: ob ject
Representation of an MPO by a graph, based on a 'finite state machine'.
This representation is used for building H_MPO from the interactions. The idea is to view the MPO as a kind of 'finite state machine'. The states or keys of this finite state machine life on the MPO bonds between the Ws. They label the indices of the virtul bonds of the MPOs, i.e., the indices on legs $w L$ and $w R$. They can be anything hash-able like a str, int or a tuple of them.

The edges of the graph are the entries $W[k e y L$, $k e y R]$, which itself are onsite operators on the local Hilbert space. The indices keyL and keyR correspond to the legs 'wL', 'wR' of the MPO. The entry $W[k e y L$, keyR] connects the state keyL on bond (i-1, i) with the state keyR on bond (i, i+1).

The keys 'IdR' (for 'idenity left') and 'IdR' (for 'identity right') are reserved to represent only 'Id' (=identity) operators to the left and right of the bond, respectively.

Todo: might be useful to add a "cleanup" function which removes operators cancelling each other and/or unused states. Or better use a 'compress' of the MPO?

## Parameters

sites [list of Site] Local sites of the Hilbert space.
bc [\{ 'finite', 'infinite' \}] MPO boundary conditions.
max_range [int I np.inf I None] Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.

## Attributes

$L$ Number of physical sites; for infinite boundaries the length of the unit cell.
sites [list of Site] Defines the local Hilbert space for each site.
chinfo [ChargeInfo] The nature of the charge.
bc [\{ 'finite', 'infinite' \}] MPO boundary conditions.
max_range [int I np.inf I None] Maximum range of hopping/interactions (in unit of sites) of the MPO. None for unknown.
states [list of set of keys] states [i] gives the possible keys at the virtual bond (i-1, i) of the MPO.
graph [list of dict of dict of list of tuples] For each site $i$ a dictionary $\{k e y L$ : \{keyR: [(opname, strength)]\}\} with keyL in vertices[i] and keyR in vertices[i+1].
_grid_legs [None I list of LegCharge] The charges for the MPO

## Methods

add(self, i, keyL, keyR, opname, strength[, ...])	Insert an edge into the graph.
add_missing_IdI_IdR(self)	Add missing identity ('Id') edges connecting 'IdL'->'IdL' and '`'IdR'->'IdR'.
add_string(self, i, j, key[, opname, ...])	Insert a bunch of edges for an 'operator string' into the graph.
build_MPO(self[, Ws_qtotal, leg0])	Build the MPO represented by the graph (self).
from_term_list(term_list, sites, bc)	Initialize form a list of operator terms and prefactors.
from_terms(onsite_terms, coupling_terms, ...)	Initialize an MPOGraph from OnsiteTerms and CouplingTerms.
has_edge(self, i, keyL, keyR)	True if there is an edge from keyL on bond (i-1, i) to keyR on bond (i, i+1).
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong.

classmethod from_terms (onsite_terms, coupling_terms, sites, bc)
Initialize an MPOGraph from OnsiteTerms and CouplingTerms.

## Parameters

onsite_terms [OnsiteTerms] Onsite terms to be added to the new MPOGraph.
coupling_terms :class:`~tenpy.networks.terms.CouplingTerms` I :class:`~tenpy.networks.terms.MultiCoupli
Coupling terms to be added to the new MPOGraph.
sites [list of Site] Local sites of the Hilbert space.
bc ['finite' | 'infinite'] MPO boundary conditions.

## Returns

graph [MPOGraph] Initialized with the given terms.
See also:
from_term_list equivalent for other representation terms.
classmethod from_term_list (term_list, sites, bc)
Initialize form a list of operator terms and prefactors.

## Parameters

term_list [TermList] Terms to be added to the MPOGraph.
sites [list of Site] Local sites of the Hilbert space.
bc ['finite' | 'infinite'] MPO boundary conditions.

## Returns

graph [MPOGraph] Initialized with the given terms.

## See also:

from_terms equivalent for other representation of terms.
test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
property $L$
Number of physical sites; for infinite boundaries the length of the unit cell.
add (self, i, keyL, keyR, opname, strength, check_op=True, skip_existing=False)
Insert an edge into the graph.

## Parameters

i [int] Site index at which the edge of the graph is to be inserted.
keyL [hashable] The state at bond (i-1, i) to connect from.
keyR [hashable] The state at bond $(\mathrm{i}, \mathrm{i}+1)$ to connect to.
opname [str] Name of the operator.
strength [str] Prefactor of the operator to be inserted.
check_op [bool] Whether to check that 'opname' exists on the given site.
skip_existing [bool] If True, skip adding the graph node if it exists (with same keys and opname).
add_string (self, i,j,key, opname $=$ 'Id', check_op=True, skip_existing=True)
Insert a bunch of edges for an 'operator string' into the graph.
Terms like $S_{i}^{z} S_{j}^{z}$ actually stand for $S_{i}^{z} \otimes \prod_{i<k<j} \nVdash_{k} \otimes S_{j}^{z}$. This function adds the $\nVdash$ terms to the graph.

## Parameters

$\mathbf{i}, \mathbf{j}$ : int An edge is inserted on all bonds between $i$ and $j, i<j$. $j$ can be larger than $L$, in which case the operators are supposed to act on different MPS unit cells.
key: hashable The state at bond ( $\mathrm{i}-1, \mathrm{i}$ ) to connect from and on bond ( $\mathrm{j}-1, \mathrm{j}$ ) to connect to. Also used for the intermediate states. No operator is inserted on a site $i<k<j$ if has_edge(k, key, key).
opname [str] Name of the operator to be used for the string. Useful for the Jordan-Wigner transformation to fermions.
skip_existing [bool] Whether existing graph nodes should be skipped.

## Returns

label_j [hashable] The key on the left of site j to connect to. Usually the same as the parameter key, except if $j-i>s e l f . L$, in which case we use the additional labels (key, $1)$, (key, 2), ... to generate couplings over multiple unit cells.

## add_missing_IdL_IdR (self)

Add missing identity ('Id') edges connecting 'IdL'->'IdL' and ' 'IdR'->'IdR'.
For $\mathrm{bc}=$ 'infinite', insert missing identities at all bonds. For bc='finite' | 'segment' only insert 'IdL' ->'IdL' to the left of the rightmost existing 'IdL' and 'IdR'->'IdR' to the right of the leftmost existing 'IdR'.
This function should be called after all other operators have been inserted.
has_edge (self, i, keyL, keyR)
True if there is an edge from keyL on bond (i-1, i) to keyR on bond (i, $\mathrm{i}+1$ ).
build_MPO (self, Ws_qtotal=None, leg0=None)
Build the MPO represented by the graph (self).

## Parameters

Ws_qtotal [None I (list of) charges] The qtotal for each of the Ws to be generated., default (None) means 0 charge. A single qtotal holds for each site.
leg0 [Nonel npc.LegCharge] The charges to be used for the very first leg (which is a gauge freedom). If None (default), use zeros.

## Returns

mpo [MPO] the MPO which self represents.

## Functions

grid_insert_ops(site, grid)	Replaces entries representing operators in a grid of   $W[i]$ with npc.Arrays.

grid_insert_ops

- full name: tenpy.networks.mpo.grid_insert_ops
- parent module: tenpy. networks.mpo
- type: function

```
tenpy.networks.mpo.grid_insert_ops (site, grid)
```

Replaces entries representing operators in a grid of $\mathrm{W}[\mathrm{i}]$ with npc.Arrays.

## Parameters

site [site] The site on which the grid acts.
grid [list of list of entries] Represents a single matrix $W$ of an MPO, i.e. the lists correspond to the legs 'vL', 'vR', and entries to onsite operators acting on the given site. entries may be None, Array, a single string or of the form [('opname', strength), ...], where 'opname' labels an operator in the site.

## Returns

grid [list of list of \{None | Array\}] Copy of grid with entries [('opname', strength), ...] replaced by sum([strength*site.get_op('opname') for opname, strength in entry]) and entries 'opname' replaced by site. get_op('opname').

## Module description

Matrix product operator (MPO).
An MPO is the generalization of an MPS to operators. Graphically:
$\square$

So each 'matrix' has two physical legs $p, p *$ instead of just one, i.e. the entries of the 'matrices' are local operators. Valid boundary conditions of an MPO are the same as for an MPS (i.e. 'finite' | 'segment' | 'infinite'). (In general, you can view the MPO as an MPS with larger physical space and bring it into canoncial form. However, unlike for an MPS, this doesn't simplify calculations. Thus, an MPO has no form.)
We use the following label convention for the $W$ (where arrows indicate qconj):
$\square$
If an MPO describes a sum of local terms (e.g. most Hamiltonians), some bond indices correspond to 'only identities to the left/right'. We store these indices in $I d L$ and $I d R$ (if there are such indices).

Similar as for the MPS, a bond index $i$ is left of site $i$, i.e. between sites $i-1$ and $i$.

## terms

- full name: tenpy.networks.terms
- parent module: tenpy.networks
- type: module


## Classes

CouplingTerms(L)	Operator names, site indices and strengths representing   two-site coupling terms.
MultiCouplingTerms(L)	Operator names, site indices and strengths representing   general $M$-site coupling terms.
OnsiteTerms(L)	Operator names, site indices and strengths representing   onsite terms.
TermList(terms, strength)	A list of terms (=operator names and sites they act on)   and associated strengths.

## CouplingTerms

- full name: tenpy.networks.terms.CouplingTerms
- parent module: tenpy.networks.terms
- type: class
class tenpy.networks.terms.CouplingTerms ( $L$ )
Bases: object
Operator names, site indices and strengths representing two-site coupling terms.


## Parameters

$\mathbf{L}$ [int] Number of sites.

## Attributes

$\mathbf{L}$ [int] Number of sites.
coupling_terms [dict of dict] Filled by add_coupling_term(). Nested dictionaries of the form \{i: \{('opname_i', 'opname_string'): \{j: \{'opname_j': strength \} \} \} \}. Note that always $i<j$, but entries with $j>=L$ are allowed for bc_MPS == 'infinite', in which case they indicate couplings between different iMPS unit cells.

## Methods

add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_to_graph(self, graph)	Add terms from coupling_terms to an MPOGraph.
coupling_term_handle_JW(self, strength, ...)	Helping function to call before add_multi_coupling_term().
max_range(self)	Determine the maximal range in coupling_terms.
plot_coupling_terms(self, ax, lat[,..])	"Plot coupling terms into a given lattice.
remove_zeros(self[, tol_zero])	Remove entries close to 0 from coupling_terms.
to_TermList(self)	Convert onsite_terms into a TermList.
to_nn_bond_Arrays(self, sites)	Convert the coupling_terms into Arrays on nearest neighbor bonds.

max_range (self)
Determine the maximal range in coupling_terms.

## Returns

max_range [int] The maximum of $j-i$ for the $i, j$ occuring in a term of coupling_terms.
add_coupling_term (self, strength, $\left.i, j, o p _i, o p _j, o p _s t r i n g=' I d^{\prime}\right)$
Add a two-site coupling term on given MPS sites.

## Parameters

strength [float] The strength of the coupling term.
$\mathbf{i}, \mathbf{j}$ [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., $o p_{-} i$ acts "left" of $o p_{-} j$. If $\mathrm{j}>=\mathrm{N}_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between $i$ and $j$.
coupling_term_handle_JW (self, strength, term, sites, op_string=None)
Helping function to call before add_multi_coupling_term().

## Parameters

strength [float] The strength of the coupling term.
term [ [(str, int), (str, int)]] List of two tuples (op, i) where $i$ is the MPS index of the site the operator named op acts on.
sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators need Jordan-Wigner strings.
op_string [None I str] Operator name to be used as operator string between the operators, or None if the Jordan Wigner string should be figured out.

## Returns

strength, $\mathbf{i}, \mathbf{j}, \mathbf{o p} \mathbf{i}, \mathbf{o p} \mathbf{j}, \mathbf{o p}$ string: Arguments for MultiCouplingTerms. add_multi_coupling_term() such that the added term corresponds to the parameters of this function.
plot_coupling_terms (self, ax, lat, style_map='default', common_style=\{'linestyle': '--'\}, text=None, text_pos=0.4)
"Plot coupling terms into a given lattice.
This function plots the coupling_terms

## Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
lat [Lattice] The lattice for plotting the couplings, most probably the M. lat of the corresponding model M , see lat.
style_map [function I None] Function which get's called with arguments i, j, op_i, op_string, op_j, strength for each two-site coupling and should return a keyword-dictionary with the desired plot-style for this coupling. By default (None), the linewidth is given by the absolute value of strength, and the linecolor depends on the phase of strength (using the $h s v$ colormap).
common_style [dict] Common style, which overwrites values of the dictionary returned by style_map. A 'label' is only used for the first plotted line.
text: format_string I None If not None, we add text labeling the couplings in the plot. Available keywords are i, j, op_i, op_string, op_j, strength as well as strength_abs, strength_angle, strength_real.
text_pos [float] Specify where to put the text on the line between $i(0.0)$ and $j(1.0)$, e.g. 0.5 is exactly in the middle between $i$ and $j$.

## See also:

tenpy.models.lattice.Lattice.plot_sites plot the sites of the lattice.
add_to_graph (self, graph)
Add terms from coupling_terms to an MPOGraph.

## Parameters

graph [MPOGraph] The graph into which the terms from coupling_terms should be added.

```
to_nn_bond_Arrays (self, sites)
```

Convert the coupling_terms into Arrays on nearest neighbor bonds.

## Parameters

sites [list of Site] Defines the local Hilbert space for each site. Used to translate the operator names into Array.

## Returns

H_bond [list of \{Array | None\}] The coupling_terms rewritten as sum_i H_bond[i] for MPS indices i. H_bond[i] acts on sites (i-1, i), None represents 0 . Legs of each H_bond [i] are ['p0', 'p0*', 'p1', 'p1*'].

```
remove_zeros (self, tol_zero=le-15)
```

Remove entries close to 0 from coupling_terms.

## Parameters

tol_zero [float] Entries in coupling_terms with strength < tol_zero are considered to be zero and removed.

```
to_TermList (self)
```

Convert onsite_terms into a TermList.

## Returns

term_list [TermList] Representation of the terms as a list of terms.

## MultiCouplingTerms

- full name: tenpy.networks.terms.MultiCouplingTerms
- parent module: tenpy.networks.terms
- type: class

```
class tenpy.networks.terms.MultiCouplingTerms (L)
```

Bases: tenpy.networks.terms.CouplingTerms
Operator names, site indices and strengths representing general $M$-site coupling terms.
Generalizes the coupling_terms of CouplingTerms to $M$-site couplings. The structure of the nested dictionary coupling_terms is similar, but we allow an arbitrary recursion depth of the dictionary.

## Parameters

L [int] Number of sites.

## Attributes

L [int] Number of sites.
coupling_terms [dict of dict] Nested dictionaries of the following form:

```
{i: {('opname_i', 'opname_string_ij'):
 {j: {('opname_j', 'opname_string_jk'):
 {k: {('opname_k', 'opname_string_kl'):
 {1: {'opname_l':
 strength
 } }
 } }
 } }
} }
```

For a M-site coupling, this involves a nesting depth of $2 * \mathrm{M}$ dictionaries. Note that always $i<j<k<\ldots<l$, but entries with $j, k, l>=L$ are allowed for the case of bc_MPS == 'infinite', when they indicate couplings between different iMPS unit cells.

## Methods

add_coupling_term(self, strength, i, j, ...)	Add a two-site coupling term on given MPS sites.
add_multi_coupling_term(self, strength, ...)	Add a multi-site coupling term.
add_to_graph(self, graph[, _i, _d1, _label_left])	Add terms from coupling_terms to an MPOGraph.
coupling_term_handle_JW(self, strength, ...)	Helping function to call before add_multi_coupling_term().
max_range(self)	Determine the maximal range in coupling_terms.
```multi_coupling_term_handle_JW(self, ...[,...])```	Helping function to call before add_multi_coupling_term().
plot_coupling_terms(self, ax, lat[,...])	"Plot coupling terms into a given lattice.
remove_zeros(self[, tol_zero,_d0])	Remove entries close to 0 from coupling_terms.
to_TermList(self)	Convert onsite_terms into a TermList.
to_nn_bond_Arrays(self, sites)	Convert the coupling_terms into Arrays on nearest neighbor bonds.

add_multi_coupling_term (self, strength, $i j k l$, ops_ijkl,op_string='Id')
Add a multi-site coupling term.

Parameters

strength [float] The strength of the coupling term.
ijkl [list of int] The MPS indices of the sites on which the operators acts. With i, j, k, \ldots $=i j k l$, we require that they are ordered ascending, $i<j<\mathrm{k}<\ldots$ and that $0<=$ i < N_sites. Inidces >= N_sites indicate couplings between different unit cells of an infinite MPS.
ops_ijkl [list of str] Names of the involved operators on sites i, j, k, \ldots.
op_string [(list of) str] Names of the operator to be inserted between the operators, e.g., op_string[0] is inserted between i and j. A single name holds for all in-between segments.
multi_coupling_term_handle_JW (self, strength, term, sites, op_string=None)
Helping function to call before add_multi_coupling_term().
Handle/figure out Jordan-Wigner strings if needed.

Parameters

strength [float] The strength of the term.
term [list of (str, int)] List of tuples (op_i, i) where i is the MPS index of the site the operator named $o p _i$ acts on. We require the operators to be sorted (strictly ascending) by sites. If necessary, call order_combine_term() beforehand.
sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators need Jordan-Wigner strings.
op_string [None I str] Operator name to be used as operator string between the operators, or None if the Jordan Wigner string should be figured out.

Returns

strength, ijkl, ops_ijkl, op_string : Arguments for MultiCouplingTerms. add_multi_coupling_term() such that the added term corresponds to the parameters of this function.
max_range (self)
Determine the maximal range in coupling_terms.

Returns

max_range [int] The maximum of $j-i$ for the i, j occuring in a term of coupling_terms.
add_to_graph (self, graph,_i=None,_dl=None,_label_left=None)
Add terms from coupling_terms to an MPOGraph.

Parameters

graph [MPOGraph] The graph into which the terms from coupling_terms should be added.
_i, _d1, _label_left [None] Should not be given; only needed for recursion.
remove_zeros (self, tol_zero $=1 e-15, _d 0=$ None $)$
Remove entries close to 0 from coupling_terms.

Parameters

tol_zero [float] Entries in coupling_terms with strength < tol_zero are considered to be zero and removed.
_d0 [None] Should not be given; only needed for recursion.

to_TermList (self)

Convert onsite_terms into a TermList.

Returns

term_list [TermList] Representation of the terms as a list of terms.
add_coupling_term (self, strength, $\left.i, j, o p_{-} i, o p_{-} j, o p_{-} s t r i n g=' I d^{\prime}\right)$
Add a two-site coupling term on given MPS sites.

Parameters

strength [float] The strength of the coupling term.
\mathbf{i}, \mathbf{j} [int] The MPS indices of the two sites on which the operator acts. We require $0<=$ $i<N _s i t e s$ and $i<j$, i.e., op_i acts "left" of $o p_{-} j$. If $j>=N_{-}$sites, it indicates couplings between unit cells of an infinite MPS.
op1, op2 [str] Names of the involved operators.
op_string [str] The operator to be inserted between i and j.
coupling_term_handle_JW (self, strength, term, sites, op_string=None)
Helping function to call before add_multi_coupling_term().

Parameters

strength [float] The strength of the coupling term.
term [[(str, int), (str, int)]] List of two tuples (op, i) where i is the MPS index of the site the operator named op acts on.
sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators need Jordan-Wigner strings.
op_string [None I str] Operator name to be used as operator string between the operators, or None if the Jordan Wigner string should be figured out.

Returns

strength, $\mathbf{i}, \mathbf{j}, \mathbf{o p} \mathbf{i}, \mathbf{o p} \mathbf{j}, \mathbf{o p}$ string: Arguments for MultiCouplingTerms. add_multi_coupling_term() such that the added term corresponds to the parameters of this function.
plot_coupling_terms (self, ax, lat, style_map='default', common_style=\{'linestyle': '--'\}, text $=$ None, text_pos=0.4)
"Plot coupling terms into a given lattice.
This function plots the coupling_terms

Parameters

ax [matplotlib. axes.Axes] The axes on which we should plot.
lat [Lattice] The lattice for plotting the couplings, most probably the M. lat of the corresponding model M , see lat.
style_map [function I None] Function which get's called with arguments i, j, op_i, op_string, op_j, strength for each two-site coupling and should return a keyword-dictionary with the desired plot-style for this coupling. By default (None), the linewidth is given by the absolute value of strength, and the linecolor depends on the phase of strength (using the $h s v$ colormap).
common_style [dict] Common style, which overwrites values of the dictionary returned by style_map. A 'label' is only used for the first plotted line.
text: format_string I None If not None, we add text labeling the couplings in the plot. Available keywords are i, j, op_i, op_string, op_j, strength as well as strength_abs, strength_angle, strength_real.
text_pos [float] Specify where to put the text on the line between $i(0.0)$ and $j(1.0)$, e.g. 0.5 is exactly in the middle between i and j.

See also:

tenpy.models.lattice.Lattice.plot_sites plot the sites of the lattice.
to_nn_bond_Arrays (self, sites)
Convert the coupling_terms into Arrays on nearest neighbor bonds.

Parameters

sites [list of Site] Defines the local Hilbert space for each site. Used to translate the operator names into Array.

Returns

H_bond [list of \{Array | None\}] The coupling_terms rewritten as sum_i H_bond [i] for MPS indices i. H_bond[i] acts on sites (i-1, i), None represents 0. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*'].

OnsiteTerms

- full name: tenpy.networks.terms.OnsiteTerms
- parent module: tenpy.networks.terms
- type: class

```
class tenpy.networks.terms.OnsiteTerms (L)
```

Bases: object
Operator names, site indices and strengths representing onsite terms.
Represents a sum of onsite terms where the operators are only given by their name (in the form of a string). What the operator represents is later given by a list of Site with get_op ().

Parameters

L [int] Number of sites.

Attributes

L [int] Number of sites.
onsite_terms [list of dict] Filled by meth:add_onsite_term. For each index i a dictionary \{'opname': strength\} defining the onsite terms.

Methods

add_onsite_term(self, strength, i, op)	Add a onsite term on a given MPS site.
add_to_graph(self, graph)	Add terms from onsite_terms to an MPOGraph.
add_to_nn_bond_Arrays(self, H_bond, sites,	Add self.onsite_terms into nearest-neighbor
\ldots bond arrays.	
remove_zeros(self[, tol_zero])	Remove entries close to 0 from onsite_terms.
to_Arrays(self, sites)	Convert the onsite_terms into a list of np_conserved Arrays.
to_TermList(self)	Convert onsite_terms into a TermList.

add_onsite_term (self, strength, $i, o p$)
Add a onsite term on a given MPS site.

Parameters

strength [float] The strength of the term.
i [int] The MPS index of the site on which the operator acts. We require $0<=i<L$. op [str] Name of the involved operator.
add_to_graph (self, graph)
Add terms from onsite_terms to an MPOGraph.

Parameters

graph [MPOGraph] The graph into which the terms from onsite_terms should be added.
to_Arrays (self, sites)
Convert the onsite_terms into a list of np_conserved Arrays.

Parameters

sites [list of Site] Defines the local Hilbert space for each site. Used to translate the operator names into Array.

Returns

onsite_arrays [list of Array] Onsite terms represented by self. Entry i of the list lives on sites[i].
remove_zeros (self, tol_zero=le-15)
Remove entries close to 0 from onsite_terms.

Parameters

tol_zero [float] Entries in onsite_terms with strength < tol_zero are considered to be zero and removed.
add_to_nn_bond_Arrays (self, H_bond, sites, finite, distribute $=(0.5,0.5)$)
Add self.onsite_terms into nearest-neighbor bond arrays.

Parameters

H_bond [list of \{Array | None\}] The coupling_terms rewritten as sum_i H_bond[i] for MPS indices i. H_bond[i] acts on sites (i-1, i), None represents 0. Legs of each H_bond[i] are ['p0', 'p0*', 'p1', 'p1*']. Modified in place.
sites [list of Site] Defines the local Hilbert space for each site. Used to translate the operator names into Array.
distribute [(float, float)] How to split the onsite terms (in the bulk) into the bond terms to the left (distribute[0]) and right (distribute [1]).
finite [bool] Boundary conditions of the MPS, MPS.finite. If finite, we distribute the onsite term of the

```
to_TermList (self)
```

Convert onsite_terms into a TermList.

Returns

term_list [TermList] Representation of the terms as a list of terms.

TermList

- full name: tenpy.networks.terms.TermList
- parent module: tenpy.networks.terms
- type: class

```
class tenpy.networks.terms.TermList(terms, strength)
```

Bases: object
A list of terms (=operator names and sites they act on) and associated strengths.
A representation of terms, similar as OnsiteTerms, CouplingTerms and MultiCouplingTerms.
This class does not store operator strings between the sites. Jordan-Wigner strings of fermions are added during conversion to (Multi)CouplingTerms.

Parameters

terms [list of list of (str, int)] List of terms where each term is a list of tuples (opname, i) of an operator name and a site i it acts on. For Fermions, the order is the order in the mathematic sense, i.e., the right-most/last operator in the list acts last.
strengths [list of float/complex] For each term in terms an associated prefactor or strength (e.g. expectation value).

Attributes

terms [list of list of (str, int)] List of terms where each term is a tuple (opname, i) of an operator name and a site i it acts on.
strengths [1D ndarray] For each term in terms an associated prefactor or strength (e.g. expectation value).

Methods

order_combine(self, sites)	Order and combine operators in each term.
to_OnsiteTerms_CouplingTerms(self, sites)	Convert to OnsiteTerms and CouplingTerms

to_OnsiteTerms_CouplingTerms (self, sites)
Convert to OnsiteTerms and CouplingTerms
Performs Jordan-Wigner transformation for fermionic operators.

Parameters

sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators need Jordan-Wigner strings. The length is used as L for the onsite_terms and coupling_terms.

Returns

onsite_terms [OnsiteTerms] Onsite terms.
coupling_terms [CouplingTermsl MultiCouplingTerms] Coupling terms. If self contains terms involving more than two operators, a MultiCouplingTerms instance, otherwise just CouplingTerms.
order_combine (self, sites)
Order and combine operators in each term.

Parameters

sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators anticommute (= whether they need Jordan-Wigner strings) and for multiplication rules.

See also:

order_and_combine_term does it for a single term.

Functions

order_combine_term(term, sites) Combine operators in a term to one terms per site.

order_combine_term

- full name: tenpy.networks.terms.order_combine_term
- parent module: tenpy.networks.terms
- type: function
tenpy.networks.terms.order_combine_term (term, sites)
Combine operators in a term to one terms per site.
Takes in a term of operators and sites they acts on, commutes operators to order them by site and combines operators acting on the same site with multiply_op_names ().

Parameters

term [a list of (opname_i, i) tuples] Represents a product of onsite operators with site indices i they act on. Needs not to be ordered and can have multiple entries acting on the same site.
sites [list of Site] Defines the local Hilbert space for each site. Used to check whether the operators anticommute (= whether they need Jordan-Wigner strings) and for multiplication rules.

Returns

combined_term : Equivalent to term but with at most one operator per site.
overall_sign $[+1|-1| 0]$ Comes from the (anti-)commutation relations. When the operators in term are multiplied from left to right, and then multiplied by overall_sign, the result is the same operator as the product of combined_term from left to right.

Module description

Classes to store a collection of operator names and sites they act on, together with prefactors.
This modules collects classes which are not strictly speaking tensor networks but represent "terms" acting on them. Each term is given by a collection of (onsite) operator names and indices of the sites it acts on. Moreover, we associate a strength to each term, which corresponds to the prefactor when specifying e.g. a Hamiltonian.

purification_mps

- full name: tenpy.networks.purification_mps
- parent module: tenpy. networks
- type: module

Classes

\qquad
PurificationMPS(sites, Bs, SVs[, bc, form, norm]) An MPS representing a finite-temperature ensemble using purification.

PurificationMPS

- full name: tenpy.networks.purification_mps.PurificationMPS
- parent module: tenpy.networks.purification_mps
- type: class
class tenpy.networks.purification_mps.PurificationMPS (sites, Bs, SVs, bc='finite', form='B', norm=1.0)
Bases: tenpy.networks.mps.MPS
An MPS representing a finite-temperature ensemble using purification.
Similar as an MPS, but each B has now the four legs 'vL', 'vR', 'p', 'q'. From the point of algorithms, it is to be considered as a ususal MPS by combining the legs p and q, but all physical operators act only on the p part. For example, the right-canonical form is defined as if the legs ' p ' and ' q ' would be combined, e.g. a right-canonical B full-fills:

```
npc.tensordot(B, B.conj(), axes=[['vR', 'p', 'q'], ['vR*', 'p*', 'q*']]) == \
    npc.eye_like(B, axes='vL') # up to round-off errors
```

For expectation values / correlation functions, all operators are to understood to act on p only, i.e. they act trivial on q, so we just trace over ' q ', ' $q *$ '.

See also the docstring of the module for details.

Attributes

L Number of physical sites; for an iMPS the len of the MPS unit cell.
chi Dimensions of the (nontrivial) virtual bonds.
dim List of local physical dimensions.
finite Distinguish MPS vs iMPS.
nontrivial_bonds Slice of the non-trivial bond indices, depending on self.bc.

Methods

add(self, other, alpha, beta[, cutoff])	Return an MPS which represents alpha\|self> + beta lothers $>$.
apply_local_op(self, i, op[, unitary, ...])	Apply a local (one or multi-site) operator to self.
average_charge(self[, bond])	Return the average charge for the block on the left of a given bond.
canonical_form(self[, renormalize])	Bring self into canonical 'B' form, (re-)calculate sin- gular values.
canonical_form_finite(self[, renormalize,,	Bring a finite (or segment) MPS into canonical form (in place).

Table 148 - continued from previous page

canonical_form_infinite(self[, renormalize, ...])	Bring an infinite MPS into canonical form (in place).	
charge_variance(self[, bond])	Return the charge variance on the left of a given bond.	
compute_K(self, perm[, swap_op, trunc_par, ...])	Compute the momentum quantum numbers of the entanglement spectrum for 2D states.	
convert_form(self[, new_form])	Tranform self into different canonical form (by scaling the legs with singular values).	
Copy (self)	Returns a copy of self.	
correlation_function(self, ops1, ops2[, ...])	Correlation function 0 <psilop1_i erators.	
correlation_length(self[, target, tol_ev0, ...])	Calculate the correlation length by diagonalizing the transfer matrix.	
entanglement_entropy(self[, n , bonds, ...])	Calculate the (half-chain) entanglement entropy for all nontrivial bonds.	
entanglement_entropy_segment(self[, ...])	Calculate entanglement entropy for general geometry of the bipartition.	
entanglement_spectrum(self[, by_charge])	return entanglement energy spectrum.	
expectation_value(self, ops[, sites, axes])	Expectation $\begin{aligned} & \text { value } \quad \text { <psilops } \mid \text { psi>/ } \\ & \text { <psi\|psi> of }(\mathrm{n} \text {-site) } \\ & \text { operator(s). }\end{aligned}$	
expectation_value_multi_sites(self, ...)	Expectation value $<$ psilop0_\{i0\}op1_\{i0+1\} ..opN_\{i0+N\}\|psi>/<psi	psi>.
expectation_value_term(self, term[, autoJW])	$\begin{aligned} & \text { Expectation value <psilop_\{i0\}op_\{i1\}... } \\ & \text { op_\{iN\}\|psi>/<psi\|psi>. } \end{aligned}$	
expectation_value_terms_sum(self, term_list)	Calculate expectation values for a bunch of terms and sum them up.	
from_Bflat(sites, Bflat[, SVs, bc, dtype, ...])	Construct a matrix product state from a set of numpy arrays $B f l a t$ and singular vals.	
from_full(sites, psi[, form, cutoff, ...])	Construct an MPS from a single tensor $p s i$ with one leg per physical site.	
from_infiniteT(sites[, bc, form])	Initial state corresponding to infinite-Temperature ensemble.	
from_product_state(sites, p_state[, bc, ...])	Construct a matrix product state from a given product state.	
from_singlets(site, L, pairs[, up, down, ...])	Create an MPS of entangled singlets.	
\qquad ...]) $\cdots 1)$	Gauge the legcharges of the virtual bonds such that the MPS has a total qtotal.	
get_B(self, i[, form, copy, cutoff, label_p])	Return (view of) B at site i in canonical form.	
get_SL(self, i)	Return singular values on the left of site i	
get_SR(self, i)	Return singular values on the right of site i	
get_grouped_mps(self, blocklen)	contract blocklen subsequent tensors into a single one and return result as a new MPS.	
get_op(self, op_list, i)	Given a list of operators, select the one corresponding to site i.	
get_rho_segment(self, segment)	Return reduced density matrix for a segment.	
get_theta(self, i[, n, cutoff, formL, formR])	Calculates the n-site wavefunction on sites[i:i+n].	
get_total_charge(self[, only_physical_legs])	Calculate and return the qtotal of the whole MPS (when contracted).	
group_sites(self[, n, grouped_sites])	Modify self inplace to group sites.	

Continued on next page

Table 148 - continued from previous page

group_split(self[, trunc_par])	Modify self inplace to split previously grouped sites.
increase_L(self[, new_L])	Modify self inplace to enlarge the unit cell.
mutinf_two_site(self[, max_range, n, legs])	Calculate the two-site mutual information $I(i: j)$.
norm_test(self)	Check that self is in canonical form.
overlap(self, other[, charge_sector, ...])	Compute overlap <self \| other>.
permute_sites(self, perm[, swap_op,...])	Applies the permutation perm to the state (inplace).
probability_per_charge(self[, bond])	Return probabilites of charge value on the left of a given bond.
set_B(self, i, B[, form])	Set B at site i.
set_SL(self, i, S)	Set singular values on the left of site i
set_SR(self, i, S)	Set singular values on the right of site i
swap_sites(self, i[, swapOP, trunc_par])	Swap the two neighboring sites i and $i+1$ (inplace).
test_sanity(self)	Sanity check, raises ValueErrors, if something is wrong..

test_sanity (self)
Sanity check, raises ValueErrors, if something is wrong.
copy (self)
Returns a copy of self.
The copy still shares the sites, chinfo, and LegCharges of the _B, but the values of B and S are deeply copied.
classmethod from_infiniteT (sites, $b c=$ 'finite', form='B')
Initial state corresponding to infinite-Temperature ensemble.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
be [\{ 'finite', 'segment', 'infinite'\}] MPS boundary conditions as described in MPS.
form [(list of) \{'B' | 'A' | 'C' | 'G' | None Ituple(float, float) \}] The canonical form of the stored 'matrices', see table in mps. A single choice holds for all of the entries.

Returns

infiniteT_MPS [PurificationMPS] Describes the infinite-temperature (grand canonical) ensemble, i.e. expectation values give a trace over all basis states.
entanglement_entropy_segment (self, segment=[0], first_site=None, $n=1$, legs='p')
Calculate entanglement entropy for general geometry of the bipartition.
This function is similar as entanglement_entropy (), but for more general geometry of the region A to be a segment of a few sites.
This is acchieved by explicitly calculating the reduced density matrix of A and thus works only for small segments.

Parameters

segment [list of int] Given a first site i, the region $A _i$ is defined to be $[i+j$ for j in segment].
first_site [None I (iterable of) int] Calculate the entropy for segments starting at these sites. None defaults to range (L-segment [-1]) for finite or range (L) for infinite boundary conditions.
\mathbf{n} [int I float] Selects which entropy to calculate; $n=1$ (default) is the ususal von-Neumann entanglement entropy, otherwise the n-th Renyi entropy.
leg [' p ', ' q ', ' pq '] Whether we look at the entanglement entropy in both $(p q)$ or only one of auxiliar (q) and physical (p) space.

Returns

entropies [1D ndarray] entropies [i] contains the entropy for the the region A_i defined above.
mutinf_two_site (self, max_range $=$ None, $n=1$, legs $=$ ' p ')
Calculate the two-site mutual information $I(i: j)$.
Calculates $I(i: j)=S(i)+S(j)-S(i, j)$, where $S(i)$ is the single site entropy on site i and $S(i, j)$ the two-site entropy on sites i, j.

Parameters

max_range [int] Maximal distance $|i-j|$ for which the mutual information should be calculated. None defaults to $L-1$.
n [float] Selects the entropy to use, see entropy ().
leg [' p ', ' q ', ' pq '] Whether we look at the entanglement entropy in both $(p q)$ or only one of auxiliar (q) and physical (p) space.

Returns

coords [2D array] Coordinates for the mutinf array.
mutinf [1D array] mutinf [k] is the mutual information $I(i: j)$ between the sites i, j
$=$ coords $[\mathrm{k}]$.
swap_sites (self, i, swapOP='auto', trunc_par=\{ $)$
Swap the two neighboring sites i and $i+l$ (inplace).
Exchange two neighboring sites: form theta, 'swap' the physical legs and split with an svd. While the 'swap' is just a transposition/relabeling for bosons, one needs to be careful about the sign for fermions.

Parameters

\mathbf{i} [int] Swap the two sites at positions i and $i+1$.
swap_op [Nonel'auto'IArray] The operator used to swap the phyiscal legs of the twosite wave function theta. For None, just transpose/relabel the legs, for 'auto ' also take care of fermionic signs. Alternative give an npc Array which represents the full operator used for the swap. Should have legs ['p0', 'p1', 'p0*', 'p1*'] whith 'p0', 'p1*' contractible.
trunc_par [dict] Parameters for truncation, see truncate (). chi_max defaults to max (self.chi).

Returns

trunc_err [TruncationError] The error of the represented state introduced by the truncation after the swap.

property L

Number of physical sites; for an iMPS the len of the MPS unit cell.
add (self, other, alpha, beta, cutoff=1e-15)
Return an MPS which represents alpha|self> + beta |others>.

Works only for 'finite', 'segment' boundary conditions. For 'segment' boundary conditions, the virtual legs on the very left/right are assumed to correspond to each other (i.e. self and other have the same state outside of the considered segment). Takes into account norm.

Parameters

other [MPS] Another MPS of the same length to be added with self.
alpha, beta [complex float] Prefactors for self and other. We calculate alpha * |self>

+ beta * lother>
cutoff [float I None] Cutoff of singular values used in the SVDs.

Returns

sum [MPS] An MPS representing alpha|self> + beta lother>. Has same total charge as self.
$\mathbf{U} _\mathbf{L}, \mathbf{V} _\mathbf{R}$ [Array] Only returned for 'segment' boundary conditions. The unitaries defining the new left and right Schmidt states in terms of the old ones, with legs 'vL', 'vR'.
apply_local_op (self, i, op, unitary=None, renormalize $=$ False, cutoff=1e-13)
Apply a local (one or multi-site) operator to self.
Note that this destroys the canonical form if the local operator is non-unitary. Therefore, this function calls canonical_form() if necessary.

Parameters

i [int] (Left-most) index of the site(s) on which the operator should act.
op [str Inpc.Array] A physical operator acting on site i, with legs ' p ', ' $\mathrm{p} *$ ' for a singlesite operator or with legs ['p0', 'p1', ...], ['p0*', 'p1*', ...] for an operator acting on $n>=2$ sites. Strings (like 'Id', 'Sz') are translated into single-site operators defined by sites.
unitary [None | bool] Whether op is unitary, i.e., whether the canonical form is preserved (True) or whether we should call canonical_form() (False). None checks whether norm (op dagger (op) - identity) is smaller than cutoff.
renormalize [bool] Whether the final state should keep track of the norm (False, default) or be renormalized to have norm 1 (True).
cutoff [float] Cutoff for singular values if op acts on more than one site (see from_full ()). (And used as cutoff for a unspecified unitary.)
average_charge (self, bond=0)
Return the average charge for the block on the left of a given bond.
For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. Then this function returns $\langle\psi| N_{b} \mid \psi>$.

Parameters

bond [int] The bond to be considered. The returned charges are summed over the sites left of bond.

Returns

average_charge [1D array] For each type of charge in chinfo the average value when summing the charge values over sites left of the given bond.
canonical_form (self, renormalize=True)
Bring self into canonical ' B ' form, (re-)calculate singular values.
Simply calls canonical_form_finite() or canonical_form_infinite().
canonical_form_finite (self, renormalize=True, cutoff=0.0)
Bring a finite (or segment) MPS into canonical form (in place).
If any site is in form None, it does not use any of the singular values S (for 'finite' boundary conditions, or only the very left S for 'segment' b.c.). If all sites have a form, it respects the form to ensure that one S is included per bond. The final state is always in right-canonical ' B ' form.

Performs one sweep left to right doing QR decompositions, and one sweep right to left doing SVDs calculating the singular values.

Parameters

renormalize: bool Whether a change in the norm should be discarded or used to update norm.
cutoff [float I None] Cutoff of singular values used in the SVDs.

Returns

$\mathbf{U} _\mathbf{L}, \mathbf{V} _\mathbf{R}$ [Array] Only returned for 'segment' boundary conditions. The unitaries defining the new left and right Schmidt states in terms of the old ones, with legs 'vL', 'vR'.
canonical_form_infinite (self, renormalize=True, tol_xi=1000000.0)
Bring an infinite MPS into canonical form (in place).
If any site is in form None, it does not use any of the singular values S. If all sites have a form, it respects the form to ensure that one S is included per bond. The final state is always in right-canonical 'B' form.
Proceeds in three steps, namely 1) diagonalize right and left transfermatrix on a given bond to bring that bond into canonical form, and then 2) sweep right to left, and 3) left to right to bringing other bonds into canonical form.

Parameters

renormalize: bool Whether a change in the norm should be discarded or used to update norm.
tol_xi [float] Raise an error if the correlation length is larger than that (which indicates a degenerate "cat" state, e.g., for spontaneous symmetry breaking).

```
charge_variance (self, bond=0)
```

Return the charge variance on the left of a given bond.
For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. Then this function returns $<\psi\left|N_{b}^{2}\right| \psi>-\left(<\psi\left|N_{b}\right| \psi>\right)^{2}$.

Parameters

bond [int] The bond to be considered. The returned charges are summed over the sites left of bond.

Returns

average_charge [1D array] For each type of charge in chinfo the variance of of the charge values left of the given bond.
property chi
Dimensions of the (nontrivial) virtual bonds.
compute_K (self, perm, swap_op='auto', trunc_par=None, canonicalize $=1 e-06$, verbose $=0$)
Compute the momentum quantum numbers of the entanglement spectrum for 2 D states.
Works for an infinite MPS living on a cylinder, infinitely long in x direction and with periodic boundary conditions in y directions. If the state is invariant under 'rotations' around the cylinder axis, one can find the momentum quantum numbers of it. (The rotation is nothing more than a translation in y.) This function permutes some sites (on a copy of self) to enact the rotation, and then finds the dominant eigenvector of the mixed transfer matrix to get the quantum numbers, along the lines of [PollmannTurner2012], see also (the appendix and Fig. 11 in the arXiv version of) [CincioVidal2013].

Parameters

perm [1D ndarray I Lattice] Permuation to be applied to the physical indices, see permute_sites(). If a lattice is given, we use it to read out the lattice structure and shift each site by one lattice-vector in y-direction (assuming periodic boundary conditions). (If you have a CouplingModel, give its lat attribute for this argument)
swap_op [None | 'auto'|Array] The operator used to swap the phyiscal legs of a twosite wave function theta, see swap_sites().
trunc_par [dict] Parameters for truncation, see truncate (). If not set, chi_max defaults to max (self.chi).
canonicalize [float] Check that self is in canonical form; call canonical_form() if norm_test() yields np.linalg.norm(self.norm_test()) > canonicalize.
verbose [float] Level of verbosity, print status messages if verbose >0.

Returns

\mathbf{U} [Array] Unitary representation of the applied permutation on left Schmidt states.
\mathbf{W} [ndarray] 1D array of the form $S * * 2 \exp (i \operatorname{K})$, where S are the Schmidt values on the left bond. You can use np.abs () and np.angle () to extract the Schmidt values S and momenta K from W.
q [LegCharge] LegCharge corresponding to W.
ov [complex] The eigenvalue of the mixed transfer matrix $<p s i|T| p s i>$ per L sites. An absolute value different smaller than 1 indicates that the state is not invariant under the permutation or that the truncation error trunc_err was too large!
trunc_err [TruncationError] The error of the represented state introduced by the truncation after swaps when performing the truncation.
convert_form (self, new_form='B')
Tranform self into different canonical form (by scaling the legs with singular values).

Parameters

new_form [(list of) \{'B' | 'A' | 'C' | 'G' | 'Th' | None | tuple(float, float) $\}$] The form the stored 'matrices'. The table in module doc-string. A single choice holds for all of the entries.

Raises

ValueError [if trying to convert from a None form. Use canonical_form() instead!]
correlation_function (self, ops1, ops $2, \quad$ sites $1=$ None, sites $2=$ None, \quad opstr=None, str_on_first=True, hermitian=False)
Correlation function <psi|op1_i op2_j|psi>/<psi|psi> of single site operators.

Given the MPS in canonical form, it calculates 2-site correlation functions. For examples the contraction for a two-site operator on site i would look like:

```
:
```

Onsite terms are taken in the order <psi | op1 op2 | psi>.
If opstr is given and str_on_first=True, it calculates:

For $i==j$, no opstr is included. For str_on_first=False, the opstr on site min(i, j) is always left out.

Strings (like 'Id', 'Sz') in the arguments are translated into single-site operators defined by the Site on which they act. Each operator should have the two legs ' p ', ' $p *$ '.

Parameters

ops1 [(list of) \{ Array | str \}] First operator of the correlation function (acting after ops2). ops1[x] acts on site sites1[x]. If less than len (sites1) operators are given, we repeat them periodically.
ops2 [(list of) \{ Array I str \}] Second operator of the correlation function (acting before ops1). ops2[y] acts on site sites2[y]. If less than len(sites2) operators are given, we repeat them periodically.
sites1 [None I int I list of int] List of site indices; a single int is translated to range (0 , sites1). None defaults to all sites range ($0, \mathrm{~L}$). Is sorted before use, i.e. the order is ignored.
sites2 [None I int I list of int] List of site indices; a single int is translated to range (0 , sites 2). None defaults to all sites range ($0, \mathrm{~L}$). Is sorted before use, i.e. the order is ignored.
opstr [None I (list of) \{ Array | str \}] Ignored by default (None). Operator(s) to be inserted between ops1 and ops2. If less than L operators are given, we repeat them periodically. If given as a list, opstr[r] is inserted at site r (independent of sitesl and sites2).
str_on_first [bool] Whether the opstr is included on the site min (i, j). Note the order, which is chosen that way to handle fermionic Jordan-Wigner strings correctly. (In other
words: choose str_on_first=True for fermions!)
hermitian [bool] Optimization flag: if sites1 == sites2 and Ops1[i]^\dagger $==$ Ops2[i] (which is not checked explicitly!), the resulting C[x, y] will be hermitian. We can use that to avoid calculations, so hermitian=True will run faster.

Returns

C [2D ndarray] The correlation function $C[x, y]=$ <psilops1[i] ops2[j]|psi>, where ops1[i] acts on site $i=s i t e s 1[x]$ and ops2[j] on site $j=s i t e s 2[y]$. If opstr is given, it gives (for str_on_first=True):

- For $\left.i<j: C[x, y]=<p s i \mid o p s 1[i] \operatorname{prod_ \{ i<=r}<j\right\}$ opstr[r] ops2[j]|psi>.
- For i > j: C[x, y] = <psi|prod_\{j <= r < i\} opstr[r] opsi[i] ops2[j]|psi>.
- For $i=j: C[x, y]=$ <psi|ops1[i] ops2[j]|psi>.

The condition $<=r$ is replaced by a strict $<r$, if str_on_first=False.
correlation_length (self, target $=1$, tol_ev0 $=1 e-08$, charge_sector $=0$)
Calculate the correlation length by diagonalizing the transfer matrix.
Assumes that self is in canonical form.
Works only for infinite MPS, where the transfer matrix is a useful concept. Assuming a single-site unit cell, any correlation function splits into $C\left(A_{i}, B_{j}\right)=A_{i}^{\prime} T^{j-i-1} B_{j}^{\prime}$ with some parts left and right and the $j-i-1$-th power of the transfer matrix in between. The largest eigenvalue is 1 (if self is properly normalized) and gives the dominant contribution of $A_{i}^{\prime} E_{1} * 1^{j-i-1} * E_{1}^{T} B_{j}^{\prime}=<A>$, and the second largest one gives a contribution $\propto \lambda_{2}^{j-i-1}$. Thus $\lambda_{2}=\exp \left(-\frac{1}{\xi}\right)$.

More general for a L-site unit cell we get $\lambda_{2}=\exp \left(-\frac{L}{\xi}\right)$, where the $x i$ is given in units of 1 lattice spacing in the MPS.

Warning: For a higher-dimensional lattice (which the MPS class doesn't know about), the correct unit is the lattice spacing in x -direction, and the correct formula is $\lambda_{2}=\exp \left(-\frac{L_{x}}{\xi}\right)$, where $L_{-} x$ is the number of lattice spacings in the infinite direction within the MPS unit cell, e.g. the number of "rings" of a cylinder in the MPS unit cell. To get to these units, divide the returned $x i$ by the number of sites within a "ring", for a lattice given in N_sites_per_ring.

Parameters

target [int] We look for the target +1 largest eigenvalues.
tol_ev0 [float] Print warning if largest eigenvalue deviates from 1 by more than tol_ev0.
charge_sector [None I charges I 0] Selects the charge sector in which the dominant eigenvector of the TransferMatrix is. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0 , i.e., assumes the dominant eigenvector is in charge sector 0 .

Returns

xi [float I 1D array] If target ${ }^{\wedge}=1$, return just the correlation length, otherwise an array of the 'target largest correlation lengths. It is measured in units of a single lattice spacing in the MPS language, see the warning above.

property dim

List of local physical dimensions.
entanglement_entropy (self, $n=1$, bonds $=$ None, for_matrix_S $=$ False)
Calculate the (half-chain) entanglement entropy for all nontrivial bonds.
Consider a bipartition of the sytem into $A=\left\{j: j<=i_{b}\right\}$ and $B=\left\{j: j>i_{b}\right\}$ and the reduced density matrix $\rho_{A}=\operatorname{tr}_{B}(\rho)$. The von-Neumann entanglement entropy is defined as $S(A, n=$ $1)=-\operatorname{tr}\left(\rho_{A} \log \left(\rho_{A}\right)\right)=S(B, n=1)$. The generalization for $\mathrm{n}!=1, \mathrm{n}>0$ are the Renyi entropies: $S(A, n)=\frac{1}{1-n} \log \left(\operatorname{tr}\left(\rho_{A}^{2}\right)\right)=S(B, n=1)$
This function calculates the entropy for a cut at different bonds i, for which the the eigenvalues of the reduced density matrix ρ_{A} and ρ_{B} is given by the squared schmidt values S of the bond.

Parameters

\mathbf{n} [int/float] Selects which entropy to calculate; $n=1$ (default) is the ususal von-Neumann entanglement entropy.
bonds [None I (iterable of) int] Selects the bonds at which the entropy should be calculated. None defaults to range ($0, ~ L+1$) [self.nontrivial_bonds].
for_matrix_S [bool] Switch calculate the entanglement entropy even if the _S are matrices. Since $O\left(\chi^{3}\right)$ is expensive compared to the ususal $O(\chi)$, we raise an error by default.

Returns

entropies [1D ndarray] Entanglement entropies for half-cuts. entropies[j] contains the entropy for a cut at bond bonds [j] (i.e. left to site bonds [j]).
entanglement_spectrum (self, by_charge=False)
return entanglement energy spectrum.

Parameters

by_charge [bool] Wheter we should sort the spectrum on each bond by the possible charges.

Returns

ent_spectrum [list] For each (non-trivial) bond the entanglement spectrum. If by_charge is False, return (for each bond) a sorted 1D ndarray with the convention $S_{i}^{2}=e^{-\xi_{i}}$, where S_{i} labels a Schmidt value and ξ_{i} labels the entanglement 'energy' in the returned spectrum. If by_charge is True, return a a list of tuples (charge, sub_spectrum) for each possible charge on that bond.
expectation_value (self, ops, sites=None, axes=None)
Expectation value <psi|ops|psi>/<psi|psi>of(n-site) operator(s).
Given the MPS in canonical form, it calculates n-site expectation values. For example the contraction for a two-site ($n=2$) operator on site i would look like:

Parameters

ops [(list of) \{ Array | str \}] The operators, for wich the expectation value should be taken, All operators should all have the same number of legs (namely $2 n$). If less than self. L operators are given, we repeat them periodically. Strings (like 'Id', 'Sz') are translated into single-site operators defined by sites.
sites [None I list of int] List of site indices. Expectation values are evaluated there. If None (default), the entire chain is taken (clipping for finite b.c.)
axes [None I (list of str, list of str)] Two lists of each n leg labels giving the physical legs of the operator used for contraction. The first n legs are contracted with conjugated B, the second n legs with the non-conjugated B. None defaults to (['p'], ['p*']) for single site operators $(n=1)$, or (['p0', 'p1', ... 'p\{n-1\}'], ['p0*', $' p 1 * ', \ldots$ ' $\left.\mathrm{p}\{\mathrm{n}-1\} \star^{\prime}\right]$) for $n>1$.

Returns

exp_vals [1D ndarray] Expectation values, exp_vals[i] = <psi|ops[i]|psi>, where ops[i] acts on site(s) $j, j+1, \ldots, j+\{n-1\}$ with $j=$ sites[i].

Examples

One site examples ($\mathrm{n}=1$):

```
>>> psi.expectation_value('Sz')
[Sz0, Sz1, ..., Sz{L-1}]
>>> psi.expectation_value(['Sz', 'Sx'])
[Sz0, Sx1, Sz2, Sx3, ... ]
>>> psi.expectation_value('Sz', sites=[0, 3, 4])
[Sz0, Sz3, Sz4]
```

Two site example ($\mathrm{n}=2$), assuming homogeneous sites:

```
>>> SzSx = npc.outer(psi.sites[0].Sz.replace_labels(['p', 'p*'], ['p0', 'p0*
G']),
G']))
>>> psi.expectation_value(SzSx)
[Sz0Sx1, Sz1Sx2, Sz2Sx3, ... ] # with len L-1 for finite bc, or L for_
\hookrightarrowinfinite
```

Example measuring $<\mathrm{psi}|S z S x| p s i 2>$ on each second site, for inhomogeneous sites:

```
>>> SzSx_list = [npc.outer(psi.sites[i].Sz.replace_labels(['p', 'p*'], ['p0',
@'p0*']),
    psi.sites[i+1].Sx.replace_labels(['p', 'p*'], ['p1
@', 'p1*']))
    for i in range(0, psi.L-1, 2)]
>>> psi.expectation_value(SzSx_list, range(0, psi.L-1, 2))
[Sz0Sx1, Sz2Sx3, Sz4Sx5, ...]
```

expectation_value_multi_sites (self, operators, $i 0$)
Expectation value $<$ psi|op0_\{i0\}op1_\{i0+1\}...opN_\{i0+N\}|psi>/<psi|psi>.
Calculates the expectation value of a tensor product of single-site operators acting on different sites next to each other. In other words, evaluate the expectation value of a term op0_i0 op1_\{i0+1\} op2_\{i0+2\}

Parameters

operators [List of \{Array | str \}] List of one-site operators. This method calculates the expectation value of the n -sites operator given by their tensor product.
$\mathbf{i 0}$ [int] The left most index on which an operator acts, i.e., operators [i] acts on site i $+i 0$.

Returns

exp_val [float/complex] The expectation value of the tensorproduct of the given onsite operators, <psiloperators[0]_\{i0\} operators[1]_\{i0+1\}... |psi>/<psi|psi>, where |psi> is the represented MPS.
expectation_value_term (self, term, autoJW=True)
Expectation value <psi|op_\{i0\}op_\{i1\}...op_\{iN\}|psi>/<psi|psi>.
Calculates the expectation value of a tensor product of single-site operators acting on different sites $i 0, i l$, \ldots (not necessarily next to each other). In other words, evaluate the expectation value of a term op0_i0 op1_i1 op2_i2

For example the contraction of three one-site operators on sites $i 0, i 1=i 0+1, i 2=i 0+3$ would look like:

Parameters

term [list of (str, int)] List of tuples op, i where i is the MPS index of the site the operator named op acts on. The order inside term determines the order in which they act (in the mathematical convention: the last operator in term is right-most, so it acts first on a Ket).
autoJW [bool] If True (default), automatically insert Jordan Wigner strings for Fermions as needed.

Returns

exp_val [float/complex] The expectation value of the tensorproduct of the given onsite operators, <psi|op_i0 op_i1 ... op_iN |psi>/<psi|psi>, where |psi> is the represented MPS.

See also:

correlation_function efficient way to evaluate many correlation functions.

Examples

```
>>> a = psi.expectation_value_term([('Sx', 2), ('Sz', 4)])
>>> b = psi.expectation_value_term([('Sz', 4), ('Sx', 2)])
>>> c = psi.expectation_value_multi_sites(['Sz', 'Id', 'Sz'], i0=2)
>>> assert a == b == c
```

expectation_value_terms_sum (self, term_list, prefactors=None)
Calculate expectation values for a bunch of terms and sum them up.
This is equivalent to the following expression:

```
sum([self.expectation_value_term(term)*strength for term, strength in term_
->list])
```

However, for effiency, the term_list is converted to an MPO and the expectation value of the MPO is evaluated.

Note: Due to the way MPO expectation values are evaluated for infinite systems, it works only if all terms in the term_list start within the MPS unit cell.

Deprecated since version 0.4.0: prefactor will be removed in version 1.0.0. Instead, directly give just TermList (term_list, prefactors) as argument.

Parameters

term_list [TermList] The terms and prefactors (strength) to be summed up.
prefactors : Instead of specifying a TermList, one can also specify the term_list and strength separately. This is deprecated.

Returns

terms_sum [list of (complex) float] Equivalent to the expression sum([self. expectation_value_term(term)*strength for term, strength in term_list]).
_mpo: Intermediate results: the generated MPO. For a finite MPS, terms_sum = _mpo.expectation_value (self), for an infinite MPS terms_sum = _mpo. expectation_value(self) * self.L

See also:

expectation_value_term evaluates a single term.
tenpy.networks.mpo.MPO. expectation_value expectation value density of an MPO.
property finite
Distinguish MPS vs iMPS.
True for an MPS (bc='finite', 'segment'), False for an iMPS ($b c=$ 'infinite').
classmethod from_Bflat (sites, Bflat, $S V s=$ None, $b c=' f i n i t e ', d t y p e=N o n e, ~ p e r m u t e=T r u e, ~$ form $=$ ' B ', leg $L=$ None)
Construct a matrix product state from a set of numpy arrays Bflat and singular vals.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
Bflat [iterable of numpy ndarrays] The matrix defining the MPS on each site, with legs 'p', 'vL', 'vR' (physical, virtual left/right).
SVs [list of 1D array I None] The singular values on each bond. Should always have length $L+1$. By default (None), set all singular values to the same value. Entries out of nontrivial_bonds are ignored.
be [\{ 'infinite', 'finite', 'segmemt'\}] MPS boundary conditions. See docstring of MPS.
dtype [type or string] The data type of the array entries. Defaults to the common dtype of Bflat.
permute [bool] The Site might permute the local basis states if charge conservation gets enabled. If permute is True (default), we permute the given Bflat locally according to each site's perm. The p_state argument should then always be given as if conserve $=$ None in the Site.
form [(list of) \{'B' | 'A' | 'C' | 'G' | None Ituple(float, float)\}] Defines the canonical form of Bflat. See module doc-string. A single choice holds for all of the entries.
leg_L [LegCharge I None] Leg charges at bond 0, which are purely conventional. If None, use trivial charges.

Returns

mps [MPS] An MPS with the matrices Bflat converted to npc arrays.
classmethod from_full(sites, psi, form=None, cutoff=le-16, normalize=True, bc='finite', outer_S=None)
Construct an MPS from a single tensor $p s i$ with one leg per physical site.
Performs a sequence of SVDs of psi to split off the B matrices and obtain the singular values, the result will be in canonical form. Obviously, this is only well-defined for finite or segment boundary conditions.

Parameters

sites [list of $S i t e$] The sites defining the local Hilbert space.
psi [Array] The full wave function to be represented as an MPS. Should have labels 'p0', 'p1', ..., 'p\{L-1\}'. Additionally, it may have (or must have for 'segment' $b c$) the legs 'vL', 'vR', which are trivial for 'finite' $b c$.
form ['B' | 'A' | 'C' | 'G' | None] The canonical form of the resulting MPS, see module doc-string. None defaults to ' A ' form on the first site and ' B ' form on all following sites.
cutoff [float] Cutoff of singular values used in the SVDs.
normalize [bool] Whether the resulting MPS should have 'norm' 1.
bc ['finite'। 'segment'] Boundary conditions.
outer_S [None I (array, array)] For 'semgent' $b c$ the singular values on the left and right of the considered segment, None for 'finite' boundary conditions.

Returns

psi_mps [MPS] MPS representation of psi, in canonical form and possibly normalized.
classmethod from_product_state (sites, p_state, bc='finite', dtype $=<$ class 'numpy.float64' $>$, permute $=$ True, form $=$ ' B ', charge $L=$ None)
Construct a matrix product state from a given product state.

Parameters

sites [list of Site] The sites defining the local Hilbert space.
p_state [iterable of \{int | str | 1D array\}] Defines the product state to be represented. If p_state[i] is str, then site i is in state self.sites[i]. state_labels(p_state[i]). If p_state[i] is int, then site i is in state p_state[i]. If p_state[i] is an array, then site i wavefunction is p_state[i].
bc [\{ 'infinite', 'finite’, ‘segmemt'\}] MPS boundary conditions. See docstring of MPS.
dtype [type or string] The data type of the array entries.
permute [bool] The Site might permute the local basis states if charge conservation gets enabled. If permute is True (default), we permute the given p_{-}state locally according to each site's perm. The p_{-}state argument should then always be given as if conserve=None in the Site.
form [(list of) \{'B' | 'A' | 'C' | 'G' | None Ituple(float, float) \}] Defines the canonical form. See module doc-string. A single choice holds for all of the entries.
chargeL [charges] Leg charge at bond 0 , which are purely conventional.

Returns

product_mps [MPS] An MPS representing the specified product state.

Examples

Example to get a Neel state for a TIChain:

```
>>> M = TFIChain({'L': 10})
>>> p_state = ["up", "down"] * (L//2) # repeats entries L/2 times
>>> psi = MPS.from_product_state(M.lat.mps_sites(), p_state, bc=M.lat.bc_MPS)
```

The meaning of the labels "up", "down" is defined by the Site, in this example a SpinHalfSite.
Extending the example, we can replace the spin in the center with one with arbitrary angles theta, phi in the bloch sphere:

```
>>> M = TFIChain({'L': 8, 'conserve': None})
>>> p_state = ["up", "down"] * (L//2) # repeats entries L/2 times
>>> bloch_sphere_state = np.array([np.cos(theta/2), np.exp(1.j*phi)*np.
->sin(theta/2)])
>>> p_state[L//2] = bloch_sphere_state # replace one spin in center
>>> psi = MPS.from_product_state(M.lat.mps_sites(), p_state, bc=M.lat.bc_MPS,_
dtype=np.complex)
```

Note that for the more general SpinChain, the order of the two entries for the bloch_sphere_state would be exactly the opposite (when we keep the the north-pole of the bloch sphere being the up-state). The reason is that the SpinChain uses the general SpinSite, where the states are orderd ascending from 'down' to 'up'. The SpinHalfSite on the other hand uses the order 'up', 'down' where that the Pauli matrices look as usual.

Moreover, note that you can not write this bloch state (for theta $!=0, \mathrm{pi}$) when conserving symmetries, as the two physical basis states correspond to different symmetry sectors.
classmethod from_singlets (site, L, pairs, up='up', down='down', lonely=[], lonely_state ='up', $b c=$ 'finite')
Create an MPS of entangled singlets.

Parameters

site [Site] The site defining the local Hilbert space, taken uniformly for all sites.
\mathbf{L} [int] The number of sites.
pairs [list of (int, int)] Pairs of sites to be entangled; the returned MPS will have a singlet for each pair in pairs.
up, down [int $1 \operatorname{str}$] A singlet is defined as (lup down> - |down up>)/2**0.5, up and down give state indices or labels defined on the corresponding site.
lonely [list of int] Sites which are not included into a singlet pair.
lonely_state [int I str] The state for the lonely sites.
bc [\{ 'infinite', 'finite', ‘segmemt'\}] MPS boundary conditions. See docstring of MPS.

Returns

singlet_mps [MPS] An MPS representing singlets on the specified pairs of sites.
gauge_total_charge (self, qtotal=None, vL_leg=None, $\left.v R _l e g=N o n e\right)$
Gauge the legcharges of the virtual bonds such that the MPS has a total qtotal.

Parameters

qtotal [(list of) charges] If a single set of charges is given, it is the desired total charge of the MPS (which get_total_charge () will return afterwards). By default (None), use 0 charges, unless vL_leg and vR_leg are specified, in which case we adjust the total charge to match these legs.
vL_leg [None \| LegCharge] Desired new virtual leg on the very left. Needs to have the same block strucuture as current leg, but can have shifted charge entries.
vR_leg [None I LegCharge] Desired new virtual leg on the very right. Needs to have the same block strucuture as current leg, but can have shifted charge entries. Should be $v L _l e g . c o n j()$ for infinite MPS, if qtotal is not given.
get_B (self, i, form $=$ 'B', copy=False, cutoff=1e-16, label_p=None)
Return (view of) B at site i in canonical form.

Parameters

i [int] Index choosing the site.
form ['B' | 'A' | 'C' | 'G' | 'Th' | Noneltuple(float, float)] The (canonical) form of the returned B. For None, return the matrix in whatever form it is. If any of the tuple entry is None, also don't scale on the corresponding axis.
copy [bool] Whether to return a copy even if form matches the current form.
cutoff [float] During DMRG with a mixer, S may be a matrix for which we need the inverse. This is calculated as the Penrose pseudo-inverse, which uses a cutoff for the singular values.
label_p [None I str] Ignored by default (None). Otherwise replace the physical label 'p' with 'p'+label_p'. (For derived classes with more than one "physical" leg, replace all the physical leg labels accordingly.)

Returns

\mathbf{B} [Array] The MPS 'matrix' B at site i with leg labels 'vL', 'p', 'vR'. May be a view of the matrix (if copy=False), or a copy (if the form changed or copy=True).

Raises

ValueError [if self is not in canoncial form and form is not None.]

```
get_SL(self,i)
```

Return singular values on the left of site i
get_SR (self, i)
Return singular values on the right of site i
get_grouped_mps (self, blocklen)
contract blocklen subsequent tensors into a single one and return result as a new MPS.
blocklen $=$ number of subsequent sites to be combined.

Returns

new MPS object with bunched sites.
get_op (self,op_list, i)
Given a list of operators, select the one corresponding to site i.

Parameters

op_list [(list of) \{str I npc.array \}] List of operators from which we choose. We assume that op_list [j] acts on site j. If the length is shorter than L, we repeat it periodically. Strings are translated using get_op () of site i.
i [int] Index of the site on which the operator acts.

Returns

op [npc.array] One of the entries in op_list, not copied.
get_rho_segment (self, segment)
Return reduced density matrix for a segment.
Note that the dimension of rho_A scales exponentially in the length of the segment.

Parameters

segment [iterable of int] Sites for which the reduced density matrix is to be calculated. Assumed to be sorted.

Returns

rho [Array] Reduced density matrix of the segment sites. Labels 'p0', 'p1', ..., 'pk', 'p0*', 'p1*', ..., 'pk*' with k=len (segment).
get_theta (self, $i, n=2$, cutoff $=1 e-16$, form $L=1.0$, form $R=1.0$)
Calculates the n-site wavefunction on sites [i:i+n].

Parameters

i [int] Site index.
n [int] Number of sites. The result lives on sites [i:i+n].
cutoff [float] During DMRG with a mixer, S may be a matrix for which we need the inverse. This is calculated as the Penrose pseudo-inverse, which uses a cutoff for the singular values.
formL [float] Exponent for the singular values to the left.
formR [float] Exponent for the singular values to the right.

Returns

theta [Array] The n-site wave function with leg labels vL, $p 0, p 1, \ldots p\{n-1\}$, vR. In Vidal's notation (with s=lambda, G=Gamma): theta = s**form_L G_i s G_\{i+1\} s ... G_\{i+n-1\} s**form_R.
get_total_charge (self, only_physical_legs=False)
Calculate and return the qtotal of the whole MPS (when contracted).

Parameters

only_physical_legs [bool] For 'finite' boundary conditions, the total charge can be gauged away by changing the LegCharge of the trivial legs on the left and right of the MPS. This option allows to project out the trivial legs to get the actual "physical" total charge.

Returns

qtotal [charges] The sum of the qtotal of the individual B tensors.
group_sites (self, $n=2$, grouped_sites=None)
Modify self inplace to group sites.

Group each n sites together using the GroupedSite. This might allow to do TEBD with a Trotter decomposition, or help the convergence of DMRG (in case of too long range interactions).

Parameters

n [int] Number of sites to be grouped together.
grouped_sites [None I list of GroupedSite] The sites grouped together.

See also:

group_split Reverts the grouping.
group_split (self, trunc_par=None)
Modify self inplace to split previously grouped sites.

Parameters

trunc_par [dict] Parameters for truncation, see truncate (). Defaults to \{'chi_max' : max(self.chi) \}.

Returns

trunc_err [TruncationError] The error introduced by the truncation for the splitting.

See also:

group_sites Should have been used before to combine sites.

increase_L (self, new_L=None)

Modify self inplace to enlarge the unit cell.
For an infinite MPS, we have unit cells.

Parameters

new_L [int] New number of sites. Defaults to twice the number of current sites.

```
property nontrivial_bonds
```

Slice of the non-trivial bond indices, depending on self.bc.

```
norm_test (self)
```

Check that self is in canonical form.

Returns

norm_error: array, shape ($\mathbf{L}, \mathbf{2}$) For each site the norm error to the left and right. The error norm_error [i, 0] is defined as the norm-difference between the following networks:
\square
Similarly, norm_errror [i, 1] is the norm-difference of:

\|	.--theta[i]---		. --s [i+1]--
\|	1 \|	vs	\|
	.--theta*[i]--		.--s $[i+1]--$

overlap (self, other, charge_sector=0, ignore_form=False, **kwargs)
Compute overlap <self|other>.

Parameters

other [MPS] An MPS with the same physical sites.
charge_sector [None I charges | 0] Selects the charge sector in which the dominant eigenvector of the TransferMatrix is. None stands for all sectors, 0 stands for the zero-charge sector. Defaults to 0, i.e., assumes the dominant eigenvector is in charge sector 0 .
ignore_form [bool] If False (default), take into account the canonical form form at each site. If True, we ignore the canonical form (i.e., whether the MPS is in left, right, mixed or no canonical form) and just contract all the _B as they are. (This can give different results!)
**kwargs : Further keyword arguments given to TransferMatrix. eigenvectors (); only used for infinite boundary conditions.

Returns

overlap [dtype.type] The contraction <self|other> * self.norm * other. norm (i.e., taking into account the norm of both MPS). For an infinite MPS, <self|other> is the overlap per unit cell, i.e., the largest eigenvalue of the TransferMatrix.
permute_sites (self, perm, swap_op='auto', trunc_par $=\{ \}$, verbose $=0$)
Applies the permutation perm to the state (inplace).

Parameters

perm [ndarray[ndim=1, int]] The applied permutation, such that psi. permute_sites(perm)[i] = psi[perm[i]] (where [i] indicates the i-th site).
swap_op [None | 'auto'|Array] The operator used to swap the phyiscal legs of a twosite wave function theta, see swap_sites().
trunc_par [dict] Parameters for truncation, see truncate (). chi_max defaults to max (self.chi).
verbose [float] Level of verbosity, print status messages if verbose >0.

Returns

trunc_err [TruncationError] The error of the represented state introduced by the truncation after the swaps.
probability_per_charge (self, bond=0)
Return probabilites of charge value on the left of a given bond.
For example for particle number conservation, define $N_{b}=s u m_{i<b} n_{i}$ for a given bond b. This function returns the possible values of $N _b$ as rows of charge_values, and for each row the probabilty that this combination occurs in the given state.

Parameters

bond [int] The bond to be considered. The returned charges are summed on the left of this bond.

Returns

charge_values [2D array] Columns correspond to the different charges in self.chinfo. Rows are the different charge fluctuations at this bond
probabilities [1D array] For each row of charge_values the probablity for these values of charge fluctuations.

```
set_B(self, i, B, form='B')
```

Set B at site i.

Parameters

i [int] Index choosing the site.
B [Array] The 'matrix' at site i. No copy is made! Should have leg labels 'vL', 'p', 'vR' (not necessarily in that order).
form ['B' | 'A' | 'C' | 'G' | 'Th' | None Ituple(float, float)] The (canonical) form of the B to set. None stands for non-canonical form.

```
set_SL(self,i,S)
```

Set singular values on the left of site i
set_SR (self, i, S)
Set singular values on the right of site i

Module description

This module contains an MPS class representing an density matrix by purification.
Usually, an MPS represents a pure state, i.e. the density matrix is $\rho=|\psi><\psi|$, describing observables as $<O>=$ $\operatorname{Tr}(O|\psi><\psi|)=<\psi|O| \psi>$. Clearly, if $\mid \psi>$ is the ground state of a Hamiltonian, this is the density matrix at $T=0$.

At finite temperatures $T>0$, we want to describe a non-pure density matrix $\rho=\exp (-H / T)$. This can be accieved by the so-called purification: in addition to the physical space P, we introduce a second 'auxiliar' space Q and define the density matrix of the physical system as $\rho=\operatorname{Tr}_{Q}(|\phi><\phi|)$, where $\mid \phi>$ is a pure state in the combined phyisical and auxiliar system.

For $T=\infty$, the density matrix ρ_{∞} is the identity matrix. In other words, expectation values are sums over all possible states $<O>=\operatorname{Tr}_{P}\left(\rho_{\infty} O\right)=\operatorname{Tr}_{P}(O)$. Saying that each : on top is to be connected with the corresponding : on the bottom, the trace is simply a contraction:
\square
Clearly, we get the same result, if we insert an identity operator, written as MPO, on the top and bottom:
\square
We use the following label convention:

You can view the MPO as an MPS by combining the p and q leg and defining every physical operator to act trivial on the q leg. In expecation values, you would then sum over over the q legs, which is exactly what we need. In other words, the choice $B=\delta_{p, q}$ with trivial (length-1) virtual bonds yields infinite temperature expectation values for operators action only on the p legs!

Now, you go a step further and also apply imaginary time evolution (acting only on p legs) to the initial infinite temperature state. For example, the normalized state $|\psi>\propto \exp (-\beta / 2 H)| \phi>$ yields expecation values

$$
<O>=\operatorname{Tr}(\exp (-\beta H) O) / \operatorname{Tr}(\exp (-\beta H)) \propto<\phi|\exp (-\beta / 2 H) O \exp (-\beta / 2 H)| \phi>
$$

An additional real-time evolution allows to calculate time correlation functions:

$$
<A(t) B(0)>\propto<\phi|\exp (-\beta H / 2) \exp (+i H t) A \exp (-i H t) B \exp (-\beta H / 2)| \phi>
$$

See also [Karrasch2013] for additional tricks! On of their crucial observations is, that one can apply arbitrary unitaries on the auxiliar space (i.e. the q) without changing the result. This can actually be used to reduce the necessary virtual bond dimensions: From the definition, it is easy to see that if we apply $\exp (-i H t)$ to the p legs of $\mid \phi>$, and $\exp (+i H t)$ to the q legs, they just cancel out! (They commute with $\exp (-\beta H / 2) \ldots$) If the state is modified (e.g. by applying A or B to calculate correlation functions), this is not true any more. However, we still can find unitaries, which are 'optimal' in the sense of reducing the entanglement of the MPS/MPO to the minimal value. For a discussion of Disentanglers (implemented in purification_tebd), see [Hauschild2018].

Note: The classes MPSEnvironment and TransferMatrix should also work for the PurificationMPS defined here. For example, you can use expectation_value () for the expectation value of operators between different PurificationMPS. However, this makes only sense if the same disentangler was applied to the bra and ket PurificationMPS.

Note: The literature (e.g. section 7.2 of [Schollwoeck2011] or [Karrasch2013]) suggests to use a singlet as a maximally entangled state. Here, we use instead the identity $\delta_{p, q}$, since it is easier to generalize for p running over more than two indices, and allows a simple use of charge conservation with the above qconj convention. Moreover, we don't split the physical and auxiliar space into separate sites, which makes TEBD as costly as $O\left(d^{6} \chi^{3}\right)$.

Todo: One can also look at the canonical ensembles by defining the conserved quantities differently, see Barthel (2016), arXiv: 1607.01696 for details. Idea: usual charges on p, trivial charges on q; fix total charge to desired value. I think it should suffice to implement another from_infinite T.

7.2.5 tools

- full name: tenpy.tools
- parent module: tenpy
- type: module

Module description

A collection of tools: mostly short yet quite useful functions.
Some functions are explicitly imported in other parts of the library, others might just be useful when using the libary. Common to all tools is that they are not just useful for a single algorithm but fairly general.

Submodules

params	Tools to handle paramters for algorithms.
misc	Miscellaneous tools, somewhat random mix yet often helpful.
math	Different math functions needed at some point in the library.
fit	tools to fit to an algebraic decay.
string	Tools for handling strings.
process	Tools to read out total memory usage and get/set the number of threads.
optimization	Optimization options for this library.

params

- full name: tenpy.tools.params
- parent module: tenpy.tools
- type: module

Functions

get_parameter(params, key, default, descr[,..]])	Read out a parameter from the dictionary and/or provide default values.
unused_parameters(params[, warn])	Returns a set of the parameters which have not been read out with get_parameters.

get_parameter

- full name: tenpy.tools.params.get_parameter
- parent module: tenpy.tools.params
- type: function
tenpy.tools.params.get_parameter (params, key, default, descr, asarray=False)
Read out a parameter from the dictionary and/or provide default values.
This function provides a similar functionality as params.get (key, default). Unlike dict.get this function writes the default value into the dictionary (i.e. in other words it's more similar to params. setdefault (key, default)).
This allows the user to save the modified dictionary as meta-data, which gives a concrete record of the actually used parameters and simplifies reproducing the results and restarting simulations.

Moreover, a special entry with the key 'verbose' in the params can trigger this function to also print the used value. A higer verbose level implies more output. If verbose $>=100$, it is printed every time it's used. If verbose $>=2$., its printed for the first time time its used. and for verbose $>=1$, non-default values are printed the first time they are used. otherwise only for the first use.

Internally, whether a parameter was used is saved in the set params ['_used_param']. This is used in unused_parameters () to print a warning if the key wasn't used at the end of the algorithm, to detect mis-spelled parameters.

Parameters

params [dict] A dicionary of the parameters as provided by the user. If key is not a valid key, params [key] is set to default.
key [string] The key for the parameter which should be read out from the dictionary.
default : The default value for the parameter.
descr [str] A short description for verbose output, like 'TEBD', 'XXZ_model', 'truncation'.
asarray [bool] If True, convert the result to a numpy array with np. asarray (...) before returning.

Returns

value : params [key] if the key is in params, otherwise default. Converted to a numpy array, if asarray.

Examples

In the algorith Engine gets a dictionary of parameters. Beside doing other stuff, it calls tenpy.models. model. NearestNeighborModel.calc_U_bond() with the dictionary as argument, which looks similar like:

```
>>> def model_calc_U(U_param):
>>> dt = get_parameter(U_param, 'dt', 0.01, 'TEBD')
>>> # ... calculate exp(-i * dt* H) ....
```

Then, when you call time_evolution without any parameters, it just uses the default value:

```
>>> tenpy.algorithms.tebd.time_evolution(..., dict()) # uses dt=0.01
```

If you provide the special keyword 'verbose ' you can triger this function to print the used parameter values:

```
>>> tenpy.algorithms.tebd.time_evolution(..., dict(verbose=1))
parameter 'dt'=0.01 (default) for TEBD
```

Of course you can also provide the parameter to use a non-default value:

```
>>> tenpy.algorithms.tebd.time_evolution(..., dict(dt=0.1, verbose=1))
parameter 'dt'=0.1 for TEBD
```


unused_parameters

- full name: tenpy.tools.params.unused_parameters
- parent module: tenpy.tools.params
- type: function
tenpy.tools.params.unused_parameters (params, warn=None)
Returns a set of the parameters which have not been read out with get_parameters.
This function might be useful to check for typos in the parameter keys.

Parameters

params [dict] A dictionary of parameters which was given to (functions using) get_parameter()
warn [None | str] If given, print a warning "unused parameter for $\{$ warn!s $\}$: \{unused_keys!s\}".

Returns

unused_keys [set] The set of keys of the params which was not used

Module description

Tools to handle paramters for algorithms.
See the doc-string of get_parameter() for details.
misc

- full name: tenpy.tools.misc
- parent module: tenpy.tools
- type: module

Functions

add_with_None_O(a, b)	Return $a+\mathrm{b}$, treating None as zero.
any_nonzero(params, keys[, verbose_msg])	Check for any non-zero or non-equal entries in some parameters.
anynan(a)	check whether any entry of a ndarray a is 'NaN'.
$\operatorname{argsort}(\mathrm{a}[$, sort $])$	wrapper around np.argsort to allow sorting ascend- ing/descending and by magnitude.

Table 151 - continued from previous page

atleast_2d_pad(a[, pad_item])	Transform a into a 2D array, filling missing places with pad_item.
build_initial_state(size, states, filling[,...])	
chi_list(chi_max[, dchi, nsweeps, verbose])	
inverse_permutation(perm)	reverse sorting indices.
lexsort(a[, axis])	wrapper around np.lexsort: allow for trivial case a.shape[0] = 0 without sorting
list_to_dict_list(l)	Given a list l of objects, construct a lookup table.
pad(a[,w_l, v_l, w_r, v_r, axis])	Pad an array along a given axis.
setup_executable(mod, run_defaults[, ...])	Read command line arguments and turn into useable dicts.
to_array(a[, shape])	Convert a to an numpy array and tile to matching dimension/shape.
to_iterable(a)	If a is a not iterable or a string, return [a], else return a.
transpose_list_list(D[, pad])	Returns a list of lists T , such that $\mathrm{T}[\mathrm{i}][\mathrm{j}]=$ D[j][i].
zero_if_close(a[, tol])	set real and/or imaginary part to 0 if their absolute value is smaller than tol.

add_with_None_0

- full name: tenpy.tools.misc.add_with_None_0
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.add_with_None_0 (a, b)
Return $\mathrm{a}+\mathrm{b}$, treating None as zero.

Parameters

$\mathbf{a}, \mathbf{b}:$ The two things to be added, or None.

Returns

sum : a +b , except if a or b is None, in which case the other variable is returned.
any_nonzero

- full name: tenpy.tools.misc.any_nonzero
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.any_nonzero (params, keys, verbose_msg=None)
Check for any non-zero or non-equal entries in some parameters.

Parameters

params [dict] A dictionary of parameters.
keys [list of $\{$ key I tuple of keys \}] For a single key, check params [key] for non-zero entries.
For a tuple of keys, all the params [key] have to be equal (as numpy arrays).
verbose_msg [None | str] If params['verbose'] >= 1, we print verbose_msg before checking, and a short notice with the key, if a non-zero entry is found.

Returns

match [bool] False, if all params[key] are zero or None and True, if any of the params[key] for single key in keys,
of if any of the entries for a tuple of keys
anynan

- full name: tenpy.tools.misc.anynan
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.anynan (a)
check whether any entry of a ndarray a is ' NaN '.
argsort
- full name: tenpy.tools.misc.argsort
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.argsort (a, sort=None, **kwargs)
wrapper around np.argsort to allow sorting ascending/descending and by magnitude.

Parameters

a [array_like] the array to sort

sort	order
'm>', 'LM'	Largest magnitude first
'm<', 'SM'	Smallest magnitude first
${ }^{\prime}>^{\prime}, \quad$ 'LR', 'LA'	Largest real part first
$'<\prime^{\prime}, ~ ' S R ', ~ ' S A '$	Smallest real part first
'LI'	Largest imaginary part first
'Si'	Smallest imaginary part first
None	numpy default: same as ' $<'$

**kwargs : further keyword arguments given directly to numpy.argsort ().

Returns

index_array [ndarray, int] same shape as a, such that a [index_array] is sorted in the specified way.

atleast_2d_pad

- full name: tenpy.tools.misc.atleast_2d_pad
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.atleast_2d_pad (a, pad_item=0)
Transform a into a 2D array, filling missing places with pad_item.
Given a list of lists, turn it to a 2D array (pad with 0), or turn a 1D list to 2D.

Parameters

a [list of lists] to be converted into ad 2D array.

Returns

a_2D [2D ndarray] a converted into a numpy array.

Examples

```
>>> atleast_2d_pad([3, 4, 0])
```

array ([[3, 4, 0]])

```
>>> atleast_2d_pad([[3, 4],[1, 6, 7]])
array([[ 3., 4., 0.],
    [ 1., 6., 7.]])
```

build_initial_state

- full name: tenpy.tools.misc.build_initial_state
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.build_initial_state (size, states, filling, mode='random', seed=None)
chi_list
- full name: tenpy.tools.misc.chi_list
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.chi_list (chi_max, dchi=20, nsweeps $=20$, verbose $=0$)

inverse_permutation

- full name: tenpy.tools.misc.inverse_permutation
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.inverse_permutation (perm)
reverse sorting indices.
Sort functions (as LegCharge. sort ()) return a (1D) permutation perm array, such that sorted_array = old_array[perm]. This function inverts the permutation perm, such that old_array = sorted_array[inverse_permutation(perm)].

Parameters

perm [1D array_like] The permutation to be reversed. Assumes that it is a permutation with unique indices. If it is, inverse_permutation(inverse_permutation(perm)) == perm.

Returns

inv_perm [1D array (int)] The inverse permutation of perm such that inv_perm [perm [j]] = j = perm[inv_perm[j]].

lexsort

- full name: tenpy.tools.misc.lexsort
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.lexsort (a, axis=-l)
wrapper around np.lexsort: allow for trivial case a.shape [0] = 0 without sorting
list_to_dict_list
- full name: tenpy.tools.misc.list_to_dict_list
- parent module: tenpy.tools.misc
- type: function

```
tenpy.tools.misc.list_to_dict_list(l)
```

Given a list l of objects, construct a lookup table.
This function will handle duplicate entries in l.

Parameters

l: iterable of iterabele of immutable A list of objects that can be converted to tuples to be used as keys for a dictionary.

Returns

lookup [dict] A dictionary with (key, value) pairs (key) : [i1, i2,...] where i1, i2, \ldots are the indices where key is found in l : i.e. key $=$ tuple(l[il]) $==$ tuple(l[i2]) == ...
pad

- full name: tenpy.tools.misc.pad
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.pad ($\left.a, w_{-} l=0, v_{-} l=0, w_{-} r=0, v_{-} r=0, a x i s=0\right)$
Pad an array along a given axis.

Parameters

a [ndarray] the array to be padded
w_l [int] the width to be padded in the front
v_l [dtype] the value to be inserted before a
w_r [int] the width to be padded after the last index
v_l [dtype] the value to be inserted after a
axis [int] the axis along which to pad

Returns

padded [ndarray] a copy of a with enlarged axis, padded with the given values.

```
setup_executable
```

- full name: tenpy.tools.misc.setup_executable
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.setup_executable(mod, run_defaults, identifier_list=None)
Read command line arguments and turn into useable dicts.
Uses default values defined at: - model class for model_par - here for sim_par - executable file for run_par Alternatively, a model_defaults dictionary and identifier_list can be supplied without the model

NB: for setup_executable to work with a model class, the model class needs to define two things:

- defaults, a static (class level) dictionary with (key, value) pairs that have the name of the parameter (as string) as key, and the default value as value.
- identifier, a static (class level) list or other iterable with the names of the parameters to be used in filename identifiers.

Args: \bmod (model I dict): Model class (or instance) OR a dictionary containing model defaults run_defaults (dict): default values for executable file parameters identifier_list (ieterable, optional) । Used only if mod is a dict. Contains the identifier
variables
Returns: model_par, sim_par, run_par (dicts) : containing all parameters. args | namespace with raw arguments for some backwards compatibility with executables.

to_array

- full name: tenpy.tools.misc.to_array
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.to_array (a, shape=(None,))
Convert a to an numpy array and tile to matching dimension/shape.
This function provides similar functionality as numpys broadcast, but not quite the same: Only scalars are broadcasted to higher dimensions, for a non-scalar, we require the number of dimension to match. If the shape does not match, we repeat periodically, e.g. we tile $(3,4) \rightarrow(6,16)$, but $(4,4) \rightarrow(6,16)$ will raise an error.

Parameters

a [scalar I array_like] The input to be converted to an array. A scalar is reshaped to the desired dimension.
shape [tuple of $\{$ None \mid int $\}]$ The desired shape of the array. An entry None indicates arbitrary len $>=1$. For int entries, tile the array periodically to fit the len.

Returns

a_array [ndarray] A copy of a converted to a numpy ndarray of desired dimension and shape.

to_iterable

- full name: tenpy.tools.misc.to_iterable
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.to_iterable (a)
If a is a not iterable or a string, return [a], else return a.

transpose_list_list

- full name: tenpy.tools.misc.transpose_list_list
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.transpose_list_list (D, pad=None)
Returns a list of lists T, such that $\mathrm{T}[\mathrm{i}][j]=\mathrm{D}[\mathrm{j}][\mathrm{i}]$.

Parameters

D [list of list] to be transposed
pad : Used to fill missing places, if D is not rectangular.

Returns

\mathbf{T} [list of lists] transposed, rectangular version of D. constructed such that $T[i][j]=$ D[j][i] if i < len(D[j]) else pad

zero_if_close

- full name: tenpy.tools.misc.zero_if_close
- parent module: tenpy.tools.misc
- type: function
tenpy.tools.misc.zero_if_close (a, tol=le-15)
set real and/or imaginary part to 0 if their absolute value is smaller than tol.

Parameters

a [ndarray] numpy array to be rounded
tol [float] the threashold which values to consider as ' 0 '.

Module description

Miscellaneous tools, somewhat random mix yet often helpful.
math

- full name: tenpy.tools.math
- parent module: tenpy.tools
- type: module

Functions

entropy (p[, n])	Calculate the entropy of a distribution.
$\operatorname{gcd}(\mathrm{a}, \mathrm{b})$	Computes the greatest common divisor (GCD) of two numbers.
gcd_array(a)	Return the greatest common divisor of all of entries in a
$\operatorname{lcm}(\mathrm{a}, \mathrm{b})$	Returns the least common multiple (LCM) of two positive numbers.
matvec_to_array (H)	transform an linear operator with a matvec method into a dense numpy array.
perm_sign(p)	Given a permutation p of numbers, returns its sign.
qr_li(A[, cutoff])	QR decomposition with cutoff to discard nearly linear dependent columns in Q.
rq_li(A[, cutoff])	RQ decomposition with cutoff to discard nearly linear dependent columns in Q.
speigs(A, k, *args, **kwargs)	Wrapper around scipy.sparse.linalg. eigs(), lifting the restriction $k<\operatorname{rank}(A)-1$.
speigsh(A, k, *args, **kwargs)	Wrapper around scipy.sparse.linalg. eigsh(), lifting the restriction $k<r a n k(A)-1$.

entropy

- full name: tenpy.tools.math.entropy
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.entropy ($p, n=1$)
Calculate the entropy of a distribution.
Assumes that p is a normalized distribution ($\mathrm{np} . \operatorname{sum}(\mathrm{p})==1$.$) .$

Parameters

p [1D array] A normalized distribution.
n [1 | float I np.inf] Selects the entropy, see below.

Returns

entropy [float] Shannon-entropy $-\sum_{i} p_{i} \log \left(p_{i}\right)(\mathrm{n}=1)$ or Renyi-entropy $\frac{1}{1-n} \log \left(\sum_{i} p_{i}^{n}\right)$ (n $!=1)$ of the distribution p.
gcd

- full name: tenpy.tools.math.gcd
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.gcd (a, b)
Computes the greatest common divisor (GCD) of two numbers.
Return 0 if both a, b are zero, otherwise always return a non-negative number.

```
gcd_array
```

- full name: tenpy.tools.math.gcd_array
- parent module: tenpy.tools.math
- type: function

```
tenpy.tools.math.gcd_array (a)
```

Return the greatest common divisor of all of entries in a

Icm

- full name: tenpy.tools.math.lcm
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.lcm (a, b)
Returns the least common multiple (LCM) of two positive numbers.

matvec_to_array

- full name: tenpy.tools.math.matvec_to_array
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.matvec_to_array (H)
transform an linear operator with a matvec method into a dense numpy array.

Parameters

H [linear operator] should have shape, dtype attributes and a matvec method.

Returns

H_dense [ndarray, shape (H.dim, H. dim)] a dense array version of H.
perm_sign

- full name: tenpy.tools.math.perm_sign
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.perm_sign (p)
Given a permutation p of numbers, returns its sign. (+1 or -1)
Assumes that all the elements are distinct, if not, you get crap.

Examples

```
>>> for p in itertools.permutations(range(3))]):
... print('{p!s}: {sign!s}'.format(p=p, sign=perm_sign(p)))
(0, 1, 2): 1
(0, 2, 1): -1
(1, 0, 2): -1
(1, 2, 0): 1
(2, 0, 1): 1
(2, 1, 0): -1
```

qr_li

- full name: tenpy.tools.math.qr_li
- parent module: tenpy.tools.math
- type: function

```
tenpy.tools.math.qr_li (A, cutoff=le-15)
```

QR decomposition with cutoff to discard nearly linear dependent columns in Q.
Perform a QR decomposition with pivoting, discard columns where R[i,i] < cuttoff, reverse the permututation from pivoting and perform another QR decomposition to ensure that R is upper right.

Parameters

A [numpy.ndarray] Matrix to be decomposed as $A=Q \cdot R$

Returns

\mathbf{Q}, \mathbf{R} [numpy. ndarray] Decomposition of A into isometry $Q^{\wedge} d Q=1$ and upper right R with diagonal entries larger than cutoff.
rq_li

- full name: tenpy.tools.math.rq_li
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.rq_li (A, cutoff= $1 e-15$)
RQ decomposition with cutoff to discard nearly linear dependent columns in Q.
Uses q r_li () on tranpose of A. Note that R is nonzero in the lowest left corner; R has entries below the diagonal for non-square R.

Parameters

A [numpy. ndarray] Matrix to be decomposed as $A=Q . R$

Returns

\mathbf{R}, \mathbf{Q} [numpy. ndarray] Decomposition of A into isometry $Q Q^{\wedge} d=l$ and upper right R with
diagonal entries larger than cutoff. If $\mathrm{M}, \mathrm{N}=\mathrm{A}$. shape, then R . shape $=\mathrm{M}, \mathrm{K}$ and
Q. shape $=\mathrm{K}, \mathrm{N}$ with $\mathrm{K}<=\min (\mathrm{M}, \mathrm{N})$.
speigs

- full name: tenpy.tools.math.speigs
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.speigs (A, k, *args, **kwargs)
Wrapper around scipy.sparse.linalg.eigs(), lifting the restriction $k<r a n k(A)-1$.

Parameters

A [MxM ndarray or like scipy.sparse.linalg. Linearoperator] the (square) linear operator for which the eigenvalues should be computed.
\mathbf{k} [int] the number of eigenvalues to be computed.
*args, **kwargs: further arguments are directly given to scipy.sparse.linalg. eigs()

Returns

\mathbf{w} [ndarray] array of $\min (k$, A.shape[0]) eigenvalues
\mathbf{v} [ndarray] array of $\min (k$, A.shape[0]) eigenvectors, $\mathrm{v}[:, \quad i]$ is the i-th eigenvector. Only returned if kwargs['return_eigenvectors'] == True.

speigsh

- full name: tenpy.tools.math.speigsh
- parent module: tenpy.tools.math
- type: function
tenpy.tools.math.speigsh (A, k, *args, **kwargs)
Wrapper around scipy.sparse.linalg.eigsh(), lifting the restriction $k<r a n k(A)-1$.

Parameters

A [MxM ndarray or like scipy.sparse.linalg.Linearoperator] The (square) hermitian linear operator for which the eigenvalues should be computed.
\mathbf{k} [int] The number of eigenvalues to be computed.
*args, **kwargs: Further arguments are directly given to scipy.sparse.linalg. eigs().

Returns

\mathbf{w} [ndarray] Array of $\min (k$, A.shape[0]) eigenvalues.
\mathbf{v} [ndarray] Array of $\min (k$, A.shape[0]) eigenvectors, $\mathrm{v}[:, \quad i]$ is the i-th eigenvector. Only returned if kwargs['return_eigenvectors'] == True.

Module description

Different math functions needed at some point in the library.
fit

- full name: tenpy.tools.fit
- parent module: tenpy.tools
- type: module

Functions

alg_decay (x, a, b, c)	define the algebraic decay.
alg_decay_fit(x, y[, npts, power_range, ...])	Fit y to the form $\mathrm{a} * \mathrm{x} * *(-\mathrm{b})+\mathrm{c}$.
alg_decay_fit_res(log_b, x, y)	Returns the residue of an algebraic decay fit of the form x**(-np.exp (log_b)).
alg_decay_fits(x, ys[, npts, power_range, ...])	Fit arrays of y's to the form $\mathrm{a} * \mathrm{x}^{* *}(-\mathrm{b})+\mathrm{c}$.
lin_fit_res(x, y)	Returns the least-square residue of a linear fit y vs x .
linear_fit(x, y)	Perform a linear fit of y to $\mathrm{ax}+\mathrm{b}$.
plot_alg_decay_fit(plot_module, x, \mathbf{y}, fit_par)	Given x, y, and fit_par (output from alg_decay_fit), produces a plot of the algebraic decay fit.

alg_decay

- full name: tenpy.tools.fit.alg_decay
- parent module: tenpy.tools.fit
- type: function
tenpy.tools.fit.alg_decay (x, a, b, c)
define the algebraic decay.
alg_decay_fit
- full name: tenpy.tools.fit.alg_decay_fit
- parent module: tenpy.tools.fit
- type: function

```
tenpy.tools.fit.alg_decay_fit(x, y, npts=5, power_range=(0.01, 4.0), power_mesh=[60, 10])
```

Fit y to the form $a * x * *(-b)+c$.
Returns a triplet [a, b, c].
npts specifies the maximum number of points to fit. If npts < len(x), then alg_decay_fit() will only fit to the last npts points. power_range is a tuple that gives that restricts the possible ranges for b. power_mesh is a list of numbers, which specifies how fine to search for the optimal b. E.g., if power_mesh $=[60,10]$, then it'll first divide the power_range into 60 intervals, and then divide those intervals by 10.

```
alg_decay_fit_res
```

- full name: tenpy.tools.fit.alg_decay_fit_res
- parent module: tenpy.tools.fit
- type: function

```
tenpy.tools.fit.alg_decay_fit_res(log_b, x, y)
```

Returns the residue of an algebraic decay fit of the form $\mathrm{x} * *$ ($-\mathrm{np} . \mathrm{exp}$ (log_b)).
alg_decay_fits

- full name: tenpy.tools.fit.alg_decay_fits
- parent module: tenpy.tools.fit
- type: function
tenpy.tools.fit.alg_decay_fits $(x, y s, n p t s=5$, power_range $=(0.01,4.0)$, power_mesh=[60, 10])
Fit arrays of y 's to the form $a^{*} x^{* *}(-b)+c$.
Returns arrays of $[a, b, c]$.
lin_fit_res
- full name: tenpy.tools.fit.lin_fit_res
- parent module: tenpy.tools.fit
- type: function
tenpy.tools.fit.lin_fit_res (x, y)
Returns the least-square residue of a linear fit y vs x .
linear_fit
- full name: tenpy.tools.fit.linear_fit
- parent module: tenpy.tools.fit
- type: function

```
tenpy.tools.fit.linear_fit (x, y)
```

Perform a linear fit of y to $a x+b$.
Returns a, b, res.
plot_alg_decay_fit

- full name: tenpy.tools.fit.plot_alg_decay_fit
- parent module: tenpy.tools.fit
- type: function

```
tenpy.tools.fit.plot_alg_decay_fit(plot_module, x, y, fit_par, xfunc=None, kwargs={},
``` plot_fit_args=\{\})
Given \(\mathrm{x}, \mathrm{y}\), and fit_par (output from alg_decay_fit), produces a plot of the algebraic decay fit.
plot_module is matplotlib.pyplot, or a subplot. \(x\), \(y\) are the data (real, 1-dimensional np.ndarray) fit_par is a triplet of numbers [a, b, c] that describes and algebraic decay (see alg_decay()). xfunc is an optional parameter that scales the x -axis in the resulting plot. kwargs is a dictionary, whoses key/items are passed to the plot function. plot_fit_args is a dictionary that controls how the fit is shown.

\section*{Module description}
tools to fit to an algebraic decay.
string
- full name: tenpy.tools.string
- parent module: tenpy.tools
- type: module

\section*{Functions}
\begin{tabular}{ll}
\hline is_non_string_iterable(x) & \begin{tabular}{l}
Check if x is a non-string iterable, (e.g., list, tuple, dic- \\
tionary, np.ndarray)
\end{tabular} \\
\hline to_mathematica_lists(a) & \begin{tabular}{l}
convert nested \(a\) to string readable by mathematica us- \\
ing curly brackets ' \(\{\ldots\}\) '.
\end{tabular} \\
\hline vert_join(strlist[, valign, halign, delim]) & \begin{tabular}{l}
Join strings with multilines vertically such that they ap- \\
pear next to each other.
\end{tabular} \\
\hline
\end{tabular}

\section*{is_non_string_iterable}
- full name: tenpy.tools.string.is_non_string_iterable
- parent module: tenpy.tools.string
- type: function
tenpy.tools.string.is_non_string_iterable \((x)\)
Check if x is a non-string iterable, (e.g., list, tuple, dictionary, np.ndarray)
to_mathematica_lists
- full name: tenpy.tools.string.to_mathematica_lists
- parent module: tenpy.tools.string
- type: function
tenpy.tools.string.to_mathematica_lists \((a)\)
convert nested \(a\) to string readable by mathematica using curly brackets ' \(\{\ldots\}\) '.
vert join
- full name: tenpy.tools.string.vert_join
- parent module: tenpy.tools.string
- type: function
tenpy.tools.string.vert_join (strlist, valign='t', halign='l', delim=' ')
Join strings with multilines vertically such that they appear next to each other.

\section*{Parameters}
strlist [list of str] the strings to be joined vertically
valing ['t', 'c', 'b'] vertical alignment of the strings: top, center, or bottom
halign ['l', ' C ', ' r '] horizontal alignment of the strings: left, center, or right
delim [str] field separator between the strings

\section*{Returns}
joined [str] a string where the strings of strlist are aligned vertically

\section*{Examples}
```

>>> print vert_join(['a\nsample\nmultiline\nstring', str(np.arange(9).reshape(3, -
@3))],
... delim=' | ')
a | [[lllll
sample | [$$
\begin{array}{lll}{3}&{4}&{5}\end{array}
$$]
multiline | [lllll
string

```

\section*{Module description}

Tools for handling strings.

\section*{process}
- full name: tenpy.tools.process
- parent module: tenpy.tools
- type: module

\section*{Functions}
\begin{tabular}{ll}
\hline load_omp_library([libs, verbose] \()\) & Tries to load openMP library. \\
\hline memory_usage(\()\) & Return memory usage of the running python process. \\
\hline mkl_get_nthreads () & wrapper around MKL get_max_threads. \\
\hline\(m k l_{\text {_ }}\) set_nthreads \((\mathrm{n})\) & wrapper around MKL set_num_threads. \\
\hline omp_get_nthreads () & wrapper around OpenMP get_max_threads. \\
\hline omp_set_nthreads \((\mathrm{n})\) & wrapper around OpenMP set_nthreads. \\
\hline
\end{tabular}
load_omp_library
- full name: tenpy.tools.process.load_omp_library
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.load_omp_library (libs=['libiomp5.so', None, 'libgomp.so.1'], verbose=True)
Tries to load openMP library.

\section*{Parameters}
libs: list of possible library names we should try to load (with ctypes.CDLL).
verbose [bool] wheter to print the name of the loaded library.

\section*{Returns}
omp [CDLL I None] OpenMP shared libary if found, otherwise None. Once it was sucessfully imported, no re-imports are tried.

\section*{memory_usage}
- full name: tenpy.tools.process.memory_usage
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.memory_usage()
Return memory usage of the running python process.
You can pip install psutil if you get only -1 ..

\section*{Returns}
mem [float] Currently used memory in megabytes. -1. if no way to read out.
mkl_get_nthreads
- full name: tenpy.tools.process.mkl_get_nthreads
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.mkl_get_nthreads() wrapper around MKL get_max_threads.

\section*{Returns}
max_threads [int] The maximum number of threads used by MKL. -1 if unable to read out.
mkl_set_nthreads
- full name: tenpy.tools.process.mkl_set_nthreads
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.mkl_set_nthreads (\(n\)) wrapper around MKL set_num_threads.

\section*{Parameters}
n [int] the number of threads to use

\section*{Returns}
success [bool] whether the shared library was found and set.
```

omp_get_nthreads

```
- full name: tenpy.tools.process.omp_get_nthreads
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.omp_get_nthreads()
wrapper around OpenMP get_max_threads.

\section*{Returns}
max_threads [int] The maximum number of threads used by OpenMP (and thus MKL). -1 if unable to read out.
omp_set_nthreads
- full name: tenpy.tools.process.omp_set_nthreads
- parent module: tenpy.tools.process
- type: function
tenpy.tools.process.omp_set_nthreads (n)
wrapper around OpenMP set_nthreads.

\section*{Parameters}
n [int] the number of threads to use

\section*{Returns}
success [bool] whether the shared library was found and set.

\section*{Module description}

Tools to read out total memory usage and get/set the number of threads.
If your python is compiled against MKL (e.g. if you use anaconda as recommended in INSTALL), it will by default use as many threads as CPU cores are available. If you run a job on a cluster, you should limit this to the number of cores you reserved - otherwise your colleagues might get angry... A simple way to achieve this is to set a suitable enviornment variable before calling your python program, e.g. on the linux bash export OMP_NUM_THREADS=4 for 4 threads. (MKL used OpenMP and thus respects its settings.)
Alternatively, this module provides omp_get_nthreads () and omp_set_nthreads (), which give their best to get and set the number of threads at runtime, while still being failsave if the shared OpenMP library is not found. In the latter case, you might also try the equivalent \(m k l_{\text {_get_nthreads () and mkl_set_nthreads (). }}\)

\section*{optimization}
- full name: tenpy.tools.optimization
- parent module: tenpy.tools
- type: module

\section*{Classes}
\begin{tabular}{ll}
\hline OptimizationFlag & \begin{tabular}{l}
Options for the global 'optimization level' used for dy- \\
namical optimizations.
\end{tabular} \\
\hline temporary_level(temporary_level) & \begin{tabular}{l}
Context manager to temporarily set the optimization \\
level to a different value.
\end{tabular} \\
\hline
\end{tabular}

\section*{OptimizationFlag}
- full name: tenpy.tools.optimization.OptimizationFlag
- parent module: tenpy.tools.optimization
- type: class
class tenpy.tools.optimization.OptimizationFlag
Bases: enum. IntEnum
Options for the global 'optimization level' used for dynamical optimizations.
Whether we optimize dynamically is decided by comparison of the global "optimization level" with one of the following flags. A higher level includes all the previous optimizations.
\begin{tabular}{|l|l|l|}
\hline Level & Flag & Description \\
\hline 0 & none & Don't do any optimizations, i.e., run many sanity checks. Used for testing. \\
\hline 1 & default & \begin{tabular}{l}
Skip really unnecessary sanity checks, but also don't try any optional optimizations if \\
they might give an overhead.
\end{tabular} \\
\hline 2 & safe & \begin{tabular}{l}
Activate safe optimizations in algorithms, even if they might give a small overhead. Ex- \\
ample: Try to compress the MPO representing the hamiltonian.
\end{tabular} \\
\hline 3 & skip_arg_chedlhsafe! Skip (some) class sanity tests and (function) argument checks. \\
\hline
\end{tabular}

Warning: When unsafe optimizations are enabled, errors will not be detected that easily, debugging is much harder, and you might even get segmentation faults in the compiled parts. Use this kind of optimization only for code which you succesfully ran before with (very) similar parmeters and disabled optimiztions! Enable this optimization only during the parts of the code where it is really necessary. Check whether it actually helps - if it doesn't, keep the optimization disabled!

\section*{temporary_level}
- full name: tenpy.tools.optimization.temporary_level
- parent module: tenpy.tools.optimization
- type: class
class tenpy.tools.optimization.temporary_level (temporary_level)
Bases: ob ject
Context manager to temporarily set the optimization level to a different value.

\section*{Parameters}
temporary_level [int | OptimizationFlag \| str I None] The optimization level to be set during the context. None defaults to the current value of the optimization level.

\section*{Examples}

It is recommended to use this context manager in a with statement:
```


# optimization level default

with temporary_level(OptimizationFlag.safe):
do_some_stuff() \# temporarily have Optimization level `safe`
\# you can even change the optimization level to something else:
set_level(OptimizationFlag.skip_args_check)
do_some_really_heavy_stuff()

# here we are back to the optimization level as before the ``with ...`` statement

```

\section*{Attributes}
temporary_level [None I OptimizationFlag] The optimization level to be set during the context.
_old_level [OptimizationFlag] Optimization level to be restored at the end of the context manager.

\section*{Functions}
\begin{tabular}{ll}
\hline get_level() & Return the global optimization level. \\
\hline optimize([level_compare]) & \begin{tabular}{l}
Called by algorithms to check whether it should (try to) \\
do some optimizations.
\end{tabular} \\
\hline set_level([level]) & Set the global optimization level. \\
\hline to_OptimizationFlag(level) & Convert strings and int to a valid OptimizationFlag. \\
\hline use_cython([func, replacement, check_doc]) & \begin{tabular}{l}
Decorator to replace a function with a Cython- \\
equivalent from_npc_helper.pyx.
\end{tabular} \\
\hline
\end{tabular}
get_level
- full name: tenpy.tools.optimization.get_level
- parent module: tenpy.tools.optimization
- type: function
tenpy.tools.optimization.get_level()
Return the global optimization level.

\section*{optimize}
- full name: tenpy.tools.optimization.optimize
- parent module: tenpy.tools.optimization
- type: function
tenpy.tools.optimization.optimize (level_compare \(=<\) OptimizationFlag.default: \(1>\)) Called by algorithms to check whether it should (try to) do some optimizations.

\section*{Parameters}
level_compare [OptimizationFlag] At which level to start optimization, i.e., how safe the suggested optimization is.

\section*{Returns}
optimize [bool] True if the algorithms should try to optimize, i.e., whether the global "optimization level" is equal or higher than the level to compare to.

\section*{set_level}
- full name: tenpy.tools.optimization.set_level
- parent module: tenpy.tools.optimization
- type: function
tenpy.tools.optimization.set_level (level=1)
Set the global optimization level.

\section*{Parameters}
level [int | OptimizationFlag | str I None] The new global optimization level to be set. None defaults to keeping the current level.

\section*{to_OptimizationFlag}
- full name: tenpy.tools.optimization.to_OptimizationFlag
- parent module: tenpy.tools.optimization
- type: function
```

tenpy.tools.optimization.to_OptimizationFlag(level)

```

Convert strings and int to a valid OptimizationFlag.
None defaults to the current level.

\section*{use_cython}
- full name: tenpy.tools.optimization.use_cython
- parent module: tenpy.tools.optimization
- type: function
tenpy.tools.optimization.use_cython (func=None, replacement=None, check_doc=True)
Decorator to replace a function with a Cython-equivalent from _npc_helper.pyx.
This is a decorator, which is supposed to be used in front of function definitions with an @ sign, for example:
```

@use_cython
def my_slow_function(a):
"some example function with slow python loops"
result = 0.
for i in range(a.shape[0]):
for j in range(a.shape[1]):
\#... heavy calculations ...
result += np.cos(a[i, j]**2) * (i + j)
return result

```

This decorator indicates that there is a Cython implementation in the file tenpy/linalg/_npc_helper. pyx, which should have the same signature (i.e. same arguments and return values) as the decorated function, and can be used as a replacement for the decorated function. However, if the cython code could not be compiled on your system (or if the environment variable TENPY_OPTIMIZE is set to negative values), we just pass the previous function.
Note: in case that the decorator is used for a class method, the corresponding Cython version needs to have an @cython.binding (True).

\section*{Parameters}
func [function] The defined function
replacement [string | None] The name of the function defined in tenpy/linalg/ _npc_helper.pyx which should replace the decorated function. None defaults to the name of the decorated function, e.g., in the above example my_slow_function.
check_doc [bool] If True, we check that the cython version of the function has the exact same doc string (up to a possible first line containing the function signature) to exclude typos and inconsistent versions.

\section*{Returns}
replacement_func [function] The function replacing the decorated function func. If the cython code can not be loaded, this is just func, otherwise it's the cython version specified by replacement.

\section*{Module description}

Optimization options for this library.
Let me start with a quote of "Micheal Jackson" (a programmer, not the musician):
```

First rule of optimization: "Don't do it."
Second rule of optimization (for experts only): "Don't do it yet."
Third rule of optimization: "Profile before optimizing."

```

Luckily, following the third optimization rule, namely profiling code, is fairly simple in python, see the documentation. If you have a python skript running your code, you can simply call it with python -m "cProfile" -s "tottime" your_skript.py. Alternatively, save the profiling statistics with python -m "cProfile" -o "profile_data.stat" your_skript.py and run these few lines of python code:
```

import pstats
p = pstats.Pstats("profile_data.stat")
p.sort_stats('cumtime') \# sort by 'cumtime' column
p.print_stats(30) \# prints first 30 entries

```

That being said, I actually did profile and optimize (parts of) the library; and there are a few knobs you can turn to tweak the most out of this library, explained in the following.
1) Simply install the 'bottleneck' python package, which allows to optimize slow parts of numpy, most notably ' NaN ' checking.
2) Figure out which numpy/scipy/python you are using. As explained in Installation instructions, we recommend to use the Python distributed provided by Intel or Anaconda. They ship with numpy and scipy which use Intels MKL library, such that e.g. np.tensordot is parallelized to use multiple cores.
3) In case you didn't do that yet: some parts of the library are written in both python and Cython with the same interface, so you can simply compile the Cython code, as explained in Installation instructions. Then everything should work the same way from a user perspective, while internally the faster, pre-compiled cython code from tenpy/linalg/_npc_helper.pyx is used. This should also be a safe thing to do. The replacement of the optimized functions is done by the decorator use_cython ().
4) One of the great things about python is its dynamical nature - anything can be done at runtime. In that spirit, this module allows to set a global "optimization level" which can be changed dynamically (i.e., during runtime) with set_level (). The library will then try some extra optimiztion, most notably skip sanity checks of arguments. The possible choices for this global level are given by the OptimizationFlag. The default initial value for the global optimization level can be adjusted by the environment variable TENPY_OPTIMIZE.

Warning: When this optimizing is enabled, we skip (some) sanity checks. Thus, errors will not be detected that easily, and debugging is much harder! We recommend to use this kind of optimization only for code which you succesfully have run before with (very) similar parmeters! Enable this optimization only during the parts of the code where it is really necessary. The context manager temporary_level can help with that. Check whether it actually helps - if it doesn't, keep the optimization disabled! Some parts of the library already do that as well (e.g. DMRG after the first sweep).
5) You might want to try some different compile time options for the cython code, set in the setup.py in the top directory of the repository. Since the setup.py reads out the TENPY_OPTIMIZE environment variable, you can simple use an export TENPY_OPTIMIZE=3 (in your bash/terminal) right before compilation. An export TENPY_OPTIMIZE=0 activates profiling hooks instead.

Warning: This increases the probability of getting segmentation faults and anyway might not help that much; in the crucial parts of the cython code, these optimizations are already applied. We do not recommend using this!

\subsection*{7.2.6 version}
- full name: tenpy.version
- parent module: tenpy
- type: module

\section*{Module description}

Access to version of this library.
The version is provided in the standard python format major.minor.revision as string. Use pkg_resources.parse_version before comparing versions.

\section*{INDICES AND TABLES}
- genindex
- modindex
- search

\section*{BIBLIOGRAPHY}
[TeNPyNotes] "Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)" J. Hauschild, F. Pollmann, SciPost Phys. Lect. Notes 5 (2018), arXiv:1805.00055, doi:10.21468/SciPostPhysLectNotes. 5
[TeNPySource] Source code available for download from GitHub, https://github.com/tenpy/tenpy
[TeNPyDoc] Online documentation, https://tenpy.github.io/
[TeNPyForum] Community forum for discussions, FAQ and announcements, https://tenpy.johannes-hauschild.de
[Schollwoeck2011] "The density-matrix renormalization group in the age of matrix product states" U. Schollwoeck, Annals of Physics 326, 96 (2011), arXiv:1008.3477 doi:10.1016/j.aop.2010.09.012

Extensive review, classic introduction.
[Verstraete2009] "Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems" F. Verstraete and V. Murg and J.I. Cirac, Advances in Physics 57 2, 143-224 (2009) arXiv:0907.2796 doi:10.1080/14789940801912366
[Cirac2009] "Renormalization and tensor product states in spin chains and lattices" J. I. Cirac and F. Verstraete, Journal of Physics A: Mathematical and Theoretical, 42, 50 (2009) arXiv:0910.1130 doi:10.1088/17518113/42/50/504004
[CincioVidal2013] "Characterizing Topological Order by Studying the Ground States on an Infinite Cylinder" L. Cincio, G. Vidal, Phys. Rev. Lett. 110, 067208 (2013), arXiv:1208.2623 doi:10.1103/PhysRevLett.110.067208
[Eisert2013] "Entanglement and tensor network states" J. Eisert, Modeling and Simulation 3, 520 (2013) arXiv:1308.3318
[Orus2014] "A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States" R. Orus, Annals of Physics 349, 117-158 (2014) arXiv:1306.2164 doi:10.1016/j.aop.2014.06.013
[Hubig2019] "Time-evolution methods for matrix-product states" S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, C. Hubig, arXiv:1901.05824
[White1992] "Density matrix formulation for quantum renormalization groups" S. White, Phys. Rev. Lett. 69, 2863 (1992) doi:10.1103/PhysRevLett.69.2863, S. White, Phys. Rev. B 84, 10345 (1992) doi:10.1103/PhysRevB.48.10345
[Vidal2004] "Efficient Simulation of One-Dimensional Quantum Many-Body Systems" G. Vidal, Phys. Rev. Lett. 93, 040502 (2004), arXiv:quant-ph/0310089 doi:10.1103/PhysRevLett.93.040502
[Schollwoeck2005] "The density-matrix renormalization group" U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005), arXiv:0409292 doi:10.1103/RevModPhys.77.259
[White2005] "Density matrix renormalization group algorithms with a single center site" S. White, Phys. Rev. B 72, 180403(R) (2005), arXiv:cond-mat/0508709 doi:10.1103/PhysRevB.72.180403
[McCulloch2008] "Infinite size density matrix renormalization group, revisited" I. P. McCulloch, arXiv:0804.2509
[Singh2009] "Tensor network decompositions in the presence of a global symmetry" S. Singh, R. Pfeifer, G. Vidal, Phys. Rev. A 82, 050301(R), arXiv:0907.2994 doi:10.1103/PhysRevA.82.050301
[Singh2010] "Tensor network states and algorithms in the presence of a global U(1) symmetry" S. Singh, R. Pfeifer, G. Vidal, Phys. Rev. B 83, 115125, arXiv:1008.4774 doi:10.1103/PhysRevB.83.115125
[Haegeman2011] "Time-Dependent Variational Principle for Quantum Lattices" J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde, F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011), arXiv:1103.0936 doi:10.1103/PhysRevLett.107.070601
[Karrasch2013] "Reducing the numerical effort of finite-temperature density matrix renormalization group calculations" C. Karrasch, J. H. Bardarson, J. E. Moore, New J. Phys. 15, 083031 (2013), arXiv:1303.3942 doi:10.1088/1367-2630/15/8/083031
[Hubig2015] "Strictly single-site DMRG algorithm with subspace expansion" C. Hubig, I. P. McCulloch, U. Schollwoeck, F. A. Wolf, Phys. Rev. B 91, 155115 (2015), arXiv:1501.05504 doi:10.1103/PhysRevB.91.155115
[Haegeman2016] "Unifying time evolution and optimization with matrix product states" J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Phys. Rev. B 94, 165116 (2016), arXiv:1408.5056 doi:10.1103/PhysRevB.94.165116
[Hauschild2018] "Finding purifications with minimal entanglement" J. Hauschild, E. Leviatan, J. H. Bardarson, E. Altman, M. P. Zaletel, F. Pollmann, Phys. Rev. B 98, 235163 (2018), arXiv:1711.01288 doi:10.1103/PhysRevB.98.235163
[Resta1997] "Quantum-Mechanical Position Operator in Extended Systems" R. Resta, Phys. Rev. Lett. 80, 1800 (1997) doi:10.1103/PhysRevLett.80.1800
[Schuch2013] "Condensed Matter Applications of Entanglement Theory" N. Schuch, Quantum Information Processing. Lecture Notes of the 44th IFF Spring School (2013) arXiv:1306.5551
[PollmannTurner2012] "Detection of symmetry-protected topological phases in one dimension" F. Pollmann, A. Turner, Phys. Rev. B 86, 125441 (2012), arXiv:1204.0704 doi:10.1103/PhysRevB.86.125441
[Stoudenmire2011] "Studying Two Dimensional Systems With the Density Matrix Renormalization Group" E.M. Stoudenmire, Steven R. White, Ann. Rev. of Cond. Mat. Physics, 3: 111-128 (2012), arXiv:1105.1374 doi:10.1146/annurev-conmatphys-020911-125018
[Neupert2011] "Fractional quantum Hall states at zero magnetic field" Titus Neupert, Luiz Santos, Claudio Chamon, and Christopher Mudry, Phys. Rev. Lett. 106, 236804 (2011), arXiv:1012.4723 doi:10.1103/PhysRevLett.106.236804
[Yang2012] "Topological flat band models with arbitrary Chern numbers" Shuo Yang, Zheng-Cheng Gu, Kai Sun, and S. Das Sarma, Phys. Rev. B 86, 241112(R) (2012), arXiv:1205.5792, doi:10.1103/PhysRevB.86.241112
[Grushin2015] "Characterization and stability of a fermionic \(=1 / 3\) fractional Chern insulator" Adolfo G. Grushin, Johannes Motruk, Michael P. Zaletel, and Frank Pollmann, Phys. Rev. B 91, 035136 (2015), arXiv:1407.6985 doi:10.1103/PhysRevB.91.035136
```

t
tenpy,80
tenpy.algorithms,81
tenpy.algorithms.dmrg, 122
tenpy.algorithms.exact_diag, 169
tenpy.algorithms.mps_sweeps,131
tenpy.algorithms.network_contractor, 166
tenpy.algorithms.purification_tebd, 164
tenpy.algorithms.tdvp,145
tenpy.algorithms.tebd,140
tenpy.algorithms.truncation, 84
tenpy.linalg,169
tenpy.linalg.charges,217
tenpy.linalg.lanczos, 237
tenpy.linalg.np_conserved, 199
tenpy.linalg.random_matrix, 223
tenpy.linalg.sparse, }23
tenpy.linalg.svd_robust,}21
tenpy.models, }23
tenpy.models.fermions_spinless,409
tenpy.models.haldane,467
tenpy.models.hofstadter,453
tenpy.models.hubbard,438
tenpy.models.lattice, 310
tenpy.models.model,}33
tenpy.models.spins, }37
tenpy.models.spins_nnn, }39
tenpy.models.tf_ising, 349
tenpy.models.toric_code, 483
tenpy.models.xxz_chain, 363
tenpy.networks,483
tenpy.networks.mpo,548
tenpy.networks.mps,535
tenpy.networks.purification_mps,579
tenpy.networks.site,508
tenpy.networks.terms,559
tenpy.tools,581
tenpy.tools.fit,596
tenpy.tools.math, 594
tenpy.tools.misc,590
tenpy.tools.optimization, }60
tenpy.tools.params,583

```
tenpy.tools.process, 600
tenpy.tools.string, 598
tenpy.version, 606
method), 388
add () (tenpy.linalg.charges.ChargeInfo class method), 202
add () (tenpy.networks.mpo.MPOGraph method), 547
add () (tenpy.networks.mps.MPS method), 525
add () (tenpy.networks.purification_mps.PurificationMPS method), 563
add_charge() (tenpy.linalg.np_conserved.Array method), 178 method), 350
add_coupling () (tenpy.models.fermions_spinless.Fermiz月Ch_iqupling () (tenpy.models.xxz_chain.XXZChain2 method), 395 method), 357
add_coupling() (tenpy.models.fermions_spinless.FermibqMeaßupling_term() method), 403 (tenpy.models.fermions_spinless.FermionChain
add_coupling() (tenpy.models.haldane.BosonicHaldaneModel method), 396 method), 455 add_coupling_term()
add_coupling() (tenpy.models.haldane.FermionicHaldaneModel(tenpy.models.fermions_spinless.FermionModel method), 462
add_coupling() (tenpy.models.hofstadter.HofstadterBosorfd_coupling_term() method), \(440 \quad\) (tenpy.models.haldane.BosonicHaldaneModel
add_coupling() (tenpy.models.hofstadter.HofstadterFermions method), 456 method), 447 add_coupling_term()
add_coupling() (tenpy.models.hubbard.BoseHubbardChain (tenpy.models.haldane.FermionicHaldaneModel method), 410 method), 463
add_coupling() (tenpy.models.hubbard.BoseHubbardModfle coupling_term() method), 418
(tenpy.models.hofstadter.HofstadterBosons
add_coupling() (tenpy.models.hubbard.FermiHubbardChain method), 441 method), 424 add_coupling_term()
add_coupling() (tenpy.models.hubbard.FermiHubbardModel (tenpy.models.hofstadter.HofstadterFermions method), 432 method), 448
add_coupling() (tenpy.models.model.CouplingModel add_coupling_term() method), 319
add_coupling() (tenpy.models.model.CouplingMPOModel method), 411 method), 313 add_coupling_term()
add_coupling() (tenpy.models.model.MultiCouplingModel (tenpy.models.hubbard.BoseHubbardModel method), 327
add_coupling() (tenpy.models.spins.SpinChain add_coupling_term()
method), 365 (tenpy.models.hubbard.FermiHubbardChain
add_coupling() (tenpy.models.spins.SpinModel method), 373
add_coupling() (tenpy.models.spins_nnn.SpinChainNNN method), 380
add_coupling() (tenpy.models.spins_nnn.SpinChainNNAPd_ coupling_term()
(tenpy.models.model.CouplingModel method), 321
add_coupling_term()
(tenpy.models.model.CouplingMPOModel method), 315
add_coupling_term()
(tenpy.models.model.MultiCouplingModel method), 328
add_coupling_term()
(tenpy.models.spins.SpinChain
366
add_coupling_term()
(tenpy.models.spins.SpinModel 374
add_coupling_term()
(tenpy.models.spins_nnn.SpinChainNNN
method), 382
add_coupling_term()
(tenpy.models.spins_nnn.SpinChainNNN2
method), 390
add_coupling_term()
(tenpy.models.tf_ising.TFIChain
337
add_coupling_term()
(tenpy.models.tf_ising.TFIModel 345
add_coupling_term()
(tenpy.models.toric_code.ToricCode method), 479
add_coupling_term()
(tenpy.models.xxz_chain.XXZChain method), 351
add_coupling_term()
(tenpy.models.xxz_chain.XXZChain2 method), 358
```

add_coupling_term()

```
(tenpy.networks.terms.CouplingTerms method), 550
```

add_coupling_term()

```
(tenpy.networks.terms.MultiCouplingTerms method), 554
add_leg() (tenpy.linalg.np_conserved.Array method), 177
add_missing_IdL_IdR()
(tenpy.networks.mpo.MPOGraph method), 547
add_multi_coupling()
(tenpy.models.model.MultiCouplingModel method), 326
add_multi_coupling()
(tenpy.models.toric_code.ToricCode method), 479
add_multi_coupling_term()
(tenpy.models.model.MultiCouplingModel
method), 327
add_multi_coupling_term()
(tenpy.models.toric_code.ToricCode method), 480
add_multi_coupling_term()
(tenpy.networks.terms.MultiCouplingTerms method), 553
add_onsite() (tenpy.models.fermions_spinless.FermionChain method), 397
add_onsite () (tenpy.models.fermions_spinless.FermionModel method), 405
add_onsite() (tenpy.models.haldane.BosonicHaldaneModel method), 456
add_onsite() (tenpy.models.haldane.FermionicHaldaneModel method), 464
add_onsite() (tenpy.models.hofstadter.HofstadterBosons method), 442
add_onsite() (tenpy.models.hofstadter.HofstadterFermions method), 449
add_onsite() (tenpy.models.hubbard.BoseHubbardChain method), 412
add_onsite() (tenpy.models.hubbard.BoseHubbardModel method), 420
add_onsite() (tenpy.models.hubbard.FermiHubbardChain method), 426
add_onsite() (tenpy.models.hubbard.FermiHubbardModel method), 434
add_onsite() (tenpy.models.model.CouplingModel method), 319
add_onsite() (tenpy.models.model.CouplingMPOModel method), 315
add_onsite() (tenpy.models.model.MultiCouplingModel method), 329
add_onsite() (tenpy.models.spins.SpinChain method), 366
add_onsite() (tenpy.models.spins.SpinModel method), 375
add_onsite() (tenpy.models.spins_nnn.SpinChainNNN method), 382
add_onsite() (tenpy.models.spins_nnn.SpinChainNNN2 method), 390
add_onsite() (tenpy.models.tf_ising.TFIChain method), 337
add_onsite() (tenpy.models.tf_ising.TFIModel method), 345
add_onsite() (tenpy.models.toric_code.ToricCode method), 480
add_onsite() (tenpy.models.xxz_chain.XXZChain method), 352
add_onsite() (tenpy.models.xxz_chain.XXZChain2 method), 359
add_onsite_term()
(tenpy.models.fermions_spinless.FermionChain method), 397
```

add_onsite_term() 480
(tenpy.models.fermions_spinless.FermionModel add_onsite_term()
method),405 (tenpy.models.xxz_chain.XXZChain method),
add_onsite_term() 352
(tenpy.models.haldane.BosonicHaldaneModel add_onsite_term()
method),457
(tenpy.models.xxz_chain.XXZChain2 method),
add_onsite_term()
359
(tenpy.models.haldane.FermionicHaldaneModel add_onsite_term()
method),464
add_onsite_term()
(tenpy.models.hofstadter.HofstadterBosons
method),442
add_onsite_term()
(tenpy.models.hofstadter.HofstadterFermions
method),449
add_onsite_term()
(tenpy.models.hubbard.BoseHubbardChain
method), 412
add_onsite_term()
(tenpy.models.hubbard.BoseHubbardModel
method),420
add_onsite_term()
(tenpy.models.hubbard.FermiHubbardChain
method),426
add_onsite_term()
(tenpy.models.hubbard.FermiHubbardModel
method),435
add_onsite_term()
(tenpy.models.model.CouplingModel method),
319
add_onsite_term()
(tenpy.models.model.CouplingMPOModel
method), 315
add_onsite_term()
(tenpy.models.model.MultiCouplingModel
method), 329
add_onsite_term() (tenpy.models.spins.SpinChain
method), 367
add_onsite_term() (tenpy.models.spins.SpinModel
method), }37
add_onsite_term()
(tenpy.models.spins_nnn.SpinChainNNN
method), }38
add_onsite_term()
(tenpy.models.spins_nnn.SpinChainNNN2
method), }39
add_onsite_term()
(tenpy.models.tf_ising.TFIChain method),
337
add_onsite_term()
(tenpy.models.tf_ising.TFIModel method),
345
add_onsite_term()
(tenpy.models.toric_code.ToricCode method),

```
```

    method),457
    all_coupling_terms()
(tenpy.models.haldane.FermionicHaldaneModel
method),464
all_coupling_terms()
(tenpy.models.hofstadter.HofstadterBosons
method), 442
all_coupling_terms()
(tenpy.models.hofstadter.HofstadterFermions
method), 449
all_coupling_terms()
(tenpy.models.hubbard.BoseHubbardChain
method),412
all_coupling_terms()
(tenpy.models.hubbard.BoseHubbardModel
method),420
all_coupling_terms()
(tenpy.models.hubbard.FermiHubbardChain
method),426
all_coupling_terms()
(tenpy.models.hubbard.FermiHubbardModel
method), 435
all_coupling_terms()
(tenpy.models.model.CouplingModel method),
321
all_coupling_terms()
(tenpy.models.model.CouplingMPOModel
method), }31
all_coupling_terms()
(tenpy.models.model.MultiCouplingModel
method), 329
all_coupling_terms()
(tenpy.models.spins.SpinChain method),
367
all_coupling_terms()
(tenpy.models.spins.SpinModel method),
375
all_coupling_terms()
(tenpy.models.spins_nnn.SpinChainNNN
method), }38
all_coupling_terms()
(tenpy.models.spins_nnn.SpinChainNNN2
method), 391
all_coupling_terms()
(tenpy.models.tf_ising.TFIChain method),
338
all_coupling_terms()
(tenpy.models.tf_ising.TFIModel method),
346
all_coupling_terms()
(tenpy.models.toric_code.ToricCode method),
4 8 1
all_coupling_terms()
(tenpy.models.xxz_chain.XXZChain method),

```
 352
```

    352
    all_coupling_terms()
    all_coupling_terms()
        (tenpy.models.xxz_chain.XXZChain2 method),
        (tenpy.models.xxz_chain.XXZChain2 method),
        359
        359
    all_onsite_terms()
all_onsite_terms()
(tenpy.models.fermions_spinless.FermionChain
(tenpy.models.fermions_spinless.FermionChain
method), }39
method), }39
all_onsite_terms()
all_onsite_terms()
(tenpy.models.fermions_spinless.FermionModel
(tenpy.models.fermions_spinless.FermionModel
method),406
method),406
all_onsite_terms()
all_onsite_terms()
(tenpy.models.haldane.BosonicHaldaneModel
(tenpy.models.haldane.BosonicHaldaneModel
method),457
method),457
all_onsite_terms()
all_onsite_terms()
(tenpy.models.haldane.FermionicHaldaneModel
(tenpy.models.haldane.FermionicHaldaneModel
method),464
method),464
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hofstadter.HofstadterBosons
(tenpy.models.hofstadter.HofstadterBosons
method),442
method),442
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hofstadter.HofstadterFermions
(tenpy.models.hofstadter.HofstadterFermions
method), 449
method), 449
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hubbard.BoseHubbardChain
(tenpy.models.hubbard.BoseHubbardChain
method),412
method),412
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hubbard.BoseHubbardModel
(tenpy.models.hubbard.BoseHubbardModel
method),420
method),420
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hubbard.FermiHubbardChain
(tenpy.models.hubbard.FermiHubbardChain
method),426
method),426
all_onsite_terms()
all_onsite_terms()
(tenpy.models.hubbard.FermiHubbardModel
(tenpy.models.hubbard.FermiHubbardModel
method), 435
method), 435
all_onsite_terms()
all_onsite_terms()
(tenpy.models.model.CouplingModel method),
(tenpy.models.model.CouplingModel method),
319
319
all_onsite_terms()
all_onsite_terms()
(tenpy.models.model.CouplingMPOModel
(tenpy.models.model.CouplingMPOModel
method), 316
method), 316
all_onsite_terms()
all_onsite_terms()
(tenpy.models.model.MultiCouplingModel
(tenpy.models.model.MultiCouplingModel
method), }32
method), }32
all_onsite_terms()
all_onsite_terms()
(tenpy.models.spins.SpinChain method),
(tenpy.models.spins.SpinChain method),
367
367
all_onsite_terms()
all_onsite_terms()
(tenpy.models.spins.SpinModel method),
(tenpy.models.spins.SpinModel method),
375
375
all_onsite_terms()
all_onsite_terms()
(tenpy.models.spins_nnn.SpinChainNNN
(tenpy.models.spins_nnn.SpinChainNNN
method), }38
method), }38
all_onsite_terms()
all_onsite_terms()
(tenpy.models.spins_nnn.SpinChainNNN2

```
```

    (tenpy.models.spins_nnn.SpinChainNNN2
    ```
```

method), 391
all_onsite_terms()
(tenpy.models.tf_ising.TFIChain 338
all_onsite_terms()
(tenpy.models.tf_ising.TFIModel method), 346
all_onsite_terms()
(tenpy.models.toric_code.ToricCode method), 481
all_onsite_terms()
(tenpy.models.xxz_chain.XXZChain method), 352
all_onsite_terms()
(tenpy.models.xxz_chain.XXZChain2 method), 359
any_nonzero() (in module tenpy.tools.misc), 584
anynan () (in module tenpy.tools.misc), 585
apply_local_op() (tenpy.networks.mps.MPS method), 525
apply_local_op() (tenpy.networks.purification_mps.PbonificadiondWPPial_state() (in module method), 564
argsort() (in module tenpy.tools.misc), 585
Array (class in tenpy.linalg.np_conserved), 170
as_completely_blocked()
(tenpy.linalg.np_conserved.Array method), 181
astype() (tenpy.linalg.np_conserved.Array method), 181
at least_2d_pad() (in module tenpy.tools.misc), 586
average_charge() (tenpy.networks.mps.MPS method), 518
average_charge () (tenpy.networks.purification_mps.Purificatiqunßbidd () (tenpy.models.fermions_spinless.FermionModel method), 564

B
BackwardDisentangler (class
tenpy.algorithms.purification_tebd), 146
binary_blockwise()
(tenpy.linalg.np_conserved.Array method), 185
bond_energies() (tenpy.models.fermions_spinless.FermionChairmethod), 450 method), 397 calc_H_bond() (tenpy.models.hubbard.BoseHubbardChain bond_energies() (tenpy.models.hubbard.BoseHubbardChain method), 413 method), 412 calc_H_bond() (tenpy.models.hubbard.BoseHubbardModel bond_energies() (tenpy.models.hubbard.FermiHubbardChain method), 421 method), 427 calc_H_bond() (tenpy.models.hubbard.FermiHubbardChain
bond_energies() (tenpy.models.model.NearestNeighborModel method), 427 method), 333 calc_H_bond() (tenpy.models.hubbard.FermiHubbardModel method), 435
bond_energies() (tenpy.models.spins.SpinChain method), 367 calc_H_bond() (tenpy.models.model.CouplingModel
bond_energies() (tenpy.models.spins_nnn.SpinChainNNN method), 322 method), 383 calc_H_bond() (tenpy.models.model.CouplingMPOModel method), 316

```
calc_H_bond() (tenpy.models.model.MultiCouplingModel
 method), }32
calc_H_bond() (tenpy.models.spins.SpinChain calc_H_bond_from_MPO()
 method),368
calc_H_bond() (tenpy.models.spins.SpinModel
 method), 375
calc_H_bond() (tenpy.models.spins_nnn.SpinChainNNN
 method), }38
calc_H_bond() (tenpy.models.spins_nnn.SpinChainNNNE2alc_H_bond_from_MPO()
 method), }39
calc_H_bond() (tenpy.models.tf_ising.TFIChain
 method), }33
calc_H_bond() (tenpy.models.tf_ising.TFIModel
 method), 346
calc_H_bond() (tenpy.models.toric_code.ToricCode
 method),481
calc_H__bond() (tenpy.models.xxz_chain.XXZChain
 method), }35
calc_H__bond() (tenpy.models.xxz_chain.XXZChain2
 method), 360
calc_H_bond_from_MPO()
 (tenpy.models.fermions_spinless.FermionChain
 method), }39
calc_H_bond_from_MPO()
 (tenpy.models.fermions_spinless.FermionModel
 method),406
calc_H_bond_from_MPO()
 (tenpy.models.haldane.BosonicHaldaneModel
 method),457
calc_H_bond_from_MPO()
 (tenpy.models.haldane.FermionicHaldaneModel
 method),465
calc_H_bond_from_MPO()
 (tenpy.models.hofstadter.HofstadterBosons
 method),443
calc_H_bond_from_MPO()
 (tenpy.models.hofstadter.HofstadterFermions
 method),450
calc_H_bond_from_MPO()
 (tenpy.models.hubbard.BoseHubbardChain
 method),413
calc_H_bond_from_MPO()
 (tenpy.models.hubbard.BoseHubbardModel
 method),421
calc_H_bond_from_MPO()
 (tenpy.models.hubbard.FermiHubbardChain
 method),427
calc_H_bond_from_MPO()
 (tenpy.models.hubbard.FermiHubbardModel
 method),435
calc_H_bond_from_MPO()
 (tenpy.models.model.CouplingMPOModel
 method), }31
calc_H_bond_from_MPO()
```

```
 method),329
calc_H_MPO()
 method), 367
calc_H_MPO()
 method), 375
calc_H_MPO() (tenpy.models.spins_nnn.SpinChainNNN
 method), }38
calc_H_MPO() (tenpy.models.spins_nnn.SpinChainNNN2
 method),391
calc_H_MPO() (tenpy.models.tf_ising.TFIChain
 method),338
calc_H_MPO() (tenpy.models.tf_ising.TFIModel
 method),346
calc_H_MPO() (tenpy.models.toric_code.ToricCode
 method),481
calc_H_MPO() (tenpy.models.xxz_chain.XXZChain
 method), }35
calc_H_MPO() (tenpy.models.xxz_chain.XXZChain2
 method),359
calc_H_MPO_from_bond()
 (tenpy.models.fermions_spinless.FermionChain
 method), }39
calc_H_MPO_from_bond()
 (tenpy.models.hubbard.BoseHubbardChain
 method),413
calc_H_MPO_from_bond()
 (tenpy.models.hubbard.FermiHubbardChain
 method),427
calc_H_MPO_from_bond()
 (tenpy.models.model.NearestNeighborModel
 method),333
calc_H_MPO_from_bond()
 (tenpy.models.spins.SpinChain
 367
calc_H_MPO_from_bond()
 (tenpy.models.spins_nnn.SpinChainNNN
 method), }38
calc_H_MPO_from_bond()
 (tenpy.models.tf_ising.TFIChain method),
 338
calc_H_MPO_from_bond()
 (tenpy.models.xxz_chain.XXZChain method),
 353
calc_H_MPO_from_bond()
 (tenpy.models.xxz_chain.XXZChain2 method),
 360
calc_H_onsite() (tenpy.models.fermions_spinless.FermionChairmethod), 564
 method),398
 canonical_form_finite()
calc_H_onsite()(tenpy.models.fermions_spinless.FermionModeltenpy.networks.mps.MPS method), 524
 method),406
 canonical_form_finite()
calc_H_onsite() (tenpy.models.haldane.BosonicHaldaneModel (tenpy.networks.purification_mps.PurificationMPS
 method),458 method), 565
calc_H_onsite() (tenpy.models.haldane.FermionicHaldanredridebl_form_infinite()
 method),465
 (tenpy.networks.mps.MPS method), 524
```

```
canonical_form_infinite() method),130
 (tenpy.networks.purification_mps.PurificationMPSomplex_conj() (tenpy.linalg.np_conserved.Array
 method),565
Chain (class in tenpy.models.lattice), 238 CompositeDisentangler (class in
change() (tenpy.linalg.charges.ChargeInfo class tenpy.algorithms.purification_tebd),147
 method), }20
change_charge() (tenpy.linalg.np_conserved.Array
 method),178
change_charge() (tenpy.networks.site.BosonSite concatenate() module
 method),485
change_charge() (tenpy.networks.site.FermionSite
 method),488
change_charge() (tenpy.networks.site.GroupedSite
 method),491
change_charge() (tenpy.networks.site.Site method),
 495
change_charge() (tenpy.networks.site.SpinHalfFermionSite 515
 method),499 convert_form() (tenpy.networks.purification_mps.PurificationMPS
change_charge() (tenpy.networks.site.SpinHalfSite
 method), 501
change_charge() (tenpy.networks.site.SpinSite
 method),504
 copy () (tenpy.algorithms.truncation.TruncationError
 method), }8
 copy() (tenpy.linalg.charges.LegCharge method), 205
charge_sector() (tenpy.linalg.sparse.FlatHermitianOprerqtor() (tenpy.linalg.charges.LegPipe method), 213
 property),225 copy() (tenpy.linalg.np_conserved.Array method),172
charge_sector() (tenpy.linalg.sparse.FlatLinearOperatamy () (tenpy.networks.mps.MPS method), }51
 property),229 () 2, linalg charges LegCharge
charge_sectors() (tenpy.linalg.charges.LegCharge
 method), 210
 copy () (tenpy.networks.purification_mps.PurificationMPS
 method), }56
 correlation_function()
 (tenpy.networks.mps.MPS method), 522
 correlation_function()
 vethod),213 (tenpy.networks.mps.MPS
charge_variance() (tenpy.networks.mps.MPS
 method),518
charge_variance() correlation_length() (tenpy.networks.mps.MPS
 (tenpy.networks.purification_mps.PurificationMPS
 method),565
ChargeInfo (class in tenpy.linalg.charges), 201
correlation_length()
 (tenpy.networks.purification_mps.PurificationMPS
check_valid() (tenpy.linalg.charges.ChargeInfo
 method), 203
chi() (tenpy.networks.mpo.MPO property),539
chi() (tenpy.networks.mps.MPS property), }51
chi() (tenpy.networks.purification_mps.PurificationMPS
 property), 565
chi_list() (in module tenpy.algorithms.dmrg), 120
chi_list() (in module tenpy.tools.misc), 586
COE () (in module tenpy.linalg.random_matrix), }22
combine_Heff() (tenpy.algorithms.mps_sweeps.OneSitełbunt_neighbors() (tenpy.models.lattice.Kagome
 method), }12
 method), 260
combine_Heff()(tenpy.algorithms.mps_sweeps.TwoSitedbunt_neigh.bors() (tenpy.models.lattice.Ladder
 method),130 method),267
combine_legs() (tenpy.linalg.np_conserved.Array count_neighbors() (tenpy.models.lattice.Lattice
 method),179 method),279
combine_theta() (tenpy.algorithms.mps_sweeps.OneSitedflnt_neighbors()
 method),125 (tenpy.models.lattice.SimpleLattice method),
combine_theta() (tenpy.algorithms.mps_sweeps.TwoSiteH 283
```

```
count_neighbors() (tenpy.models.lattice.Square coupling_strength_add_ext_flux()
 method), }28
count_neighbors()
 (tenpy.models.lattice.Triangular method), coupling_strength_add_ext_flux()
 296
count_neighbors()
count_neighbors()
 302
count_neighbors()
 (tenpy.models.toric_code.DualSquare method), coupling_strength_add_ext_flux()
 4 6 9
coupling_shape() (tenpy.models.lattice.Chain
 method), 240
coupling_shape() (tenpy.models.lattice.Honeycomb
 method), 247
coupling_shape() (tenpy.models.lattice.Honeycomb
coupling_shape() (tenpy.models.lattice.IrregularLatticeoupling_strength_add_ext_flux()
 method), }25
coupling_shape()
 method), }26
coupling_shape()
 method), }26
coupling_shape() (tenpy.models.lattice.Lattice coupling_strength_add_ext_flux()
 method),280
coupling_shape() (tenpy.models.lattice.SimpleLattice
 method),283
coupling_shape()
 method), }29
coupling_shape() (tenpy.models.lattice.Triangular
 method), 296
coupling_shape() (tenpy.models.lattice.TrivialLattice
 method), 302
 (tenpy.models.lattice.Kagome
 (tenpy.models.lattice.Ladder
coupling_shape() (tenpy.models.lattice.Lattice coupling_strength_add_ext_flux()
 (tenpy.models.lattice.Square
 coupling_strength_add_ext_flux()
 coupling_strength_add_ext_flux()
 (tenpy.models.spins.SpinChain method),
 368
coupling_shape() (tenpy.models.lattice.Lattice coupling_strength_add_ext_flux()
 (tenpy.models.spins.SpinModel method),
 376
 coupling_strength_add_ext_flux()
 (tenpy.models.spins_nnn.SpinChainNNN
 method), }38
 (tenpy.models.spins_nnn.SpinChainNNN2
 method), }39
 coupling_strength_add_ext_flux()
coupling_shape() (tenpy.models.toric_code.DualSquare (tenpy.models.tf_ising.TFIChain method),
 method),470
coupling_strength_add_ext_flux()
 (tenpy.models.fermions_spinless.FermionChain
 method), }39
coupling_strength_add_ext_flux()
 (tenpy.models.fermions_spinless.FermionModel
 method), 407
coupling_strength_add_ext_flux()
(tenpy.models.haldane.BosonicHaldaneModel
 method), 458
coupling_strength_add_ext_flux()
 (tenpy.models.haldane.FermionicHaldaneModel
 method),465
coupling_strength_add_ext_flux()
 (tenpy.models.hofstadter.HofstadterBosons
 method),443
coupling_strength_add_ext_flux()
(tenpy.models.hofstadter.HofstadterFermions
 method),450
coupling_strength_add_ext_flux()
coupling_strength_add_ext_flux()
 method), 414
 339
 coupling_strength_add_ext_flux()
 (tenpy.models.tf_ising.TFIModel method),
 347
 coupling_strength_add_ext_flux()
 (tenpy.models.toric_code.ToricCode method),
 4 8 2
coupling_strength_add_ext_flux()
(tenpy.models.xxz_chain.XXZChain method),
 354
coupling_strength_add_ext_flux()
 (tenpy.models.xxz_chain.XXZChain2 method),
 360
coupling_term_handle_JW()
 (tenpy.networks.terms.CouplingTerms method),
 550
 (tenpy.models.lattice.Triangular method), coupling_strength_add_ext_flux()
 (tenpy.models.hubbard.BoseHubbardModel
 method),421
 (tenpy.models.hubbard.FermiHubbardChain
 method),428
count_neighbors()
 coupling_strength_add_ext_flux()
 (tenpy.models.hubbard.FermiHubbardModel
 method),436
 (tenpy.models.model.CouplingModel method),
 322
 (tenpy.models.model.MultiCouplingModel
 method), }33
 coupling_strength_add_ext_flux()
 (tenpy.models.model.CouplingMPOModel
 method), }31
coupling_term_handle_JW()
 (tenpy.networks.terms.MultiCouplingTerms
 method), }55
CouplingModel (class in tenpy.models.model), 318
CouplingMPOMOdel (class in tenpy.models.model),
 311
```

CouplingTerms (class in tenpy.networks.terms), 549
CRE () (in module tenpy.linalg.random_matrix), 220
CUE () (in module tenpy.linalg.random_matrix), 221

## D

dagger() (tenpy.networks.mpo.MPO method), 540
del_LP() (tenpy.networks.mpo.MPOEnvironment method), 543
del_LP() (tenpy.networks.mps.MPSEnvironment method), 530
del_RP() (tenpy.networks.mpo.MPOEnvironment method), 543
del_RP () (tenpy.networks.mps.MPSEnvironment method), 530
DensityMatrixMixer (class in tenpy.algorithms.dmrg), 90
detect_grid_outer_legcharge() (in module tenpy.linalg.np_conserved), 186
detect_legcharge() (in module tenpy.linalg.np_conserved), 187
detect_qtotal() (in module tenpy.linalg.np_conserved), 188
diag () (in module tenpy.linalg.np_conserved), 188
diag () (tenpy.algorithms.dmrg.DMRGEngine method), 88
diag() (tenpy.algorithms.dmrg.EngineCombine method), 94
diag() (tenpy.algorithms.dmrg.EngineFracture method), 99
diag () (tenpy.algorithms.dmrg.SingleSiteDMRGEngine method), 108
diag() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine method), 116
DiagonalizeDisentangler (class in tenpy.algorithms.purification_tebd), 147
dim() (tenpy.models.lattice.IrregularLattice property), 253
dim () (tenpy.models.lattice.Lattice property), 276
dim() (tenpy.models.lattice.SimpleLattice property), 283
dim() (tenpy.models.lattice.TrivialLattice property), 303
dim() (tenpy.models.toric_code.DualSquare property), 470
dim() (tenpy.networks.mpo.MPO property), 539
dim () (tenpy.networks.mps.MPS property), 513
dim() (tenpy.networks.purification_mps.PurificationMPS property), 568
dim() (tenpy.networks.site.BosonSite property), 485
dim() (tenpy.networks.site.FermionSite property), 488
dim () (tenpy.networks.site.GroupedSite property), 492
dim () (tenpy.networks.site.Site property), 495
dim() (tenpy.networks.site.SpinHalfFermionSite property), 499
dim() (tenpy.networks.site.SpinHalfSite property), 502
$\operatorname{dim}()$ (tenpy.networks.site.SpinSite property), 505
disent_iterations()
(tenpy.algorithms.purification_tebd.PurificationTEBD property), 153
disent_iterations()
(tenpy.algorithms.purification_tebd.PurificationTEBD2 property), 159
disentangle() (tenpy.algorithms.purification_tebd.PurificationTEBD method), 154
disentangle() (tenpy.algorithms.purification_tebd.PurificationTEBD2 method), 159
disentangle_global()
(tenpy.algorithms.purification_tebd.PurificationTEBD method), 155
disentangle_global()
(tenpy.algorithms.purification_tebd.PurificationTEBD2 method), 159
disentangle_global_nsite()
(tenpy.algorithms.purification_tebd.PurificationTEBD method), 155
disentangle_global_nsite()
(tenpy.algorithms.purification_tebd.PurificationTEBD2 method), 159
disentangle_n_site()
(tenpy.algorithms.purification_tebd.PurificationTEBD method), 155
disentangle_n_site() (tenpy.algorithms.purification_tebd.PurificationTEBD2 method), 159
Disentangler (class in tenpy.algorithms.purification_tebd), 148
DMRGEngine (class in tenpy.algorithms.dmrg), 85
dot() (tenpy.linalg.sparse.FlatHermitianOperator method), 225
dot() (tenpy.linalg.sparse.FlatLinearOperator method), 230
drop () (tenpy.linalg.charges.ChargeInfo class method), 202
drop_charge() (tenpy.linalg.np_conserved.Array method), 178
DualSquare (class in tenpy.models.toric_code), 468
E
EffectiveH (class in tenpy.algorithms.mps_sweeps), 123
eig() (in module tenpy.linalg.np_conserved), 189
eigenvectors() (tenpy.networks.mps.TransferMatrix method), 534
eigh () (in module tenpy.linalg.np_conserved), 189
eigvals() (in module tenpy.linalg.np_conserved), 190
eigvalsh() (in module tenpy.linalg.np_conserved), 190
Engine (class in tenpy.algorithms.tdvp), 141

```
Engine (class in tenpy.algorithms.tebd),131
EngineCombine (class in tenpy.algorithms.dmrg), }9
EngineFracture (class in tenpy.algorithms.dmrg), }9
entanglement_entropy()
 (tenpy.networks.mps.MPS method), 516
entanglement_entropy()
 (tenpy.networks.purification_mps.PurificationMPSexpectation_value_term()
 method), 568
entanglement_entropy_segment()
 (tenpy.networks.mps.MPS method), 517
entanglement_entropy_segment()
 (tenpy.networks.purification_mps.PurificationMPSexpectation_value_terms_sum()
 method),562
entanglement_spectrum()
 (tenpy.networks.mps.MPS method), 517
entanglement_spectrum()
 (tenpy.networks.purification_mps.PurificationMPS
 method), }56
entropy() (in module tenpy.tools.math), 591
environment_sweeps()
 (tenpy.algorithms.dmrg.DMRGEngine
 method),89
environment_sweeps()
 (tenpy.algorithms.dmrg.EngineCombine
 method), }9
environment_sweeps()
 (tenpy.algorithms.dmrg.EngineFracture
 method),99
environment_sweeps()
 (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method),109
environment_sweeps()
 (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),116
environment_sweeps()
 (tenpy.algorithms.mps_sweeps.Sweep method),
 128
ExactDiag (class in tenpy.algorithms.exact_diag), 166
exp_H() (tenpy.algorithms.exact_diag.ExactDiag
 method),168
expectation_value() (tenpy.networks.mpo.MPO
 method),539
expectation_value()
 (tenpy.networks.mpo.MPOEnvironment
 method),543
expectation_value() (tenpy.networks.mps.MPS
 method), }51
expectation_value()
 (tenpy.networks.mps.MPSEnvironment
 method),531
expectation_value()
 (tenpy.networks.purification_mps.PurificationMPS
 method),569
expectation_value_multi_sites()
(tenpy.networks.mps.MPS method), 521
expectation_value_multi_sites() (tenpy.networks.purification_mps.PurificationMPS method), 570
expectation_value_term()
(tenpy.networks.mps.MPS method), 520
(tenpy.networks.purification_mps.PurificationMPSexpectation_value_term ()
```

method), 568
entanglement_entropy_segment()
(tenpy.networks.mps.MPS method), 517
entanglement_entropy_segment()
(tenpy.networks.purification_mps.PurificationMPSxpectation_value_terms_sum ()
method), 562
entanglement_spectrum()
(tenpy.networks.mps.MPS method), 517
entanglement_spectrum()
(tenpy.networks.purification_mps.PurificationMPS
method), 569
environment_sweeps()
(tenpy.algorithms.dmrg.DMRGEngine method), 89
environment_sweeps()
(tenpy.algorithms.dmrg.EngineCombine
method), 94
environment_sweeps()
(tenpy.algorithms.dmrg.EngineFracture
method), 99
environment_sweeps()
(tenpy.algorithms.dmrg.SingleSiteDMRGEngine method), 109
environment_sweeps()
(tenpy.algorithms.dmrg.TwoSiteDMRGEngine
method), 116
environment_sweeps()
(tenpy.algorithms.mps_sweeps.Sweep method), 128
ExactDiag (class in tenpy.algorithms.exact_diag), 166
exp_H () (tenpy.algorithms.exact_diag.ExactDiag method), 168
expectation_value() (tenpy.networks.mpo.MPO method), 539
expectation_value()
(tenpy.networks.mpo.MPOEnvironment method), 543
expectation_value() (tenpy.networks.mps.MPS
method), 519
expectation_value()
(tenpy.networks.mps.MPSEnvironment method), 531
expectation_value()
(tenpy.networks.purification_mps.PurificationMPS
method), 569
expectation_value_multi_sites()
(tenpy.networks.purification_mps.PurificationMPS method), 571
expectation_value_terms_sum()
(tenpy.networks.mps.MPS method), 521
(tenpy.networks.purification_mps.PurificationMPS method), 571
expm () (in module tenpy.linalg.np_conserved), 191
extend() (tenpy.linalg.charges.LegCharge method),
extend () (tenpy.linalg.charges.LegPipe method), 214
extend() (tenpy.linalg.np_conserved.Array method), 177
eye_like() (in module tenpy.linalg.np_conserved), 191

F
FermiHubbardChain (class in tenpy.models.hubbard), 423
FermiHubbardModel (class in
tenpy.models.hubbard), 431
FermionChain (class in
tenpy.models.fermions_spinless), 394
FermionicHaldaneModel (class in
tenpy.models.haldane), 460
FermionModel (class in
tenpy.models.fermions_spinless), 402
FermionSite (class in tenpy.networks.site), 487
finite() (tenpy.networks.mpo.MPO property), 539
finite() (tenpy.networks.mps.MPS property), 513
finite() (tenpy.networks.purification_mps.PurificationMPS property), 572
flat_to_npc() (tenpy.linalg.sparse.FlatHermitianOperator method), 225
flat_to_npc () (tenpy.linalg.sparse.FlatLinearOperator method), 229
FlatHermitianOperator (class in tenpy.linalg.sparse), 224
FlatLinearOperator (class in tenpy.linalg.sparse), 227
flip_charges_qconj()
(tenpy.linalg.charges.LegCharge method), 207
flip_charges_qconj()
(tenpy.linalg.charges.LegPipe method), 214
from_add_charge()
(tenpy.linalg.charges.LegCharge class method),

206
from_add_charge() (tenpy.linalg.charges.LegPipe class method), 214
from_Bflat() (tenpy.networks.mps.MPS class from_ndarray() (tenpy.linalg.np_conserved.Array method), 512 class method), 173
from_Bflat() (tenpy.networks.purification_mps.PurificafionMPSdarray_trivial() class method), 572 (tenpy.linalg.np_conserved.Array class
from_change_charge() method), 173
(tenpy.linalg.charges.LegCharge class method), from_norm() (tenpy.algorithms.truncation.TruncationError 206
from_change_charge()
(tenpy.linalg.charges.LegPipe class method), 214
from_drop_charge()
(tenpy.linalg.charges.LegCharge class method) 206
from_drop_charge () (tenpy.linalg.charges.LegPipe class method), 214
from_full() (tenpy.networks.mps.MPS class method), 512
from_full() (tenpy.networks.purification_mps.PurificationMPS method), 205 class method), 573
from_func() (tenpy.linalg.np_conserved.Array class method), 173
from_func_square() (tenpy.linalg.np_conserved.Array class from_qflat() (tenpy.linalg.charges.LegPipe class method), 174
from_grids() (tenpy.networks.mpo.MPO class from_qind() (tenpy.linalg.charges.LegCharge class method), 538
from_guess_with_pipe() (tenpy.linalg.sparse.FlatHermitianOperator class method), 225
from_guess_with_pipe() (tenpy.linalg.sparse.FlatLinearOperator class method), 229
from_H_mpo() (tenpy.algorithms.exact_diag.ExactDiag from_singlets() (tenpy.networks.purification_mps.PurificationMPS class method), 167
from_infiniteT() (tenpy.networks.purification_mps.PeinifocatioqWhPS1ist () (tenpy.networks.mpo.MPOGraph class method), 562 class method), 546
from_MPOModel() (tenpy.models.fermions_spinless.FernionGhtiarms () (tenpy.networks.mpo.MPOGraph class class method), 399 method), 546
from_MPOModel() (tenpy.models.hubbard.BoseHubbardChain_trivial() (tenpy.linalg.charges.LegCharge class method), 414 class method), 205
from_MPOModel() (tenpy.models.hubbard.FermiHubbardEbaintrivial() (tenpy.linalg.charges.LegPipe class class method), 429 method), 215
from_MPOModel() (tenpy.models.model.NearestNeighbofiMbdelcontraction() class method), 332
(tenpy.networks.mpo.MPOEnvironment
from_MPOModel() (tenpy.models.spins.SpinChain class method), 369 full_contraction()
from_MPOModel() (tenpy.models.spins_nnn.SpinChainNNN (tenpy.networks.mps.MPSEnvironment class method), 385 method), 530
from_MPOModel() (tenpy.models.tf_ising.TFIChain full_diag_effH() (in module class method), 340 tenpy.algorithms.dmrg), 120
from_MPOModel() (tenpy.models.xxz_chain.XXZChain full_diagonalization()


```
get_SR() (tenpy.networks.mps.MPS method), 514
 group_sites() (tenpy.models.haldane.FermionicHaldaneModel
get_SR()(tenpy.networks.purification_mps.PurificationMPS method),466
 method), }57
 group_sites() (tenpy.models.hofstadter.HofstadterBosons
get_sweep_schedule()
 (tenpy.algorithms.dmrg.DMRGEngine
 method), }8
get_sweep_schedule()
 (tenpy.algorithms.dmrg.EngineCombine
 method), }9
get_sweep_schedule()
 (tenpy.algorithms.dmrg.EngineFracture
 method),99
get_sweep_schedule()
 (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method),109
get_sweep_schedule()
 (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),116
get_sweep_schedule()
 (tenpy.algorithms.mps_sweeps.Sweep method),
 128
get_theta() (tenpy.networks.mps.MPS method), 514
get_theta() (tenpy.networks.purification_mps.PurificatignMPS_sites() (tenpy.models.model.MultiCouplingModel
 method),576
get_total_charge() (tenpy.networks.mps.MPS
 method), }51
get_total_charge()
 (tenpy.networks.purification_mps.PurificationMPS
 method),576
get_W() (tenpy.networks.mpo.MPO method), 539
get_xL() (tenpy.algorithms.dmrg.DensityMatrixMixer
 method), }9
get_xR() (tenpy.algorithms.dmrg.DensityMatrixMixer
 method), }9
GOE () (in module tenpy.linalg.random_matrix), 221
GradientDescentDisentangler (class in
 tenpy.algorithms.purification_tebd),148
gram_schmidt() (in module tenpy.linalg.lanczos),
 236
grid_concat() (in module
 tenpy.linalg.np_conserved),191
grid_insert_ops() (in module
 tenpy.networks.mpo), }54
grid_outer()(in module tenpy.linalg.np_conserved),
 192
groundstate() (tenpy.algorithms.exact_diag.ExactDiag
 method),168
group_sites() (in module tenpy.networks.site), 506
group_sites() (tenpy.models.fermions_spinless.FermiogCbauin_sites() (tenpy.networks.purification_mps.PurificationMPS
 method),400 method),576
group_sites() (tenpy.models.fermions_spinless.FermiogMødel_split() (tenpy.networks.mps.MPS method),
 method),407 515
group_sites() (tenpy.models.haldane.BosonicHaldaneModelp_split() (tenpy.networks.purification_mps.PurificationMPS
 method),459
 method), }57
```

GroupedSite (class in tenpy.networks.site), 490
GUE () (in module tenpy.linalg.random_matrix), 221

## H

H () (tenpy.linalg.sparse.FlatHermitianOperator property), 224
H () (tenpy.linalg.sparse.FlatLinearOperator property), 230
H0_mixed (class in tenpy.algorithms.tdvp), 144
H1_mixed (class in tenpy.algorithms.tdvp), 144
H2_mixed (class in tenpy.algorithms.tdvp), 145
has_edge ()
(tenpy.networks.mpo.MPOGraph method), 547
has_label() (tenpy.linalg.np_conserved.Array method), 176
HofstadterBosons (class
tenpy.models.hofstadter), 439
HofstadterFermions (class
tenpy.models.hofstadter), 445
Honeycomb (class in tenpy.models.lattice), 244

## I

iadd_prefactor_other() (tenpy.linalg.np_conserved.Array method), 185
ibinary_blockwise() (tenpy.linalg.np_conserved.Array method), 184
iconj() (tenpy.linalg.np_conserved.Array method), 184
idrop_labels() (tenpy.linalg.np_conserved.Array method), 176
increase_L() (tenpy.networks.mps.MPS method), 515
 method), 577
init_env() (tenpy.algorithms.dmrg.DMRGEngine method), 89
init_env() (tenpy.algorithms.dmrg.EngineCombine method), 95
init_env() (tenpy.algorithms.dmrg.EngineFracture method), 100
init_env() (tenpy.algorithms.dmrg.SingleSiteDMRGEnginét_sites () (tenpy.models.haldane.BosonicHaldaneModel method), 109
init_env() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine ${ }^{i} \mathrm{nit}$ _sites() (tenpy.models.haldane.FermionicHaldaneModel method), 117
init_env() (tenpy.algorithms.mps_sweeps.Sweep method), 127
init_lattice() (tenpy.models.fermions_spinless.Fermionèhaiñites () (tenpy.models.hubbard.BoseHubbardChain method), 400
init_lattice() (tenpy.models.fermions_spinless.Fermion辣odsel ${ }^{i t e s}$ () (tenpy.models.hubbard.BoseHubbardModel method), 408 method), 418
init_lattice() (tenpy.models.haldane.BosonicHaldanèMiotedsites () (tenpy.models.hubbard.FermiHubbardChain method), 459
init_lattice() (tenpy.models.haldane.FermionicHaldaneModel method), 466
init_lattice() (tenpy.models.hofstadter:HofstadterFermions method), 446
init_lattice() (tenpy.models.hubbard.BoseHubbardChain method), 415
init_lattice() (tenpy.models.hubbard.BoseHubbardModel method), 423
init_lattice() (tenpy.models.hubbard.FermiHubbardChain method), 430
init_lattice() (tenpy.models.hubbard.FermiHubbardModel method), 437
init_lattice() (tenpy.models.model.CouplingMPOModel method), 312
init_lattice() (tenpy.models.spins.SpinChain method), 370
init_lattice() (tenpy.models.spins.SpinModel method), 377
init_lattice() (tenpy.models.spins_nnn.SpinChainNNN method), 386
init_lattice() (tenpy.models.spins_nnn.SpinChainNNN2 method), 393
init_lattice() (tenpy.models.tf_ising.TFIChain method), 341
init_lattice() (tenpy.models.tf_ising.TFIModel method), 348
init_lattice() (tenpy.models.toric_code.ToricCode method), 477
init_lattice() (tenpy.models.xxz_chain.XXZChain2 method), 362
init_LP() (tenpy.networks.mpo.MPOEnvironment method), 542
init_LP() (tenpy.networks.mps.MPSEnvironment method), 529 method), 542
init_RP() (tenpy.networks.mps.MPSEnvironment method), 529
init_sites() (tenpy.models.fermions_spinless.FermionChain method), 401
init_sites() (tenpy.models.fermions_spinless.FermionModel method), 403 method), 454 method), 461
init_sites() (tenpy.models.hofstadter.HofstadterFermions method), 446 method), 430

```
init_sites() (tenpy.models.hubbard.FermiHubbardModlelit_terms() (tenpy.models.xxz_chain.XXZChain2
 method),432 method), 357
init_sites() (tenpy.models.model.CouplingMPOModeLnitial_guess() (tenpy.networks.mps.TransferMatrix
 method),313 method),533
init_sites() (tenpy.models.spins.SpinChain inner() (in module tenpy.linalg.np_conserved),193
 method),371 inverse_permutation() (in module
init_sites() (tenpy.models.spins.SpinModel tenpy.tools.misc),587
 method),372 iproject() (tenpy.linalg.np_conserved.Array
init_sites() (tenpy.models.spins_nnn.SpinChainNNN method),182
 method),380 ipurge_zeros() (tenpy.linalg.np_conserved.Array
init_sites() (tenpy.models.spins_nnn.SpinChainNNN2 method),182
 method),388 ireplace_label()(tenpy.linalg.np_conserved.Array
init_sites() (tenpy.models.tf_ising.TFIChain method),176
 method),341 ireplace_labels()
init_sites() (tenpy.models.tf_ising.TFIModel (tenpy.linalg.np_conserved.Array method),
 method),343 176
init_sites() (tenpy.models.toric_code.ToricCode IrregularLattice (class in tenpy.models.lattice),
 method),476 252
init_sites() (tenpy.models.xxz_chain.XXZChain2 is_blocked() (tenpy.linalg.charges.LegCharge
 method),356 method),207
init_terms() (tenpy.models.fermions_spinless.FermionCbalmlocked()
 (tenpy.linalg.charges.LegPipe
 method),401 method),216
init_terms() (tenpy.models.fermions_spinless.FermionMsddblunched() (tenpy.linalg.charges.LegCharge
 method),403 method),207
init_terms() (tenpy.models.haldane.BosonicHaldaneM\ddot{0}dellbunched() (tenpy.linalg.charges.LegPipe
 method),455 method),216
init_terms() (tenpy.models.haldane.FermionicHaldaneMbodebmpletely_blocked()
 method),462 (tenpy.linalg.np_conserved.Array method),
init_terms() (tenpy.models.hofstadter.HofstadterFermions 179
 method),447 is_equal () (tenpy.networks.mpo.MPO method), 540
init_terms()(tenpy.models.hubbard.BoseHubbardChaïns_hermitian() (tenpy.networks.mpo.MPO
 method),416 method),540
init_terms() (tenpy.models.hubbard.BoseHubbardModek_non_string_iterable() (in module
 method),418 tenpy.tools.string),597
init_terms()(tenpy.models.hubbard.FermiHubbardChaim_sorted() (tenpy.linalg.charges.LegCharge
 method),431 method), 207
init_terms() (tenpy.models.hubbard.FermiHubbardModel_sorted() (tenpy.linalg.charges.LegPipe method),
 method),432 216
init_terms()(tenpy.models.model.CouplingMPOMode&scale_axis() (tenpy.linalg.np_conserved.Array
 method),313 method),183
init_terms() (tenpy.models.spins.SpinChain iscale_prefactor()
 method),371 (tenpy.linalg.np_conserved.Array method),
init_terms() (tenpy.models.spins.SpinModel 185
 method),373 iset_leg_labels()
init_terms()(tenpy.models.spins_nnn.SpinChainNNN (tenpy.linalg.np_conserved.Array method),
 method),380 175
init_terms()(tenpy.models.spins_nnn.SpinChainNNN2i sort_qdata() (tenpy.linalg.np_conserved.Array
 method),388
 method),179
init_terms() (tenpy.models.tf_ising.TFIChain iswapaxes() (tenpy.linalg.np_conserved.Array
 method),342 method),183
init_terms() (tenpy.models.tf_ising.TFIModel iter() (tenpy.algorithms.purification_tebd.GradientDescentDisentangler
 method),343 method),149
init_terms() (tenpy.models.toric_code.ToricCode iter() (tenpy.algorithms.purification_tebd.NormDisentangler
 method),477 method),152
```

```
iter() (tenpy.algorithms.purification_tebd.RenyiDisentangkegCharge (class in tenpy.linalg.charges), 203
 method),162
itranspose() (tenpy.linalg.np_conserved.Array
 method),183
iunary_blockwise()
 (tenpy.linalg.np_conserved.Array method),
 183
```


## K

```
LegP ipe (class in tenpy.linalg.charges), 210
lexsort () (in module tenpy.tools.misc), 587
lin_fit_res() (in module tenpy.tools.fit), 596
linear_fit() (in module tenpy.tools.fit), 596
list_to_dict_list() (in module tenpy.tools.misc), 587
load_omp_library() (in module tenpy.tools.process), 598
```

Kagome (class in tenpy.models.lattice), 259
kroneckerproduct()
(tenpy.networks.site.GroupedSite 491

## L

L () (tenpy.networks.mpo.MPO property), 538
L ( ) (tenpy.networks.mpo.MPOGraph property), 547
L () (tenpy.networks.mps.MPS property), 513
L () (tenpy.networks.purification_mps.PurificationMPS property), 563
Ladder (class in tenpy.models.lattice), 266
lanczos() (in module tenpy.linalg.lanczos), 236
lanczos_arpack() (in module tenpy.linalg.lanczos), 236
LanczosEvolution (class in tenpy.linalg.lanczos), 233
LanczosGroundState (class in tenpy.linalg.lanczos), 234
LastDisentangler (class tenpy.algorithms.purification_tebd), 150
lat2mps_idx() (tenpy.models.lattice.Chain method), 240
lat2mps_idx() (tenpy.models.lattice.Honeycomb method), 247
lat2mps_idx() (tenpy.models.lattice.IrregularLattice method), 253
lat2mps_idx() (tenpy.models.lattice.Kagome method), 261
lat2mps_idx() (tenpy.models.lattice.Ladder method), 268
lat2mps_idx() (tenpy.models.lattice.Lattice method), 277
lat2mps_idx() (tenpy.models.lattice.SimpleLattice method), 283
lat2mps_idx() (tenpy.models.lattice.Square method), 290
lat2mps_idx() (tenpy.models.lattice.Triangular method), 297
lat2mps_idx() (tenpy.models.lattice.TrivialLattice method), 303
lat2mps_idx() (tenpy.models.toric_code.DualSquare method), 470
Lattice (class in tenpy.models.lattice), 273
1 cm () (in module tenpy.tools.math), 591

## M

method), make_pipe() (tenpy.linalg.np_conserved.Array method), 179
make_valid() (tenpy.linalg.charges.ChargeInfo method), 202
map_incoming_flat()
(tenpy.linalg.charges.LegPipe method), 213
matmat () (tenpy.linalg.sparse.FlatHermitianOperator method), 226
matmat () (tenpy.linalg.sparse.FlatLinearOperator method), 230
matvec () (tenpy.algorithms.exact_diag.ExactDiag method), 168
matvec() (tenpy.algorithms.mps_sweeps.EffectiveH method), 124
matvec() (tenpy.algorithms.mps_sweeps.OneSiteH method), 125
matvec () (tenpy.algorithms.mps_sweeps.TwoSiteH method), 130
matvec() (tenpy.linalg.np_conserved.Array method), 185
matvec () (tenpy.linalg.sparse.FlatHermitianOperator method), 226
matvec () (tenpy.linalg.sparse.FlatLinearOperator method), 231
matvec () (tenpy.linalg.sparse.NpcLinearOperator method), 232
matvec () (tenpy.networks.mps.TransferMatrix method), 533
matvec_theta_ortho()
(tenpy.algorithms.mps_sweeps.EffectiveH method), 124
matvec_theta_ortho()
(tenpy.algorithms.mps_sweeps.OneSiteH method), 126
matvec_theta_ortho()
(tenpy.algorithms.mps_sweeps.TwoSiteH method), 130
matvec_to_array() (in module tenpy.tools.math), 592
max_range () (tenpy.networks.terms.CouplingTerms method), 550
max_range () (tenpy.networks.terms.MultiCouplingTerms method), 554

```
memory_usage() (in module tenpy.tools.process),599 method),247
MinDisentangler (class in mps2lat_idx() (tenpy.models.lattice.IrregularLattice
 tenpy.algorithms.purification_tebd),150 method), }25
mix_rho_L() (tenpy.algorithms.dmrg.DensityMatrixMixemps2lat_idx() (tenpy.models.lattice.Kagome
 method),91 method), 261
mix_rho_R()(tenpy.algorithms.dmrg.DensityMatrixMixemps2lat_idx() (tenpy.models.lattice.Ladder
 method),91 method), 268
mixed_svd() (tenpy.algorithms.dmrg.EngineCombine mps2lat_idx() (tenpy.models.lattice.Lattice
 method),95 method),277
mixed_svd() (tenpy.algorithms.dmrg.EngineFracture mps2lat_idx() (tenpy.models.lattice.SimpleLattice
 method),100 method),283
mixed_svd() (tenpy.algorithms.dmrg.SingleSiteDMRGEmgoise2 lat_idx() (tenpy.models.lattice.Square
 method),107 method),290
mixed_svd()(tenpy.algorithms.dmrg.TwoSiteDMRGEngimes2lat_idx() (tenpy.models.lattice.Triangular
 method),115
 method), 297
Mixer (class in tenpy.algorithms.dmrg),103 mps2lat_idx() (tenpy.models.lattice.TrivialLattice
mixer_activate() (tenpy.algorithms.dmrg.DMRGEngine method),303
 method),89 mps2lat_idx() (tenpy.models.toric_code.DualSquare
mixer_activate() (tenpy.algorithms.dmrg.EngineCombine method), 470
 method),95 mps2lat_values() (tenpy.models.lattice.Chain
mixer_activate() (tenpy.algorithms.dmrg.EngineFracture method),241
 method),100 mps2lat_values() (tenpy.models.lattice.Honeycomb
mixer_activate() (tenpy.algorithms.dmrg.SingleSiteDMRGEnginethod), 247
 method),108 mps2lat_values() (tenpy.models.lattice.IrregularLattice
mixer_activate() (tenpy.algorithms.dmrg.TwoSiteDMRGEnginemethod), 254
 method),115 mps2lat_values()
mixer_activate() (tenpy.algorithms.mps_sweeps.Sweep method), 261
 method),128 mps2lat_values()
 (tenpy.models.lattice.Ladder
mixer_cleanup() (tenpy.algorithms.dmrg.DMRGEngine method),268
 method),89 mps2lat_values()
 (tenpy.models.lattice.Lattice
mixer_cleanup() (tenpy.algorithms.dmrg.EngineCombine method),278
 method),95 mps2lat_values() (tenpy.models.lattice.SimpleLattice
mixer_cleanup() (tenpy.algorithms.dmrg.EngineFracture method),283
 method),100 mps2lat_values()
 (tenpy.models.lattice.Square
mixer_cleanup() (tenpy.algorithms.dmrg.SingleSiteDMRGEnginmethod), 290
 method),109 mps2lat_values()
 (tenpy.models.lattice.Triangular
mixer_cleanup() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine method), 297
 method),117
 mps2lat_values() (tenpy.models.lattice.TrivialLattice
mixer_cleanup() (tenpy.algorithms.mps_sweeps.Sweep method), 303
 method),128
 mps2lat_values() (tenpy.models.toric_code.DualSquare
mkl_get_nthreads() (in module method),470
 tenpy.tools.process), 599 mps_idx_fix_u()
 (tenpy.models.lattice.Chain
mkl_set_nthreads() (in module method),241
 tenpy.tools.process), 599
mod() (tenpy.linalg.charges.ChargeInfo property), 202
Model (class in tenpy.models.model), }32
MPO (class in tenpy.networks.mpo),537
MPOEnvironment (class in tenpy.networks.mpo), }54
MPOGraph (class in tenpy.networks.mpo),545
MPOMOdel (class in tenpy.models.model), }32
MPS (class in tenpy.networks.mps), 508
mps2lat_idx() (tenpy.models.lattice.Chain method), mps_idx_fix_u() (tenpy.models.lattice.Lattice
 240
 method), 277
mps2lat_idx() (tenpy.models.lattice.Honeycomb mps_idx_fix_u()(tenpy.models.lattice.SimpleLattice
```

method), 284
mps_idx_fix_u()
method), 290
mps_idx_fix_u() (tenpy.models.lattice.Triangular method), 297
mps_idx_fix_u() (tenpy.models.lattice.TrivialLattice method), 304
mps_idx_fix_u() (tenpy.models.toric_code.DualSquar method), 471
mps_lat_idx_fix_u() (tenpy.models.lattice.Chain
method), 241
mps_lat_idx_fix_u()
(tenpy.models.lattice.Honeycomb method), 249
mps_lat_idx_fix_u()
(tenpy.models.lattice.IrregularLattice method), 255
mps_lat_idx_fix_u()
(tenpy.models.lattice.Kagome method), 262
mps_lat_idx_fix_u()
(tenpy.models.lattice.Ladder method), 269
mps_lat_idx_fix_u() (tenpy.models.lattice.Lattice method), 277
mps_lat_idx_fix_u()
(tenpy.models.lattice.SimpleLattice method), 284
mps_lat_idx_fix_u() (tenpy.models.lattice.Square method), 290
mps_lat_idx_fix_u()
(tenpy.models.lattice.Triangular method), 297
mps_lat_idx_fix_u()
(tenpy.models.lattice.TrivialLattice method), 304
mps_lat_idx_fix_u()
(tenpy.models.toric_code.DualSquare method), 472
mps_sites() (tenpy.models.lattice.Chain method), 241
mps_sites() (tenpy.models.lattice.Honeycomb method), 249
mps_sites() (tenpy.models.lattice.IrregularLattice method), 253
mps_sites() (tenpy.models.lattice.Kagome method), 263
mps_sites() (tenpy.models.lattice.Ladder method), 270
mps_sites() (tenpy.models.lattice.Lattice method), 277
mps_sites() (tenpy.models.lattice.SimpleLattice method), 284
mps_sites() (tenpy.models.lattice.Square method), 291
mps_sites() (tenpy.models.lattice.Triangular
method), 298
mps_sites() (tenpy.models.lattice.TrivialLattice method), 305
mps_sites() (tenpy.models.toric_code.DualSquare method), 472
mps_to_full() (tenpy.algorithms.exact_diag.ExactDiag method), 168
MP SEnvironment (class in tenpy.networks.mps), 527
multi_coupling_shape()
(tenpy.models.lattice.Chain method), 241
multi_coupling_shape()
(tenpy.models.lattice.Honeycomb method), 249
multi_coupling_shape()
(tenpy.models.lattice.IrregularLattice method), 255
multi_coupling_shape()
(tenpy.models.lattice.Kagome method), 263
multi_coupling_shape()
(tenpy.models.lattice.Ladder method), 270
multi_coupling_shape()
(tenpy.models.lattice.Lattice method), 280
multi_coupling_shape()
(tenpy.models.lattice.SimpleLattice method), 284
multi_coupling_shape()
(tenpy.models.lattice.Square method), 291
multi_coupling_shape()
(tenpy.models.lattice.Triangular method), 298
multi_coupling_shape()
(tenpy.models.lattice.TrivialLattice method), 305
multi_coupling_shape()
(tenpy.models.toric_code.DualSquare method), 472
multi_coupling_term_handle_JW()
(tenpy.networks.terms.MultiCouplingTerms method), 553
multi_sites_combine_charges() (in module tenpy.networks.site), 507
MultiCouplingModel (class in tenpy.models.model), 325
MultiCouplingTerms (class in tenpy.networks.terms), 552
multiply_op_names()
(tenpy.networks.site.BosonSite method), 486
multiply_op_names()
(tenpy.networks.site.FermionSite method), 489
multiply_op_names()
(tenpy.networks.site.GroupedSite method), 492

```
multiply_op_names() (tenpy.networks.site.Site number_nearest_neighbors()
 method),496
multiply_op_names()
 (tenpy.networks.site.SpinHalfFermionSite
 method),499
multiply_op_names()
(tenpy.networks.site.SpinHalfSite method),
 502
multiply_op_names()
 (tenpy.networks.site.SpinSite method), 505
 M(tenpy.networks.site.SpinSite method), 505
method),518
mutinf_two_site()
 305
 (tenpy.networks.purification_mps.PurificationMPS_umber_nearest_neighbors()
 method),563 (tenpy.models.toric_code.DualSquare method),
 4 7 2
N
ncon() (in module tenpy.algorithms.network_contractor),
 165
NearestNeighborModel (class in (tenpy.models.lattice.Honeycomb method),
 tenpy.models.model), 331
Nenpy.models.model), 331 (class in
tenpy.algorithms.purification_tebd),151
nontrivial_bonds() (tenpy.networks.mps.MPS
property),513
nontrivial_bonds()
 (tenpy.networks.purification_mps.PurificationMP$umber_next_nearest_neigh.bors ()
 property), 577
norm() (in module tenpy.linalg.np_conserved), 194
norm() (tenpy.linalg.np_conserved.Array method), 184
norm_test() (tenpy.networks.mps.MPS method), 523 number_next_nearest_neighbors()
norm_test() (tenpy.networks.purification_mps.PurificationMPS (tenpy.models.lattice.SimpleLattice method),
 method), 577
NormDisentangler (class in number_next_nearest_neighbors()
 tenpy.algorithms.purification_tebd),151
 number_next_nearest_neighbors()
 number_next_nearest_neighbors()
249
in number_next_nearest_neighbors()
 (tenpy.models.lattice.IrregularLattice method),
 256
number_next_nearest_neighbors()
 (tenpy.models.lattice.Lattice method), }27
 284
 (tenpy.models.lattice.Square method), 291
npc_to_flat() (tenpy.linalg.sparse.FlatHermitianOpermtdmber_next_nearest_neigh.bors()
npc_to_flat() (tenpy.linalg.sparse.FlatHermitianOperdtbmber_next_nearest_neighbors()
 method), 226
 298
 method), }22
NpcLinearOperator (class in tenpy.linalg.sparse),
 232
number_nearest_neighbors()
 (tenpy.models.lattice.Chain method), 241
number_nearest_neighbors()
number_next_nearest_neighbors()
 (tenpy.models.lattice.Honeycomb method),
 249
number_nearest_neigh.bors()
number_nearest_neighbors()
 256
number_nearest_neighbors()
 (tenpy.models.lattice.Kagome method), }26
number_nearest_neighbors()
 (tenpy.models.lattice.Ladder method), }27
 (tenpy.models.lattice.TrivialLattice method),
 305
number_next_nearest_neighbors()
 (tenpy.models.toric_code.DualSquare method),
 472
 O_close_1() (in module tenpy.linalg.random_matrix),
 222
multiply_op_names()
 (tenpy.networks.site.Site number_nearest_neighbors()
 (tenpy.models.lattice.Lattice method), 279
 number_nearest_neighbors()
 (tenpy.models.lattice.SimpleLattice method),
 284
 number_nearest_neighbors()
 (tenpy.models.lattice.Square method), 291
 number_nearest_neighbors()
 (tenpy.models.lattice.Triangular method),
 298
 number_nearest_neighbors()
 (tenpy.models.lattice.TrivialLattice method),
 (tenpy.models.lattice.Chain method),241
(tenpy.networks.purification_mps.PurificationMP
(tenpy.networks.purification_mps.PurificationMPS_umber
```



```
 (tenpy.models.toric_code.DualSquare method),
 (tenpy.models.lattice.Honeycomb method),
L
number_next_nearest_neighbors()
 (tenpy.models.lattice.Kagome method), 263
 298
O
omp_get_nthreads() (in module
 clin
```



```
OneSiteH (class in tenpy.algorithms.mps_sweeps),124
```

onsite_ops() (tenpy.networks.site.BosonSite property), 486
onsite_ops() (tenpy.networks.site.FermionSite property), 489
onsite_ops () (tenpy.networks.site.GroupedSite property), 492
onsite_ops () (tenpy.networks.site.Site property), 495
onsite_ops() (tenpy.networks.site.SpinHalfFermionSite property), 499
onsite_ops() (tenpy.networks.site.SpinHalfSite property), 502
onsite_ops() (tenpy.networks.site.SpinSite property), 505
OnsiteTerms (class in tenpy.networks.terms), 556
op_needs_JW () (tenpy.networks.site.BosonSite method), 486
op_needs_JW () (tenpy.networks.site.FermionSite method), 489
op_needs_JW () (tenpy.networks.site.GroupedSite method), 492
op_needs_JW() (tenpy.networks.site.Site method), 496
op_needs_JW() (tenpy.networks.site.SpinHalfFermionSiteverlap () (tenpy.networks.mps.MPS method), 519 method), 499
op_needs_JW () (tenpy.networks.site.SpinHalfSite method), 502
op_needs_JW() (tenpy.networks.site.SpinSite method), 505
OptimizationFlag
(class tenpy.tools.optimization), 601
optimize () (in module tenpy.tools.optimization), 603
order () (tenpy.models.lattice.Chain property), 242
order() (tenpy.models.lattice.Honeycomb property), 249
order() (tenpy.models.lattice.IrregularLattice property), 256
order () (tenpy.models.lattice.Kagome property), 263
order () (tenpy.models.lattice.Ladder property), 270
order () (tenpy.models.lattice.Lattice property), 276
order() (tenpy.models.lattice.SimpleLattice property), 285
order () (tenpy.models.lattice.Square property), 291
order() (tenpy.models.lattice.Triangular property), 298
order() (tenpy.models.lattice.TrivialLattice property), 305
order() (tenpy.models.toric_code.DualSquare property), 472
order_combine() (tenpy.networks.terms.TermList method), 558
order_combine_term() (in module tenpy.networks.terms), 559
ordering() (tenpy.models.lattice.Chain method), 239
ordering() (tenpy.models.lattice.Honeycomb
method), 246
ordering() (tenpy.models.lattice.IrregularLattice method), 256
ordering() (tenpy.models.lattice.Kagome method), 263
ordering() (tenpy.models.lattice.Ladder method), 270
ordering() (tenpy.models.lattice.Lattice method), 276
ordering() (tenpy.models.lattice.SimpleLattice method), 285
ordering() (tenpy.models.lattice.Square method), 291
ordering() (tenpy.models.lattice.Triangular method), 298
ordering() (tenpy.models.lattice.TrivialLattice method), 305
ordering() (tenpy.models.toric_code.DualSquare method), 472
outer() (in module tenpy.linalg.np_conserved), 194
outer_conj() (tenpy.linalg.charges.LegPipe method), 213
ov_err() (tenpy.algorithms.truncation.TruncationError property), 82
overlap() (tenpy.networks.purification_mps.PurificationMPS method), 577

P
pad () (in module tenpy.tools.misc), 588
perm_flat_from_perm_qind() (tenpy.linalg.charges.LegCharge method), 210
perm_flat_from_perm_qind() (tenpy.linalg.charges.LegPipe method), 216
perm_qind_from_perm_flat() (tenpy.linalg.charges.LegCharge method), 210
perm_qind_from_perm_flat() (tenpy.linalg.charges.LegPipe method), 216
perm_sign() (in module tenpy.tools.math), 592
permute() (tenpy.linalg.np_conserved.Array method), 182
permute_sites() (tenpy.networks.mps.MPS method), 526
permute_sites() (tenpy.networks.purification_mps.PurificationMPS method), 578
perturb_svd() (tenpy.algorithms.dmrg.DensityMatrixMixer method), 90
perturb_svd() (tenpy.algorithms.dmrg.Mixer method), 104
perturb_svd() (tenpy.algorithms.dmrg.SingleSiteMixer method), 111
perturb_svd() (tenpy.algorithms.dmrg.TwoSiteMixer method), 119
pinv() (in module tenpy.linalg.np_conserved), 195

```
plot_alg_decay_fit() (in module tenpy.tools.fit),
 596
plot_basis() (tenpy.models.lattice.Chain method),
 242
plot_basis() (tenpy.models.lattice.Honeycomb
 method), }24
plot_basis() (tenpy.models.lattice.IrregularLattice
 method), 256
plot_basis()(tenpy.models.lattice.Kagome method),
 264
plot_basis() (tenpy.models.lattice.Ladder method),
 271
plot_basis() (tenpy.models.lattice.Lattice method),
 281
plot_basis() (tenpy.models.lattice.SimpleLattice
 method), }28
plot_basis() (tenpy.models.lattice.Square method)
 292
plot_basis() (tenpy.models.lattice.Triangular
 method),299
plot_basis() (tenpy.models.lattice.TrivialLattice
 method), }30
plot_basis() (tenpy.models.toric_code.DualSquare
 method),473
plot_bc_identified()
 (tenpy.models.lattice.Chain method), }24
plot_bc_identified()
 (tenpy.models.lattice.Honeycomb method),
 249
plot_bc_identified()
 (tenpy.models.lattice.IrregularLattice method),
 256
plot_bc_identified()
 (tenpy.models.lattice.Kagome method), }26
plot_bc_identified()
 (tenpy.models.lattice.Ladder method), 271
plot_bc_identified()
 (tenpy.models.lattice.Lattice method), 281
plot_bc_identified()
 (tenpy.models.lattice.SimpleLattice method),
 285
plot_bc_identified()
 (tenpy.models.lattice.Square method), 292
plot_bc_identified()
 (tenpy.models.lattice.Triangular method),
 299
plot_bc_identified()
 (tenpy.models.lattice.TrivialLattice method),
 306
plot_bc_identified()
 (tenpy.models.toric_code.DualSquare method), plot_sites() (tenpy.models.lattice.Honeycomb
 4 7 3
plot_coupling() (tenpy.models.lattice.Chain plot_sites() (tenpy.models.lattice.IrregularLattice
 method), 242
 method), plot_order() (tenpy.models.lattice.TrivialLattice
 method), 306
 method), 250
 method), }25
```

```
plot_sites()(tenpy.models.lattice.Kagome method),
 265
plot_sites() (tenpy.models.lattice.Ladder method),
 272
plot_sites() (tenpy.models.lattice.Lattice method),
 280
plot_sites() (tenpy.models.lattice.SimpleLattice
 method), 286
plot_sites() (tenpy.models.lattice.Square method),
 293
plot_sites() (tenpy.models.lattice.Triangular
 method), 300
plot_sites() (tenpy.models.lattice.TrivialLattice
 method), 307
plot_sites() (tenpy.models.toric_code.DualSquare
 method), 474
plot_stats() (in module tenpy.linalg.lanczos), 237
plot_sweep_stats()
 (tenpy.algorithms.dmrg.DMRGEngine
 method), }8
plot_sweep_stats()
 (tenpy.algorithms.dmrg.EngineCombine
 method),95
plot_sweep_stats()
 (tenpy.algorithms.dmrg.EngineFracture
 method),100
plot_sweep_stats()
 (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method),109
plot_sweep_stats()
 (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),117
plot_update_stats()
 (tenpy.algorithms.dmrg.DMRGEngine
 method), }8
plot_update_stats()
 (tenpy.algorithms.dmrg.EngineCombine
 method),96
plot_update_stats()
 (tenpy.algorithms.dmrg.EngineFracture
 method),101
plot_update_stats()
 (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method),110
plot_update_stats()
 (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),117
position() (tenpy.models.lattice.Chain method), 243
position() (tenpy.models.lattice.Honeycomb
 method), 250
position() (tenpy.models.lattice.IrregularLattice
 method), 257
position() (tenpy.models.lattice.Kagome method),
 265
```

```
possible_multi_couplings()
 (tenpy.models.lattice.SimpleLattice method),
 287
possible_multi_couplings()
 (tenpy.models.lattice.Square method), }29
possible_multi_couplings()
 (tenpy.models.lattice.Triangular method),
 300
possible_multi_couplings()
 (tenpy.models.lattice.TrivialLattice method),
 307
possible_multi_couplings()
 (tenpy.models.toric_code.DualSquare method),
 475
post_update_local()
 (tenpy.algorithms.dmrg.DMRGEngine
 method), }8
post_update_local()
 (tenpy.algorithms.dmrg.EngineCombine
 method),96
post_update_local()
 (tenpy.algorithms.dmrg.EngineFracture
 method),101
post_update_local()
 (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method),110
post_update_local()
 (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),118
post_update_local()
 (tenpy.algorithms.mps_sweeps.Sweep method),
 128
prepare_svd() (tenpy.algorithms.dmrg.EngineCombine
 method),96
prepare_svd()(tenpy.algorithms.dmrg.EngineFracture
 method),101
prepare_svd() (tenpy.algorithms.dmrg.SingleSiteDMRGEnginve_
 method),107
prepare_svd() (tenpy.algorithms.dmrg.TwoSiteDMRGEngingve_zeros() (tenpy.networks.terms.CouplingTerms
 method),115
prepare_update() (tenpy.algorithms.dmrg.DMRGEngingmove_zeros()(tenpy.networks.terms.MultiCouplingTerms
 method), }9
 method),554
prepare_update() (tenpy.algorithms.dmrg.EngineCompinemove_zeros() (tenpy.networks.terms.OnsiteTerms
 method),96 method),557
prepare_update () (tenpy.algorithms.dmrg.EngineFracture_name_op () (tenpy.networks.site.BosonSite method),
 method),101
 486
prepare_update() (tenpy.algorithms.dmrg.SingleSiteDMRGEngine () (tenpy.networks.site.FermionSite
 method),106
 method),489
prepare_update () (tenpy.algorithms.dmrg.TwoSiteDMRGEngine _rep () (tenpy.networks.site.GroupedSite
 method),114
method),492
prepare_update() (tenpy.algorithms.mps_sweeps.Sweep_name_op () (tenpy.networks.site.Site method), 495
 method), }12
probability_per_charge()
 (tenpy.networks.mps.MPS method), 517
```

```
rename_op() (tenpy.networks.site.SpinHalfSite
 method), 502
rename_op() (tenpy.networks.site.SpinSite method),
 505
RenyiDisentangler (class in
 tenpy.algorithms.purification_tebd),162
replace_label() (tenpy.linalg.np_conserved.Array
 method),176
replace_labels() (tenpy.linalg.np_conserved.Array run_imaginary() (tenpy.algorithms.purification_tebd.PurificationTEB
 method),176 method), }16
reset_stats() (tenpy.algorithms.dmrg.DMRGEngine run_one_site() (tenpy.algorithms.tdvp.Engine
 method),87 method),142
reset_stats() (tenpy.algorithms.dmrg.EngineCombinerun_two_sites() (tenpy.algorithms.tdvp.Engine
 method),96 method),142
reset_stats() (tenpy.algorithms.dmrg.EngineFracture
 method),101
reset_stats() (tenpy.algorithms.dmrg.SingleSiteDMRGEngine_axis() (tenpy.linalg.np_conserved.Array
 method),110 method),183
reset_stats() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine_anonymous_svd()
 method),118
reset_stats() (tenpy.algorithms.mps_sweeps.Sweep set_B() (tenpy.algorithms.dmrg.EngineCombine
 method),127
rmatmat () (tenpy.linalg.sparse.FlatHermitianOperator
 method), 226
rmatmat() (tenpy.linalg.sparse.FlatLinearOperator
 method),231
rmatvec() (tenpy.linalg.sparse.FlatHermitianOperator
 method),227
rmatvec() (tenpy.linalg.sparse.FlatLinearOperator
 method), 231
rq_li() (in module tenpy.tools.math), 593
run() (in module tenpy.algorithms.dmrg), 121
run() (tenpy.algorithms.dmrg.DMRGEngine method),
 87
run() (tenpy.algorithms.dmrg.EngineCombine method),
 96
run() (tenpy.algorithms.dmrg.EngineFracture method),
 101
run() (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
mun() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
mun() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method),118
 (tenpy.algorithms.tdvp.Engine method), }14
 set_B() (tenpy.algorithms.dmrg.EngineCombine
 method), }9
 set_B() (tenpy.algorithms.dmrg.EngineFracture
 method), 102
 set_B () (tenpy.algorithms.dmrg.SingleSiteDMRGEngine
 method), }10
 set_B() (tenpy.algorithms.dmrg.TwoSiteDMRGEngine
 method), 115
 set_B() (tenpy.networks.mps.MPS method), 514
 set_B() (tenpy.networks.purification_mps.PurificationMPS
 method), }57
 set_level() (in module tenpy.tools.optimization),
 603
 set_LP() (tenpy.networks.mpo.MPOEnvironment
 method),544
 set_LP() (tenpy.networks.mps.MPSEnvironment
 method), 530
 set_RP() (tenpy.networks.mpo.MPOEnvironment
 method),545
 set_RP() (tenpy.networks.mps.MPSEnvironment
 method),530
 set_SL() (tenpy.networks.mps.MPS method), 514
run() (tenpy.algorithms.purification_tebd.PurificationTEB$et_SL () (tenpy.networks.purification_mps.PurificationMPS
 method), 155 method), 579
run () (tenpy.algorithms.purification_tebd.PurificationTEBक\ell2t_SR () (tenpy.networks.mps.MPS method), }51
 method),159
run() (tenpy.algorithms.tebd.Engine method), 132
run() (tenpy.algorithms.tebd.RandomUnitaryEvolution
 method),137
run() (tenpy.linalg.lanczos.LanczosEvolution method),
 233
run() (tenpy.linalg.lanczos.LanczosGroundState
 method),235
set_SR() (tenpy.networks.purification_mps.PurificationMPS
 method),579
 set_W() (tenpy.networks.mpo.MPO method), 539
 setup_executable() (in module tenpy.tools.misc),
 588
 SimpleLattice (class in tenpy.models.lattice), 281
 SingleSiteDMRGEngine (class in
 tenpy.algorithms.dmrg),105
run_GS() (tenpy.algorithms.purification_tebd.PurificationTEBD
```

SingleSiteMixer (class in tenpy.algorithms.dmrg), 111
Site (class in tenpy.networks.site), 493
site() (tenpy.models.lattice.Chain method), 244
site () (tenpy.models.lattice.Honeycomb method), 251
site() (tenpy.models.lattice.IrregularLattice method), 258
site() (tenpy.models.lattice.Kagome method), 266
site() (tenpy.models.lattice.Ladder method), 273
site() (tenpy.models.lattice.Lattice method), 277
site() (tenpy.models.lattice.SimpleLattice method), 287
site() (tenpy.models.lattice.Square method), 294
site () (tenpy.models.lattice.Triangular method), 301
site() (tenpy.models.lattice.TrivialLattice method), 308
site() (tenpy.models.toric_code.DualSquare method), 475
size() (tenpy.linalg.np_conserved.Array property), 175
sort () (tenpy.linalg.charges.LegCharge method), 208
sort () (tenpy.linalg.charges.LegPipe method), 213
sort_legcharge() (tenpy.linalg.np_conserved.Array method), 179
sort_legcharges() (tenpy.networks.mpo.MPO method), 539
sparse_diag() (tenpy.algorithms.exact_diag.ExactDiag method), 168
sparse_stats() (tenpy.linalg.np_conserved.Array method), 176
speigs() (in module tenpy.linalg.np_conserved), 196
speigs() (in module tenpy.tools.math), 593
speigsh() (in module tenpy.tools.math), 594
SpinChain (class in tenpy.models.spins), 364
SpinChainNNN (class in tenpy.models.spins_nnn), 379
SpinChainNNN2 (class in tenpy.models.spins_nnn), 387
SpinHalfFermionSite (class tenpy.networks.site), 497
SpinHalfSite (class in tenpy.networks.site), 500
SpinModel (class in tenpy.models.spins), 371
SpinSite (class in tenpy.networks.site), 503
split_legs() (tenpy.linalg.np_conserved.Array method), 180
Square (class in tenpy.models.lattice), 288
squeeze() (tenpy.linalg.np_conserved.Array method), 181
standard_normal_complex() (in module
tenpy.linalg.random_matrix), 223
state_index() (tenpy.networks.site.BosonSite method), 486
state_index() (tenpy.networks.site.FermionSite method), 489
state_index() (tenpy.networks.site.GroupedSite
method), 493
state_index() (tenpy.networks.site.Site method), 496
state_index() (tenpy.networks.site.SpinHalfFermionSite method), 500
state_index() (tenpy.networks.site.SpinHalfSite method), 503
state_index()
(tenpy.networks.site.SpinSite
method), 505
state_indices() (tenpy.networks.site.BosonSite
method), 487
state_indices() (tenpy.networks.site.FermionSite method), 490
state_indices() (tenpy.networks.site.GroupedSite method), 493
state_indices() (tenpy.networks.site.Site method), 496
state_indices() (tenpy.networks.site.SpinHalfFermionSite method), 500
state_indices() (tenpy.networks.site.SpinHalfSite method), 503
state_indices() (tenpy.networks.site.SpinSite
method), 506
stored_blocks() (tenpy.linalg.np_conserved.Array property), 175
subspace_expand()
(tenpy.algorithms.dmrg.SingleSiteMixer
method), 112
subspace_expand()
(tenpy.algorithms.dmrg.TwoSiteMixer method), 119
suzuki_trotter_decomposition()
(tenpy.algorithms.purification_tebd.PurificationTEBD
static method), 156
suzuki_trotter_decomposition()
(tenpy.algorithms.purification_tebd.PurificationTEBD2
static method), 160
suzuki_trotter_decomposition()
(tenpy.algorithms.tebd.Engine static method), 133
suzuki_trotter_decomposition()
(tenpy.algorithms.tebd.RandomUnitaryEvolution
static method), 138
suzuki_trotter_time_steps()
(tenpy.algorithms.purification_tebd.PurificationTEBD
static method), 156
suzuki_trotter_time_steps()
(tenpy.algorithms.purification_tebd.PurificationTEBD2
static method), 161
suzuki_trotter_time_steps()
(tenpy.algorithms.tebd.Engine static method),
133
suzuki_trotter_time_steps()
(tenpy.algorithms.tebd.RandomUnitaryEvolution
static method), 138
svd () (in module tenpy.linalg.np_conserved), 196
svd () (in module tenpy.linalg.svd_robust), 218
svd_gesvd() (in module tenpy.linalg.svd_robust), 219
svd_theta() (in module tenpy.algorithms.truncation), 83
swap_sites() (tenpy.networks.mps.MPS method), 526
swap_sites() (tenpy.networks.purification_mps.PurificationMPS 409
method), 563
Sweep (class in tenpy.algorithms.mps_sweeps), 126
sweep () (tenpy.algorithms.dmrg.DMRGEngine
method), 90
sweep () (tenpy.algorithms.dmrg.EngineCombine method), 97
sweep () (tenpy.algorithms.dmrg.EngineFracture method), 102
sweep () (tenpy.algorithms.dmrg.SingleSiteDMRGEngine method), 110
sweep () (tenpy.algorithms.dmrg.TwoSiteDMRGEngine method), 118
sweep () (tenpy.algorithms.mps_sweeps.Sweep method), 128
sweep_left_right()
(tenpy.algorithms.tdvp.Engine method), 142
sweep_left_right_two()
(tenpy.algorithms.tdvp.Engine method), 142
sweep_right_left()
(tenpy.algorithms.tdvp.Engine method), 142
sweep_right_left_two() (tenpy.algorithms.tdvp.Engine method), 142

## T

T () (tenpy.linalg.sparse.FlatHermitianOperator property), 224
T () (tenpy.linalg.sparse.FlatLinearOperator property), 230
take_slice() (tenpy.linalg.np_conserved.Array method), 176
temporary_level (class in tenpy.tools.optimization), 602
tenpy (module), 80
tenpy.algorithms (module), 81
tenpy.algorithms.dmrg (module), 122
tenpy.algorithms.exact_diag (module), 169
tenpy.algorithms.mps_sweeps (module), 131
tenpy.algorithms.network_contractor (module), 166
tenpy.algorithms.purification_tebd (module), 164
tenpy.algorithms.tdvp (module), 145
tenpy.algorithms.tebd (module), 140
tenpy.algorithms.truncation (module), 84
tenpy.linalg (module), 169
tenpy.linalg.charges (module), 217
tenpy.linalg.lanczos (module), 237
tenpy.linalg.np_conserved (module), 199
tenpy.linalg.random_matrix(module), 223
tenpy.linalg.sparse (module), 232
tenpy.linalg.svd_robust (module), 219
tenpy.models (module), 237
tenpy.models.fermions_spinless (module),
tenpy.models.haldane (module), 467
tenpy.models.hofstadter (module), 453
tenpy.models.hubbard (module), 438
tenpy.models.lattice (module), 310
tenpy.models.model (module), 333
tenpy.models.spins (module), 378
tenpy.models.spins_nnn (module), 394
tenpy.models.tf_ising (module), 349
tenpy.models.toric_code (module), 483
tenpy.models.xxz_chain (module), 363
tenpy.networks (module), 483
tenpy.networks.mpo (module), 548
tenpy.networks.mps (module), 535
tenpy.networks.purification_mps (module), 579
tenpy.networks.site (module), 508
tenpy.networks.terms (module), 559
tenpy.tools (module), 581
tenpy.tools.fit (module), 596
tenpy.tools.math (module), 594
tenpy.tools.misc (module), 590
tenpy.tools.optimization (module), 605
tenpy.tools.params (module), 583
tenpy.tools.process (module), 600
tenpy.tools.string (module), 598
tenpy.version (module), 606
tensordot() (in module tenpy.linalg.np_conserved), 197
TermList (class in tenpy.networks.terms), 557
test_contractible()
(tenpy.linalg.charges.LegCharge method), 207
test_contractible()
(tenpy.linalg.charges.LegPipe method), 216
test_equal () (tenpy.linalg.charges.LegCharge method), 207
test_equal()
(tenpy.linalg.charges.LegPipe method), 217
test_sanity() (tenpy.linalg.charges.ChargeInfo method), 202
test_sanity() (tenpy.linalg.charges.LegCharge method), 206
test_sanity() (tenpy.linalg.charges.LegPipe method), 213

```
test_sanity() (tenpy.linalg.np_conserved.Array test_sanity() (tenpy.models.spins_nnn.SpinChainNNN2
 method),175 method),393
test_sanity() (tenpy.models.fermions_spinless.FermionChainsanity() (tenpy.models.tf_ising.TFIChain
 method),401 method), }34
test_sanity() (tenpy.models.fermions_spinless.FermionMloddelsanity() (tenpy.models.tf_ising.TFIModel
 method),408 method), }34
test_sanity() (tenpy.models.haldane.BosonicHaldaneMedml_sanity() (tenpy.models.toric_code.DualSquare
 method),460 method),475
test_sanity() (tenpy.models.haldane.FermionicHaldarte&dddekanity() (tenpy.models.toric_code.ToricCode
 method),467 method),483
test_sanity() (tenpy.models.hofstadter.HofstadterBostz&st_sanity() (tenpy.models.xxz_chain.XXZChain
 method),444 method), }35
test_sanity() (tenpy.models.hofstadter.HofstadterFerntierst_sanity() (tenpy.models.xxz_chain.XXZChain2
 method),451 method), }36
test_sanity() (tenpy.models.hubbard.BoseHubbardChaizist_sanity() (tenpy.networks.mpo.MPO method),
 method),416 538
test_sanity() (tenpy.models.hubbard.BoseHubbardModekt_sanity() (tenpy.networks.mpo.MPOEnvironment
 method),423 method),542
test_sanity() (tenpy.models.hubbard.FermiHubbardCh*ist_sanity() (tenpy.networks.mpo.MPOGraph
 method),431 method),547
test_sanity() (tenpy.models.hubbard.FermiHubbardModelt_sanity() (tenpy.networks.mps.MPS method),
 method),438 510
test_sanity() (tenpy.models.lattice.Chain method), test_sanity() (tenpy.networks.mps.MPSEnvironment
 2 4 4 ~ m e t h o d) , 5 2 9
test_sanity() (tenpy.models.lattice.Honeycomb test_sanity() (tenpy.networks.purification_mps.PurificationMPS
 method),251 method),562
test_sanity() (tenpy.models.lattice.IrregularLattice test_sanity() (tenpy.networks.site.BosonSite
 method), }25
 (tenpy.models.lattice.Kagome test sanity()
 (tenpy.networks.site.FermionSite
 method),490
 method),266
 (tenpy.models.lattice.Ladder test_sanity() (tenpy.networks.site.GroupedSite
 method),493
test_sanity() (tenpy.models.lattice.Lattice test_sanity() (tenpy.networks.site.Site method),
 method),276 495
test_sanity() (tenpy.models.lattice.SimpleLattice test_sanity()(tenpy.networks.site.SpinHalfFermionSite
 method),287 method),500
test_sanity() (tenpy.models.lattice.Square test_sanity() (tenpy.networks.site.SpinHalfSite
 method),294 method),503
test_sanity() (tenpy.models.lattice.Triangular test_sanity()
 method),301 method),506
test_sanity() (tenpy.models.lattice.TrivialLattice TFIChain(class in tenpy.models.tf_ising), 335
 method),308 TFIModel (class in tenpy.models.tf_ising), 342
test_sanity() (tenpy.models.model.CouplingModel theta_svd_left_right()
 method),319 (tenpy.algorithms.tdvp.Engine method), }14
test_sanity() (tenpy.models.model.CouplingMPOModeheta_svd_right_left()
 method),318 (tenpy.algorithms.tdvp.Engine method), }14
test_sanity()(tenpy.models.model.MultiCouplingModeb_array() (in module tenpy.tools.misc), 589
 method),331 to_Arrays() (tenpy.networks.terms.OnsiteTerms
test_sanity() (tenpy.models.spins.SpinChain method),556
 method),371 to_iterable()(in module tenpy.tools.misc), 589
test_sanity() (tenpy.models.spins.SpinModel to_iterable_arrays() (in module
 method),378 tenpy.linalg.np_conserved),198
test_sanity() (tenpy.models.spins_nnn.SpinChainNNNto_LegCharge() (tenpy.linalg.charges.LegPipe
 method),386 method), 213
```

```
to_mathematica_lists() (in module (tenpy.models.hubbard.FermiHubbardChain
 tenpy.tools.string), 597
to_matrix() (tenpy.algorithms.mps_sweeps.EffectiveH trivial_like_NNModel()
 method),124 (tenpy.models.model.NearestNeighborModel
to_matrix() (tenpy.algorithms.mps_sweeps.OneSiteH method), 333
 method), }12
to_matrix() (tenpy.algorithms.mps_sweeps.TwoSiteH
 method),130
to_ndarray() (tenpy.linalg.np_conserved.Array trivial_like_NNModel()
 method),176 (tenpy.models.spins_nnn.SpinChainNNN
to_nn_bond_Arrays() method),386
 (tenpy.networks.terms.CouplingTerms method), trivial_like_NNModel()
 5 5 1 ~ (t e n p y . m o d e l s . t f = i s i n g . T F I C h a i n ~ m e t h o d) ,
to_nn_bond_Arrays()
 (tenpy.networks.terms.MultiCouplingTerms
 method), }55
to_OnsiteTerms_CouplingTerms()
 method), trivial_like_NNModel()
 (tenpy.networks.terms.TermList
 558
to_OptimizationFlag() (in module
 tenpy.tools.optimization),603
to_qdict() (tenpy.linalg.charges.LegCharge method),
 207
to_qdict() (tenpy.linalg.charges.LegPipe method),
 217
to_qflat() (tenpy.linalg.charges.LegCharge method),
 207
to_qflat() (tenpy.linalg.charges.LegPipe method),
 217
to_TermList() (tenpy.networks.terms.CouplingTerms trunc_err_bonds()
 method), 552
 (tenpy.algorithms.tebd.RandomUnitaryEvolution
to_TermList() (tenpy.networks.terms.MultiCouplingTerms property),138
 method), 554 truncate() (in module tenpy.algorithms.truncation),
to_TermList() (tenpy.networks.terms.OnsiteTerms
 method),557
ToricCode (class in tenpy.models.toric_code), 475
trace() (in module tenpy.linalg.np_conserved),198
TransferMatrix(class in tenpy.networks.mps), 532
transpose() (tenpy.linalg.np_conserved.Array
 method),183
 84
 TruncationError (class in
 tenpy.algorithms.truncation), 81
 TwoSiteDMRGEngine (class in
 tenpy.algorithms.dmrg), 112
 TwoSiteH (class in tenpy.algorithms.mps_sweeps), 129
 TwoSiteMixer (class in tenpy.algorithms.dmrg),118
transpose() (tenpy.linalg.sparse.FlatHermitianOperator
 method), 227
transpose() (tenpy.linalg.sparse.FlatLinearOperator
 method), 232
transpose_list_list() (in module
 tenpy.tools.misc),589
Triangular(class in tenpy.models.lattice), 294
trivial_like_NNModel()
 (tenpy.models.fermions_spinless.FermionChain
 method),401
trivial_like_NNModel()
 (tenpy.models.hubbard.BoseHubbardChain
 method),416
trivial_like_NNModel()
 U_close_1() (in module tenpy.linalg.random_matrix),
 222
unary_blockwise()
(tenpy.linalg.np_conserved.Array method),
 184
unused_parameters() (in module
 tenpy.tools.params),583
update() (tenpy.algorithms.purification_tebd.PurificationTEBD
 method),156
update() (tenpy.algorithms.purification_tebd.PurificationTEBD2
 method),158
update() (tenpy.algorithms.tebd.Engine method), 134
```

```
update() (tenpy.algorithms.tebd.RandomUnitaryEvolutionpdate_LP() (tenpy.algorithms.dmrg.EngineFracture
 method),137
update_amplitude()
 (tenpy.algorithms.dmrg.DensityMatrixMixer
 method),93
update_amplitude() (tenpy.algorithms.dmrg.Mixer
 method),104
update_amplitude()
 (tenpy.algorithms.dmrg.SingleSiteMixer
 method),112
update_amplitude()
 (tenpy.algorithms.dmrg.TwoSiteMixer method),
 119
update_bond() (tenpy.algorithms.purification_tebd.PurificationTEBPthod), 116
 method),153 update_s_h0()
 (tenpy.algorithms.tdvp.Engine
update_bond() (tenpy.algorithms.purification_tebd.PurificationTFBethod), 143
 method),161
 update_step() (tenpy.algorithms.purification_tebd.PurificationTEBD
update_bond() (tenpy.algorithms.tebd.Engine
 method),135
 method),157
 update_step () (tenpy.algorithms.purification_tebd.PurificationTEBD2
update_bond() (tenpy.algorithms.tebd.RandomUnitaryEvolution method), 158
 method),138 update_step() (tenpy.algorithms.tebd.Engine
update_bond_imag() method),134
 (tenpy.algorithms.purification_tebd.PurificationTEß1date_step () (tenpy.algorithms.tebd.RandomUnitaryEvolution
 method), 154 method),139
update_bond_imag() update_theta_h1() (tenpy.algorithms.tdvp.Engine
 (tenpy.algorithms.purification_tebd.PurificationTEBD2 method),143
 method),161 update_theta_h2() (tenpy.algorithms.tdvp.Engine
update_bond_imag()
 (tenpy.algorithms.tebd.Engine method),135
update_bond_imag()
 (tenpy.algorithms.tebd.RandomUnitaryEvolution
 method),139 V
update_imag() (tenpy.algorithms.purification_tebd.PurifigätionTt马BBame () (tenpy.networks.site.BosonSite
 method),156 method),487
update_imag() (tenpy.algorithms.purification_tebd.PurifidutionT&BBh&&me () (tenpy.networks.site.FermionSite
 method),162
update_imag() (tenpy.algorithms.tebd.Engine valid_opname() (tenpy.networks.site.GroupedSite
 method),135 method),493
update_imag() (tenpy.algorithms.tebd.RandomUnitaryEv*luitidnopname() (tenpy.networks.site.Site method),
 method),139 -496
update_local() (tenpy.algorithms.dmrg.DMRGEnginevalid_opname () (tenpy.networks.site.SpinHalfFermionSite
 method), }90\mathrm{ method),500
update_local() (tenpy.algorithms.dmrg.EngineCombinealid_opname() (tenpy.networks.site.SpinHalfSite
 method),97 method),503
update_local() (tenpy.algorithms.dmrg.EngineFractureralid_opname()
 (tenpy.networks.site.SpinSite
 method),102 method),506
update_local()(tenpy.algorithms.dmrg.SingleSiteDMR@E!tgirje in () (in module tenpy.tools.string), 597
 method),106
update_local() (tenpy.algorithms.dmrg.TwoSiteDMRG\ngine
 method),114 XXZChain(class in tenpy.models.xxz_chain), }34
update_local() (tenpy.algorithms.mps_sweeps.Sweep XXZChain2 (class in tenpy.models.xxz_chain), 356
 method),128
update_LP() (tenpy.algorithms.dmrg.EngineCombine Z
 method),97
 Z
 zero_if_close()(in module tenpy.tools.misc), 590
```

zeros() (in module tenpy.linalg.np_conserved), 198
zeros_like() (tenpy.linalg.np_conserved.Array method), 175


[^0]:    perturb_svd (self, engine, theta, iO, update_LP, update_RP)

[^1]:    init_sites (self, model_params)

